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8 ABSTRACT: A tropospheric ozone Differential Absorption Lidar (DIAL) system,

9 developed jointly by NASA and the University of Alabama at Huntsville (UAH),

10 measures free-tropospheric ozone Fofiles between 4-10 km. Located at 192 meters

11 altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the

12 UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both

13 daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical

14 calculations provide evidence to indicate the retrieval accuracy ranges from better than 8%

15 at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration.

16 With anticipated improvements to allow retrievals at both higher and lower altitudes, this

17 ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique

18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.

19 1. Introduction

20 Measuring ozone variability at high spatial and temporal resolution increases our understanding of the

21 Planetary Boundary Layer (PBL), PBL and free tropospheric exchange, stratosphere and troposphere

22 exchange (STE), and the impact of lightning NOx on tropospheric ozone (1). Ozone, a triatomic oxygen

23 molecule, is a key trace-gas species in the lower atmosphere. Within the troposphere, ozone is partially

24 derived from transport proeesses that move ozone from the stratosphere into the troposphere and by the
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25 oxidation of hydrocarbons originating from anthropogenic activity (2). Ozone's impact within the

26 free-troposphere, which extends from the top of the PBL to a maximum altitude that varies between 9-16kin

27 depending on season and location, is more complex. Ozone is a powerful oxidant, and is harmful to both

28 plant and animal life; it is a strong greenhouse gas and an important component of photochemical smog.

29 However, it is also a key component of the atmospheric oxidizing cycle that cleans the air of harmful

30 pollutants.

31 Several techniques currently exist for making range-resolved measurements of tropospheric ozone.

32 The most common is the electrochemical concentration cell (ECC), which is attached to a balloon; ECCs

33 have been used since the 1960's to monitor ozone. These ozonesondes can profile ozone with a 100m

34 spatial resolution from the surface to 35km altitude with the accuracy of 5-10% (3; 4). Ozonesondes are

35 attractive because of their low upfront cost and their well-characterized behavior. They are, however, not

36 suitable for making continuous measurements because of cost and logistical considerations. Interesting

37 atmospheric phenomena that vary over periods less than one day are particularly difficult to monitor using

38 balloon sondes. Satellite observations can be used to derive total column ozone (5), stratospheric ozone

39 (6-11), and to extend measurements to altitudes that are inaccessible to ozonesundes (12). More recently,

40 high quality satellite observations of tropospheric ozone are becoming available (4, 11, 13-18). Although

41 the satellite measurements can produce global maps of ozone, their current measurement uncertainties (19,

42 20) along with their coarse spatial and temporal resolution limit their ability to observe short-term variations

43 of ozone. These techniques can be supplemented by lidar when a requirement exists for ozone retrievals

44 with high temporal (from 1 min to several hours) and spatial resolution (from tens of meters to 2 kin) over

45 long periods. The DIAL technique minimizes the interference originating from aerosols and absorbing

46 species such as SO2, and eliminates the need for obtaining an absolute calibration of the instrument. DIAL

47 has been successfully used to measure ozone within the planetary boundary layer (21), the free-troposphere

48 (22-27), and the stratosphere (28-31) for several decades. DIAL is evolving from ground-based and

49 airborne systems to systems suitable for long-term deployment in space (32). The technique derives ozone



50 concentrationsby analyzinghowrapidlythebackscatteredsignalsat twoseparatebutcloselyspaced

51 wavelengths,onestronglyabsorbedbyozoneandtheotherlessstronglyabsorbed,fall offwith altitude.

52 Thismeasurementdoesnotrequirethattheabsolutesignalintensitiesareknownbutonlyhowthetwo

53 signalschangerelativeto oneanotherwithrespectto altitude.Thewavelengthsarechosento minimize

54 differentialextinctionduetoaerosols,SOz,andotherspecies.Theon-linetooff-linesignalratioremoves

55 therequirementthatsystemparameterssuchasmirrorsize,pulseenergy,anddetectionefficiencymustbe

56 known.Usingelectronicallygateddetectionpermitsrange-resolvedmeasurementstoaresolutionassmall

57 as-15m overacquisitiontimesof severalminutes.Althoughtheup-frontcostsassociatedwithaDIAL

58 systemareconsiderablyhigherthanaballoonozonesondeoperation,aDIALsystemcanacquireprofiles

59 continuouslyunderbothdaytimeandnighttimeconditions.ThespatialandtemporalresolutionofaDIAL

60 lidarismorethansufficientto characterizeshort-termozonevariationsforthephotochemicalstudiesof

61 verticalprocesses.

62 Severalother researchgroupshaveemployedozoneDIAL systemsin both ground-based

63 configurations(21,24, 26, 31) and aircraft configuration (33, 34) over the last two decades. The only

64 tropospheric ozone lidar in regular operation within the United States is located at the Jet Propulsion

65 Laboratory's Table Mountain facility northeast of Los Angeles in the San Gabriel Mountains (35). This

66 system Raman shifts 266 nm radiation to generate the on and offline wavelengths (289 and 299 nm). A lidar

67 system previously located on Fritz Peak in Colorado was operated for several years by Proffitt and Langford

68 (26). Like the McDermid system, the Preffitt lidar was located at relatively high altitude (-2300 m) to

69 maximize its altitude range and minimize interference from the boundary layer aerosols. Kempfer operated

70 a system in Germany using the output of a Raman shifted KrF excimer; this system was located at ~700 m

71 ASL (36). The location of the RAPCD ozone DIAL in the southeastern United States provides a unique

72 observational site within an interesting scientific area to study trace gas transport at the mid-latitudes (37).

73 Its low altitude facilitates the study of ozone within both polluted PBL and stratosphere-troposphere

74 exchange.



75 2. System Description

76 Housed in the RAPCD, the tropospheric ozone DIAL system is located on the UAH campus within the

77 Huntsville city limits at an elevation of 196 m ASL and is currently designed for operation within the

78 free-troposphere at altitudes between 4 and 10 km with a 150m vertical resolution. This approach permits

79 the determination of ozone number densities under both daytime and nighttime conditions at high precision.

80 Because of UAH's location, heavy aerosol pollution sometimes arises from sources such as forests,

81 agriculture, and a number of large, coal fired, power plants. Compared with the clean free-troposphere,

82 these aerosols require a larger dynamic range for detection system because of larger optical depth.

83 Moreover, the rapid change of aerosols (e.g. due to convective activity) increases the measurement

84 uncertainty for DIAL in the PBL and lower troposphere. Aside from aerosols, other differences between

85 stratospheric and tropospheric systems arise from the much larger dynamic range in signal strength

86 observed on tropospheric systems due to the signal's dependence on the 1/R 2 term. The lower ozone

87 number densities observed in the troposphere require higher absorption per unit length to achieve the same

88 sensitivity as seen with stratospheric lidar systems. These differences have resulted in the Huntsville

89 system being configured somewhat differently from instruments designed to measure stratospheric ozone

90 or those that, while designed for tropospheric measurements, have been located at relatively high altitudes.

91 2.1 Wavelength selection

92 The optimum laser wavelengths result from the following four considerations: 1) The maximum

93 measurable altitude determines the shortest wavelength; 2) The ability to reduce solar radiation in daytime

94 operation determines the longest wavelength; 3) Minimizing the aerosol interference; 4) Avoiding SC_

95 interference helps select among potential wavelength pairs. The DIAL wavelength selection is variable and

96 can be optimized for the local ozone distribution, the absorption arising from non-ozone species, the

97 measurement range and the specific system configuration including the output power, telescope mirror size

98 and the photomultiplier's (PMT's) dynamic range. The optimum ozone DIAL wavelength selection has

99 been explored by Megie (38) and further discussed by Proffitt (26) for tropospheric systems. We investigate



100 fourspecificcriteriabymodelsimulationundertypicallyatmosphericconditionstoselecttheoptimum

101 wavelength pair.

102 While large cross sections are desirable for measurement sensitivity, they cause enhanced signal

103 attenuation due to both ozone absorption and Rayleigh extinction which limits the maximum altitude of the

104 measurement and increases the signal acquisition time. Fig. 1 shows the 2005 mean ozone profile over

105 Huntsville which is derived from the weekly ozonesonde measurements. The Huntsville ozone station at

106 UAH routinely launches balloon ozonesondes weekly at 19:00 UTC on Saturday. The ozonesondes

107 measure ozone up to 35 km with a 100m vertical resolution and 5-10% precision (39). These parameters are

108 listed in Table 1. Fig. 2 presents the modeled signal returns from 270 to 300 van with the configuration of

109 a laser of 4 mJ/pulse, a telescope with 40 cm diameter, a PMT of 20% quantum efficiency, 5% totally

110 optical transmission efficiency, 1976 U.S. standard atmosphere, the ozone profile in Fig. I, and a fali-winter

111 rural aerosol model (40). The aerosol extinction profile was extrapolated to the 285-291 nm wavelength

112 from original 550 um assuming that the Angstrom exponent is equal 1.1 (41), which is an approximate value

113 for rural-urban mixing aerosols. The dynamic range required for wavelengths below 270 nm to measure

114 ozone between 4 and 10 km reaches or exceeds the maximum value of our PMT (-105). The spring and

115 summer tropospheric ozone concentrations in Huntsville are usually greater than the yearly average.

116 Therefore, the potential on-line wavelength must be greater than 270 run. Also, the wavelengths from 270

117 to 280 nm cannot provide sufficient signal-to-background ratio at 10 km due to the overloading limitation

118 of our PMT. The background mainly consists of PMT dark counts and sky-light background. Dark counts

119 are a function of the voltage and temperature of PMT (42) and are observed as about 200 photon/s for our

120 experimental configuration. The comparison between modeled signals and background, as a function of

121 wavelength, is shown in Fig. 3. The modeled signal is calculated using the same characteristics as Fig. 2.

122 The expected sky background is simulated by NCAR TUV program (43) with the configuration in Table 1.

123 The modeling indicates that the potential on-line wavelength pair for our configuration should be larger

124 than 280 nm so that the detected signal is 1 order larger than the summation of sky background and dark
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125 counts. To measure both wavelength channels by the same PMT and simplify the system design, we use a

126 broad band-pass filter (Barr Associates, 286.4/11 nm), whose transmission as a function of wavelength is

127 shown by Fig. 4., to block the solar radiation. For a broadband band-pass filter the integrated sky

128 background over the filter bandwidth plus the dark counts actually determine the background for both

129 off-line and on-line wavelengths. The signal of the wavelengths below 285 is not large enough above 10 km

130 compared with the sam of sky background and dark counts to provide a useful measurement under mostly

131 atmospheric conditions. Increasing the laser power or removing neutral density filters could raise the

132 signal-to-background ratio at 10 kin; however, this will lead to overloading of the PMTs at the near range.

133 The off-line wavelength is chosen at 291 because of both sky-background and interfering gases

134 considerations. The sky-background sharply increases in daytime with longer wavelength because of the

135 larger solar radiation even with an appropriate band-pass filter. As shown in Fig. 3, the signal at 291 nm is

] 36 about 2 orders of magnitude larger than sky background at 10 kin. Fig. 5 [following Proffitt, et al., 1997]

] 37 gives the signal-to-background ratio after passing through the band-pass filter. This model simulation

138 shows that the signal-to-background ratios are about 15 and 70 at 10 km for 285 and 291 respectively under

139 typical atmospheric condition, large enough to provide useful retrievals up to -10 km.

140 Although retrieval errors due to aerosol interference are still of some concern in the PBL, they are

141 much less a concern in the free-troposphere. These errors can be explored by model simulation• Fig. 6

142 shows the modeled DIAL retrieval errors due to aerosol differential backscattering and extinction using the

143 parameters in Table 1 with a 750 m vertical resolution. The 285-291 pair will have a retrieval error at 4kin

144 of less than 1% arising from uncorrected aerosol differential backscattering and extinction under typically

145 rural aerosol condition. If the aerosol loading is ten times higher, the error due to aerosol at 4 km increases

] 46 to 5%. These model simulations suggest that the errors due to aerosol above 4 km under both normal and

147 haze conditions are small relative to the statistical uncertainty which will be shown in later sections. The

148 error due to uncorrected Rayleigh extinction can be estimated with either the local sonde data or an

149 atmospheric model based on local climatology within the accuracy of 1% and will not be discussed here
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150 further. Errors due to aerosol are extremely difficult to correct without additional local measurements

151 because of their large variability. These errors are sensitive to the wavelength pair and will increase with the

152 heavier aerosol loading. An approximate correction for aerosol has been given by Browell in 1985; at this

153 time, we make no aerosol correction in the free tropospheric lidar retrievals.

154 Constraining the daytime wavelengths below 292 nm requires that the impact of SO2 is carefully

] 55 considered because its cross sections are comparable to those of ozone. The differential cross section of

156 SOs for 285-291 pair is -4.8 x lO-2°cm2 at 295 K (44). The error due to SOs is about -0.01% by assuming

157 that the SOs mixing ratio is 160 pptv under North America clean continental condition (45) and 60ppbv

158 ozone. This error could be up to -0.1% in a polluted air when SO2 concentration reaches 1500 pptv.

159 However, its impact on our tropospheric measurements is negligible because it is much smaller than other

160 errors. Therefore, after fully considering the dynamic range of the PMTs, the measurement range, the

161 signal-to-background ratio, and the interfering species, we chose 285-291 wavelength pair for our lidar

162 system.

163 2.2 Hardware components

164 All DIAL systems consist of three major components: the transmitter, receiver, and detection

165 subsystems. The Huntsville transmitter consists of two identical dye lasers pumped by separate Nd:YAG

166 lasers. The characteristics of the DIAL system are listed in Table 2. Each pump laser has a fundamental

167 wavelength of 1064 nm, electro-optically Q-switched at 20 Hz using a plate polarizer, quarter waveplate,

] 68 and pockels cell. Each pulse is 5-7 ns Full Width at Half Maximum (FWHM) with a line-width of 1.0 cm "1

169 and -300 mJ of optical power. The output of each pump laser is frequency doubled by angle tuned

] 70 Potassium Dihydrogen Phosphate (KDP) crystals. The fundamental and frequency doubled pulses (532 run)

171 are separated using dichroic mirrors (separators) where the fundamental is transmitted and absorbed by a

] 72 beam dump. The 532 nm pulses are reflected and redirected for use as a pump source for each tunable,

173 pulsed, dye laser as shown in Fig. 7. The dye lasers are sot'cware controlled with external computer systems

174 that select the user defined wavelength by rotating a reflection grating used to select a wavelength to be
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] "/5 amplified in the master oscillator. The dyes used as the gain medium are Rhodamine (R) 590 and 610.

] 76 R590 is used to produce 570 rim output and a combination of both R590 and R610 is used to produce 582nm

177 output. The output of each dye laser is frequency doubled using a Beta Barium Borate (BBO) crystal to

178 produce pulses with energies of 3-5 mJ at 285 and 291nm and a divergence less than lmrad. The

] 79 divergences of both laser beams have been checked using a knife edge method (46). UV mirror

180 configuration separates the UV pulses from their visible fundamentals while redirecting the UV pulses to

181 a turning mirror which is aligned to reflect the pulses vertically into the atmosphere. Each laser pulse is

] 82 externally triggered by a function generator # 1 such that there is a 25 ms temporal separation between the

183 firing of alternate pulses.

184 The receiver is a Newtonian telescope with a 40 cm primary and a two-channel aft optics unit as shown

185 in Fig. 8. Its current location is in the RAPCD lidar laboratory (lat:34.7250, Ion:-86.6450) where it views

186 the atmosphere through a roof hatch with a 1m by 1m opening. A series of selectable apertures permit the

187 telescope's field of view (FOV) to be changed as part of the alignment process. Provision exists to insert

] 88 both band-pass and neutral density filters into the optical path to restrict the solar background and/or

] 89 attenuate a channel's signal in the event that the returns are too high. The current band-pass filters have a

190 transmission of 35% at 285 nm and <10-8 beyond 300 nm as shown in Fig. 4. The system currently operates

] 9 ] with two altitude channels. The signal is split, so the high-altitude channel receives -90% of the light, and

192 the low-altitude channel receives -10%. This division effectively restricts the lower-altitude channel to no

193 higher that ~4 krn; the high-altitude channel routinely covers 4-10 km and on occasion has reached 12 kin.

194 The low-altitude system will be discussed in a separate paper. With the FOV of the receiver set at 1.5 mrad

195 for normal operation, 0.9 m separation distance between the laser beam and the telescope axis, and 1mrad

196 divergence of the laser beams, full overlap occurs at about 3 km. Larger FOVs lower the altitude at which

] 97 full overlap between the laser and telescope occur but significantly increase background noise arising from

] 98 the sun and city sky light.

199 RAPCD's detection system currently utilizes photon counting to facilitate operations at the maximum
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200 achievable altitude. Two EMI 9813 QA PMTs, which have been used extensively for many years on a

201 number of Goddard Space Flight Center lidar systems, are used - one for each channel. The outgoing laser

202 pulse of each laser is detected by a photodiode (FD) laser-pulse detector, which sends the trigger to the

203 function generator #2. One channel of the function generator outputs a pulse to trigger a pulse generator that

204 controls the clock and bin width pulses for the return signal; the other channel sends a delayed pulse to gate

205 the PMT. The range bin width is set at 1 las corresponding to an effective vertical resolution of 150 m. The

206 timing of the whole system including the laser trigger, gate signal, range bin width, clock, and ground bin

207 can be checked by an LED test (47) in which LED light simulates the backscattered return, and all signals

208 are monitored by an oscilloscope. The signal recording of the MCS board is supposed to start the same time

209 as the PD detection of laser-pulse trigger for our setting. But a small offset between them has been observed

210 during our LED test. This offset will be corrected before the retrieval. It is necessary to gate the high altitude

211 channel off for approximately the first 15 _ts to maintain the PMT's linearity and minimize the impact of

2 ] 2 signal-induced bias (SIB) on the background count rate. The signal from the output of the PMT is processed

2 ] 3 by a 300 MHz discriminator to minimize noise counts and stored in one of four multichannel scalar (MCS)

214 boards (Termelec/nucleus MCS-II) - one board for each channel (285High, 285Low, 291High and

215 291Low). Data files are stored in a small microcomputer and processed immediately after acquisition

216 ceases.

217 3. Data processing

218 3.1 Raw data processing

219 Before ozone can be retrieved, several operations, designed to improve the measurement precision, are

220 carried out. First, multiple laser shots are averaged to increase the signal-to-noise ratio (SNR). The RAPCD

221 DIAL currently uses data acquired over a 30-minute interval for each retrieval. The second step involves

222 accounting for dead time. At high counting rates (-10 MHz for the RAPCD lidar), a second signal pulse

223 arriving at the discriminator before it has recovered from the previous pulse may not be counted - a period

224 know as dead time. This time has been experimentally determined to be -9 ns for the RAPCD lidar using
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225 calibrated neutral density filters to characterize the system's response to accurately known count rates. A

226 simple relationship, Eq. (1)., between the actual and measured count rates allows the impact of dead time

227 on the data to be removed. Eq. (1). can be solved numerically for the actual count rate, r, using the measured

228 count rate, R and the experimentally determined dead-time Ta.

229 R = re -r_d (1)

230 Third, background counts due to PMT dark counts and the sky background are removed. These counts

231 are constant and are derived using data bins for which there are no signal returns. The averaged value is

232 then subtracted off all data channels. The final step involves smoothing the counts to reduce random noise.

233 Our configuration currently employs a 5-point (750 m) moving average that is applied to returns from all

234 altitudes; smoothing reduces the effectively vertical resolution to 750 m. After initial processing, a

235 correction is applied to remove SIB from the data. This bias, also called signal-induced noise (SIN),

236 appears as a slowly decaying, weak, noise source superimposed on the normal returns and becomes an issue

237 if the PMT is exposed to an extremely intense light pulse (48). SIB can persist for several hundred

238 microseconds and has a strong impact on data from the lidar's upper range where signal and noise counts

239 become comparable. With uncorrected SIB, the raw signal fall offmore slowly at higher altitudes resulting

240 in lower retrieved ozone values. It is system specific and characterized under various operational

241 conditions. For RAPCD, SIB has more influence on the shorter wavelength channel which falls off more

242 rapidly with altitude. Unless a mechanical shutter is employed to physically block the optical path to the

243 PMT and thereby eliminate SIB, its behavior must be characterized using a model. Cairo and Zhao have

244 successfully used a double exponential function for this purpose (48, 49). However, this correction

245 increases measurement uncertainties because both the sealing and exponential lifetimes are difficult to

246 determine without additional independent measurements. A more practical technique is to employ a single

247 exponential fit to the residual background (25, 26, 50). For the high altitude charmels of the RAPCD lidar,

248 the function's coefficients are empirically determined using a single exponential fit to data acquired _ 110

249 to _ 160 _s after data acquisition starts. The start and length of the exponential fit could vary with different
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250 channels (either wavelength channels or altitude channels), atmospheric structures, and lidar configurations

251 because these parameters impact the intensity of the detected signal. Future improvement to the RAPCD

252 DIAL includes an optical chopper to remove the SIB and all need for SIB correction.

253 3.2 Dial retrieval

254 The DIAL retrieval algorithm takes advantage of the reduction of uncerta'mty resulting from aerosols

255 and non-ozone absorption gases using the differential technique. The retrieval using a single wavelength

256 becomes unreliable when aerosols and non-ozone absorption gases are present; however, conditions often

257 exist where both single wavelength and DIAL retrievals produce comparable results. Excellent discussions

258 concerning the DIAL technique can be found in the book by Measures [1984] and papers by BrowelI [1985]

259 and Godin [1999]; a brief discussion of the technique is also provided in Appendix I.

260 Vertical ozone profiles can also be retrieved using a single wavelength retrieval (51). When sonde density

261 profiles are available, this technique serves as an independent check on the DIAL retrievals and can provide

262 useful information about the impact of aerosols on the measurement.

263 4. Performance

264 4.1 Raw data performance

265 Figure 9 (a) and (c) displays a daytime example of raw photon counts with deadtime and background

266 corrections along with a comparison to counts expected from a model calculation. The lidar data were taken

267 at 13:22 local time, Sep. 16, 2006, and the balloon ozonesonde measurement with a 100-m resolution was

268 made at 13:16 the same day. A ±10% uncertainty in the ozonesonde measurement is represented by gray

269 envelope. The ozonesonde also provides the atmospheric profiles for single wavelength retrieval, the

270 temperature correction for ozone absorption cross section and Rayleigh correction in Dial retrieval. The raw

271 iidar data are integrated over 36000 shots (30 min). The background including the sky light and dark counts

272 is estimated about 1.4 x 10-2counts/us/shot at far range for either wavelength. The PMT is gated at 3 km (20

273 gs). The peak counts at -3kin of both 285 and 291 are ~2.8 photons/us/shot, which gives the peak
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274 signaI-tu-background ratio about 200. The signal-to-background ratio of either 285 or 291 at 10 km is less

275 than the model calculation in Fig. 5 in part due to high ozone concentration in the lower troposphere.

276 Though a higher signal-to-background ratio is desired, increasing the signal strength (e.g., by increasing the

277 output energy or removing ND) will further distort the far range signal by SIB. The dead-time correction,

278 background subtraction, moving averaging, and SIB correction are applied on the raw data as described in

279 previous section. The final ozone profile is smoothed using a running average over 750m range cell. The

280 averaging upon raw data and retrieved ozone profile reduce the vertical range resolution to 750m from

281 original 150m bin width.

282 4.2 Retrieved ozone profile

283 In Fig. 9 (b) and (d) the corrected data shows good agreement with the model between 4 and 10 kin.

284 Notice some intermittent thin clouds between 11 and 12 km. Although the 29 lnm laser penetrates the small

285 cloud, too few of the 285 photons survive the cloud to retrieve a useful signal. In Fig. 9 (e), the 30-min lidar

286 retrievals agree with sonde within an accuracy of 20% at all altitudes. The error bars show the 1-sigma

28"[ statistical uncertainty of the DIAL retrieval over a 30-min interval. The error bars indicate that the DIAL

288 measurement precision increases from 5% at 4 km to -50% at 10 km. Fig. 9(e) indicates good consistency

289 between the single wavelength retrievals at both wavelengths and the DIAL retrieval between 4 and 10 km.

290 5. Error Analysis

291 According to the sources, we can divide the errors in DIAL measurements into four categories: 1).

292 Statistical uncertainties, 6t ,due to atmospheric turbulence effects, signal, and background noise fluctuations;

293 2). Error, ¢2, due to differential backscattering and extinction of non-ozone gases (02, SO2, NO2, etc.) and

294 aerosols; 3 ). Error, 63 , due to ozone absorption cross section; and 4). Error, 64 , related to instruments and

295 electronics. 61 is a random error; 62, ¢2, and 63 are systematical errors.

296 5.1 Statistical error
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297 With the assumption of a Poisson distribution governing photon counting, G_can be written as:

I l 1 1 1 1= ---_ +--q (2)
298 E.1 2Q(R+I/ZAR)ARA°'o3_Po,(R) Port(R+AR) P°Yf(R) P°ff(R+AR)

299 It is easy to show that et is proportional to (AR3NAPz)-1/2, where N is the shots of integration and A is the

300 area of the telescope and PL is the emitted laser power, c_ also depends on the weather condition and

301 vertical ozone structure. For 750 m vertical resolution and 36000-shot integration, generally gt is <5% at

302 4 km and 40%-60% at 10 km in our DIAL retrievals.

303 5.2 Interference by non-ozone species

304 ez includes the interference from 02, SO2, NO2, and aerosols. The 02 interference should be

305 considered as one of the error sources in the DIAL retrieval (52) because the quantity of 02 is large in the

306 atmosphere. The 02 absorption spectrum below 300 nm is composed of the Herzberg band system and the

307 02-02 and O2-X collision-induced absorption bands (53). The accurate calculation of the 02 interference is

308 difficult because the oxygen dimmer absorption theory has not been entirely established (54), and the

309 uncertainty of the O2 cross section measurement is quite high. Based on the data set of the Fally group (53,

310 55, 56), the differential 02 effective absorption cross section (57) is less than 4.5 ×10 -27, which results a

3"11 DIAL retrieval error <1.5% with a 60ppbv ozone mixing ratio. As discussed in a previous section, the

3 "12 errors due to SO2 are --0.01% under clear conditions and --0.1% under very polluted conditions. The NO2

3"13 absorption cross sections at 285 and 291 are 7.07 x 10_° and 9.32x 10-20cm 2 respectively at 293K with an

3"14 uncertainty of 3.2% (58). The NO2 differential cross section is -2.25x 10-z° cmz for the 285 and 291 pair.

315 NO2 is highly variable and inhomogeneous over tune and space. The mean NO2 mixing ratios over Houston

3 "16 and Nashville are recorded less than 0.2 ppbv above 800 hPa in the Texas Air Quality Study (TexAQS) and

3"17 Southern Oxidants Study (SOS) (59), leading to the DIAL retrieval error N-0.007% under the 60ppbv

3"18 constant ozone assumption. The HCHO absorption cross sections at 285 and 291 are 4.17x10 -2° and

3"19 2.06x10 -2° cm2, respectively, at 293K (58) result in an HCHO differential cross sectionof 2.11x10 -2° cmz.
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320 The local HCHO information is not available. The maximum HCHO mixing ratio at 600 hpa (-4.3 kin)

321 recorded in Houston was 150 pptv during TexAQS and SOS campaign (59). This leads to a 0.015% error in

322 DIAL retrieval. The impact caused by differential Rayleigh extinction can be modeled within an accuracy

393 of 1% using balloon sonde retrievals of atmospheric density or by employing climatological models.

324 The main concern comes from the aerosol interference which depends on the wavelengths and

325 wavelength separation. Even though the aerosol optical properties could be retrieved from a third

326 wavelength, the differential effect for a DIAL wavelength pair still has some uncertainty. Within the PBL,

327 where the statistical errors are small, differential aerosol backscattering and extinction can be the dominant

328 error sources for a DIAL ozone retrieval (22, 24, 25). Our model simulation in Fig. 6(b) has shown the

329 DIAL retrieval errors due to aerosol could be up to 25% in PBL when aerosol loading is 10 times higher

330 than the average. In the free-troposphere, the aerosol concentration decreases very quickly and the

331 increasing statistical errors quickly dominate. The errors due to aerosols are smaller than 1% above 4 km

332 using fall-winter rural aerosol model. If the aerosol values are increased by a factor often, the resulting

333 ozone uncertainties increase to 5% at 4 km.

334 5.3 Uncertainty in ozone absorption cross section

335 s 3 The uncertainty of Bass-Paur ozone cross section is believed to be less than 2% (54, 60, 61). The

336 retrieval error due to ozone absorption cross section should be less than 3% even with the temperature

337 dependence considered.

338 5.4 Errors related to instruments and electronics

339 s 4 could be caused by misalignment, imperfect dead-time, and SIB correction. The first aspect is

340 negligible when both lasers are well-aligned and reach the full overlap altitude. The latter two can be

341 investigated by an LED or null-profile test. The error caused by SIB usually is larger than dead-time since

342 the dead-time behavior can be easier characterized. The SIB can be estimated better by exponential fit with

343 longer integration. Fur the 36000-shot integration data, e4 is believed to be <l % at 4 km and <5% at 8 km.
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344 ThesummaryoftheerrorsinRAPCD-DIALmeasurementisgivenbyTable3assuming60ppbvconstant

345 ozoneintropospherefora36000-shotintegrationdata.

346 AnexampleofcontinuouslidarmeasurementsisshownbyFig.10.Ten 30-minute DIAL

347 measurements shown in Fig. 10 (a) were made between 11:00 and 17:00 local time on Dec. 23, 2006. Fig.

348 10 (b) shows the average Dial profile of the 10 retrievals and its 1-sigma standard deviation which

349 represents the measured uncertainty. The average ozone DIAL profile shows good agreement with

350 ozonesonde measurement between 4 and 10km. The standard deviation increases from -5% at 4 km to

351 -60%at 10km. This dataset along with the ozonesonde measurements showthat _lis most significant in

352 all of the errors though the ozone variation could contribute a small part to the different between the DIAL

353 and ozonesonde.

354 6. Future work

355 6.1 Modifications to the high altitude channel

356 The effectiveness of the current system's high-altitude channels is limited by the need to electronically

357 protect against the large backscattering signal originating from the first kilometer or so above the telescope.

358 These large initial signals interfere with the PMT's linearity and make it difficult to properly characterize

359 the PMT's background count rate. The current system attempts to minimize these effects through a

360 combination of several techniques. The first technique restricts the backscattered signal by limiting the

361 maximum per pulse laser energy and by attenuating the signal before reaching the high channel through a

362 combination of optical splitters and neutral density filters. Both approaches reduce signal returns from

363 higher altitudes thereby limiting the maximum achievable altitude and/or increasing signal averaging time.

364 An electronic gating circuit is employed that permits the gain of the PMT to be turned off for periods as

365 short as 10 microseconds. Although this does not protect the photocathode directly, it does prevent the

366 resulting photoelectrons from being amplified and causing both gain and background nonlinearity problems

367 in the future. This technique, however, provides only partial protection from the problems caused by the

368 large initial baekscatter pulses. The final approach raises the altitude at which complete overlap between
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369 the laser beam and telescope's FOV occurs. This technique reduces the initial backscatter pulse as seen by

3"/0 the detector but occurs at the cost of signal from the lower end of the channel's range. We intend to resolve

3"/1 these issues through the addition of a mechanical chopper. Choppers are routinely employed on lidar

372 systems to protect PMTs by physically blocking the optical path between the telescope and PMT. This

373 blocking prevents the large initial backscatter pulse from being seen by the PMT's photocathode. Shielding

374 the high channel's PMT from returns originating within the first couple of kilometers will permit higher, per

375 pulse, laser energies thus enabling faster data acquisition, higher maximum altitudes, and higher

376 measurement precision.

377 6.2 Modifications to the low-altitude channel

378 The current low-altitude channel is ineffective because the separation between laser beam and the

379 telescope (optimized for the high altitude channel) is too great for full overlap in the PBL. The integrated

380 modification will introduce a primary mirror with an effective diameter of 10 cm rather the 40 cm. The

381 smaller telescope will thus collect fewer photons from an altitude range that already sees extremely large

382 signals and will experience complete overlap at a much lower altitude than is currently the case. The current

383 PMTs, EM19813s, will be replaced by the much smaller Hamamatsu 7400s; this change will significantly

384 shrink the size of the instrument with no sacrifice to performance. These PMTs have already seen extensive

385 operational use on the NASA GSFC AROTEL lidar. Three separate splitters will allow a custom

386 determination of the optimum signal split between these channels. The detection electronics for the high

387 and low channels will be updated by replacing the current multi-channel scalar boards with state-of-the-art

388 detection modules having both simultaneous analog and photon counting capabilities.

389 To enhance the lidar's measurement capabilities within the boundary layer, a scanner will be added to

390 permit range resolved measurements of ozone from the surface to the top of the PBL in any direction. This

391 consideration will enable the study of pollution transport within the PBL at high resolution and permit the

392 study of ozone variability on spatial scales of hundreds of meters.

393 7. Conclusion
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394 TheRAPCD-DIALsystemcanmeasureozoneprofilesbetween4and10kmwithanerrorsrangingfrom

395 <8%at4km to 40%~60%at 10km. Theerrorsourcesincludethestatisticaluncertainty,differential

396 scatteringandabsorptionfromnon-ozonespecies,uncertaintyin ozoneabsorptioncrosssection,and

39"/ imperfectionofdead-timeandSIBcorrection.Thestatisticaluncertaintydominatestheerrorsourcesand

398 couldbereducedbyincreasingthesamplingtimeorreducingtherangeresolution.Theaerosolinterference

399 in thefree-troposphereis relativelysmall.A mechanicalchopperwill beaddedintoourhigh-altitude

400 channelto improvesignallinearity.A smallertelescopeanddetectionmoduleswill beusedfor our

401 low-altitudechannelinthefuturetodecreasethefull overlapaltitudeandavoidPMTsaturationinthenear

402 range.
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410 Appendix

411 A. Dial retrieval algorithm

412 The average ozone number density above full overlap altitude between range R and R + AR is solved by:

[O3](R +½AR) =41 3

414 1 , .Po.(R)Po¢(R+AR).

2ARAoo3 mlpo_(R)t_, , (R + _)1 (Ala)

415 1 ,,r/3o.c(R)flo,,(R+AR)_h, L j (Alb)
2ARAo-o3 rio. (R)/3o//(R + AR)

416 1
A¢o3 (_o. -- O_off) (Ale)

417 where the subscript 'on' and 'off' represent the on-line and off-line wavelengths respectively; P is

418 detected power or photons; /3 is total backscatter coefficient; o_ is total extinction coefficient except for

419 ozone absorption; /k_7m is differential ozone absorption cross section. P, /3, and e_ are dependents of

420 R and wavelength. Strictly, /kO_o3 is R dependent, as well, because it is the fanction of temperature which

421 varies with R. The DIAL equation reduces to only (Ala), signal term when the differential scattering and

422 extinction from non-ozone species are ignored. Term (Alb), differential backscattering term, consists of

423 Rayleigh (molecular) and Mie (aerosol) differential backscattering. Term (A1 c), differential extinction term,

424 consists of differential Rayleigh extinction, aerosol extinction, and non-ozone gaseous absorption including

425 02, SO2, NO2 etc. Rayleigh effects usually can be corrected in practice with the assistance of a local

426 atmospheric sonding profile. The aerosol effects should be corrected when they are significant enough,

427 especially in PBL.

428 B. Single wavelength retrieval algorithm

429 The vertical ozone profile can be retrieved using the backscattered signal of one laser with the Rayleigh and
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430 Miebackscatteringandextinctionknown.TheaverageozonenumberdensitybetweenRandR + AR is

431 solved by (62):

432 [O3](R+_IAR)= 1 x{ln[_ P_(R) ]-ln[ P_(R)/R2 2]-2ax(R)AR} (B1)
2 pAR

433 Where A is wavelength and crm is absorption cross section of ozone. /3_(R) is the sum of Rayleigh and

434 Mie components, aa(R) is the sum of Rayleigh, Mie, and absorption gaseous components, fl_(R) and

435 a a (R) can be approximately reduced to only Rayleigh component in the unpolluted free-troposphere and

436 stratosphere. However, the retrieval with a single laser tends to be unreliable when aerosols and other

437 non-ozone absorption gases are heavily present. The single wavelength retrieval is also more sensitive to

438 the atmospheric density profile than DIAL retrieval. The errors of single wavelength retrieval are discussed

439 in another paper. Interested readers should refer to Measures' book. However, when simultaneous

440 atmospheric temperature and pressure profiles are available, it will be a good reference for our DIAL

441 retrieval in the free-troposphere where aerosols are much less of a concern than in the PBL.

442
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587

588

Table 1. Parameters for model simulation

Laser energy 4 mJ/pulse

The diameter of telescope primary mirror 40 cm

Telescope field-of-view 1.5 mrad

Receiver bandwidth 1 nm

PMT quantum efficiency 20%

Total optical transmission efficiency 5%

Solar zenith angle 30o

Temperature and Pressure profiles 1976 US standard atmosphere

Ozone profile mean profile over Huntsville in 2005

Aerosol profile fall-winter rural aerosol model
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589

59O

591 Table 2. Characteristics of DIAL system

System Specification

Transmitter

Lasers

Dye

Emi_ed energy

Continuum Nd:YAG, 20 Hz repetition rate, 5-7 ns pulse

length, -300 M/pulse at 1064 nm, 80 mJ/pulse at 532 nm

Rhodamine 590 and 610

4-5 mJ/pulse at 285 nm, divergence<l mrad

3-4 mJ/pulse at 291 nm, divergence<l mrad

Receiver

Telescope

Filter

Detector

Discriminator

Signal Processing

Newtonian, 40.6 cm diameter, f/4.5, 1.5 mrad FOV

Barr band-pass filter (286.4/1 lnm) and neutral density filters

Electron Tubes 9813QA, -28% quantum efficiency

Phillips Scientific 300 MHz

Tennelec/nucleus MCS-II cards, 200 MHz, 24 bit

592

593
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594 Table 3. Summary of the errors in RAPCD-DAIL measurements*

Errors 4 km 10 km

g_, statistical error -5% -40-60%

e2 , interference Aerosol ~1% under clear condition; -1%

by non-ozone -5% under haze condition

species SO2 --0.01% under normal condition

--0.1% under polluted condition

NO2 --0.007%

02 -1.5%

HCHO -0.015%

Rayleigh -1% using local radiosonde profile

s3, due to uncertainty in Acro3 -3%

'_4, due to SIB and dead-time -1% _5%

Total error -6.3%--8.0% -40.5%-~60.3%

595

596

597

598

599

600

601

* The errors are estimated by assuming 60 ppbv constant ozone in troposphere for 750 m vertical resolution

and 36000-shot integration data.
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Fig. 1. Mean ozone profile over Huntsville (1005). Huntsville ozone station in UAH routinely

launches balloon ozonesonde weekly at 19:00 UTC on Saturday. The ozonesondes measure ozone up

0to 35kin with a 100 m vertical resolution and 5-10 _ accuracy.
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Fig. 6. Modeled DIAL retrieval errors due to aerosol. (a) Extinction as a function of altitude for

aerosols (using the rural fall-winter aerosol profiles at 285 and 29I nm), Rayleigh scattering (using

the 1976 US Standard Atmosphere) and ozone (using the 2005 Huntsville averaged ozone profile).

Co) DIAL retrieval errol_ due to differential aerosol backscattering and extinction for 285-291 nm pair

with a 750 m range resolution. The solid line represents the COlTesponding retrieval error of the

aerosol model in (a). The dash line represents the retrieval error arising fi'om an aerosol loading 10

times higher than given in the aerosol model in (a).
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Fig. 8. Diagram ofthe receiver and detector.
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Fig. 9. DIAL daytime measurement at 13:22 local time, Sep. 16, 2006. (a) 285nm raw,

background-and-<iead-time (BO & DT) corrected, and fully corrected data. The raw data were

integrated over 36000 shots, 30 min for 20Hz repetition frequency. (b) Difference,

(model-data)lmodel. between 285 fully corrected data and model. (c) 291nm raw,

dead-time-and-background corrected, and fully corrected data. (d) Difference,

(model-data)lmodel, between 291 fully corrected data and model. (e) Comparison of

ozonesonde measurement and DIAL and with single wavelength retrievals with 750 m

vertical resolution. The balloon ozonesonde was launched at 13:16 local time and also

provided the temperature and pressure profiles to calculate single wavelength retrieval,

correct ozone absorption cross section and Rayleigh effects in Dial retrieval. The ±)O%

uncertainty of the ozonesonde is represented by gray envelope. The error bars represent the

I-sigma statistical uncertainty of Dial retrieval.
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Fig. 10. Continuous DIAL measurements compared with local ozonesonde measurement. (a

Coincident ozone DIAL retrievals (solid lines) with 750 m vertical resolution and 30 min

integration time and ozonesonde profile (dash line) with ±IO%envelope on 12/23/06. The

ozonesonde measurement was made at 13 :00 local ti me. (b) Average Dial profi Ie of the 10

retrievals shown in (a) and its I-sigma standard deviation.




