

September 2007

NASA/CR-2007-214899

A Trajectory Algorithm to Support En Route
and Terminal Area Self-Spacing Concepts

Terence S. Abbott
Booz Allen Hamilton, McLean, Virginia

https://ntrs.nasa.gov/search.jsp?R=20070031762 2019-08-30T01:36:29+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10538426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Purchase Order L-70750D

September 2007

NASA/CR-2007-214899

A Trajectory Algorithm to Support En Route
and Terminal Area Self-Spacing Concepts

Terence S. Abbott
Booz Allen Hamilton, McLean, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

 iii

Table of Contents

Nomenclature.. v
Subscripts ... v

Units and Dimensions ... v
Introduction... 1
Algorithm Overview ... 2
Algorithm Input Data.. 4
Internal Algorithm Variables .. 4
Description of Major Functions .. 5

Generate Initial Tracks and Distances.. 5
Initialize Waypoint Turn Data ... 6
Compute TCP Altitudes ... 8
Copy Crossing Angles ... 12
Compute Mach / CAS TCP.. 12
Compute TCP Speeds .. 14
Compute Secondary Speeds... 15
Update Turn Data... 16
Delete TCPs ... 20
Update DTG Data .. 20
Check Turn Validity... 21
Compute TCP Times.. 22
Compute TCP Latitude and Longitude Data.. 22

Secondary Function Descriptions ... 25
ComputeGndSpeedUsingTrack.. 25
ComputeGndSpeedUsingMachAndTrack.. 25
ComputedGndTrk .. 25
ComputeTcpCas... 26
ComputeTcpMach.. 30
DeltaAngle ... 36
EstimateNextCas.. 36
EstimateNextMach... 37
GenerateWptWindProfile... 38
GetTrajectoryData.. 38

 iv

GetTrajGndTrk... 39
InterpolateWindAtDistance.. 39
InterpolateWindWptAltitude.. 40
RelativeLatLon... 41
WptInTurn.. 41

Summary ... 41
References... 42
Appendix A Example Data Sets... 44

 v

Nomenclature

2D: 2 dimensional

4D: 4 dimensional

ADS-B: Automatic Dependence Surveillance Broadcast

CAS: Calibrated Airspeed

DTG: Distance-To-Go

MSL: Mean Sea Level

STAR: Standard Terminal Arrival Route

TAS: True Airspeed

TCP: Trajectory Change Point

TTG: Time-To-Go

VTCP: Vertical Trajectory Change Point

Wpt: Waypoint

Subscripts

Subscripts associated with waypoints and TCPs, e.g., TCP2, denote the location of the waypoint or TCP in
the TCP list. Larger numbers denote locations closer to the end of the list, with the end of the list being
the runway threshold. Subscripts in variables indicate that the variable is associated with the TCP with
that subscript, e.g., Altitude2 is the altitude value associated with TCP2.

Units and Dimensions

Unless specifically defined otherwise, units (dimensions) are as follows:

time: seconds

position: degrees, + north and + east

altitude: feet, above MSL

distance: nautical miles

speed: knots

track: degrees, true, beginning at north, positive clockwise

Abstract

This document describes an algorithm for the generation of a four
dimensional trajectory. Input data for this algorithm are similar to an
augmented Standard Terminal Arrival Route (STAR) with the
augmentation in the form of altitude or speed crossing restrictions at
waypoints on the route. Wind data at each waypoint are also inputs into
this algorithm. The algorithm calculates the altitude, speed, along path
distance, and along path time for each waypoint.

Introduction

Concepts for self-spacing of aircraft operating into airport terminal areas have been under development
since the 1970's (refs. 1-20). Interest in these concepts have recently been renewed due to a combination
of emerging, enabling technology (Automatic Dependent Surveillance Broadcast data link, ADS-B) and
the continued growth in air traffic with the ever increasing demand on airport (and runway) throughput.
Terminal area, self-spacing has the potential to provide an increase in runway capacity through an
increase in the accuracy of over-the-threshold runway crossing times, which can lead to a decrease of the
variability of the runway threshold crossing times. Current concepts use a trajectory based technique that
allows for the extension of self-spacing capabilities beyond the terminal area to a point prior to the top of
the en route descent.

The overall NASA Langley concept for a trajectory-based solution for en route and terminal area self-
spacing is fairly simple. By assuming a 4D trajectory for an aircraft and knowing that aircraft’s position,
it is possible to determine where that aircraft is on its trajectory. Knowing the position on the trajectory,
the aircraft’s estimated time-to-go (TTG) to a point, in this case the runway threshold, is known. To apply
this to a self-spacing concept, a TTG is calculated for a leading aircraft and for the ownship. Note that the
trajectories do not need to be the same. The nominal spacing time and spacing error can then be computed
as:

nominal spacing time = planned spacing time interval + traffic TTG.

spacing error = ownship TTG – nominal spacing time.

The foundation to this spacing concept is the ability to generate a 4D trajectory. The algorithm
presented in this paper uses as input a simple, augmented 2D path definition (i.e., a traditional STAR,
with relevant speed and altitude crossing constraints) along with a forecast wind speed profile for each
waypoint. The algorithm then computes a full 4D trajectory defined by a series of trajectory change points
(TCPs). The input speed (Mach or CAS) or altitude crossing constraint includes the deceleration rate or
vertical angle value required to meet the constraint. The TCPs are computed such that speed values, Mach
or CAS, and altitudes change linearly between them. TCPs also define the beginning and ending segments
of turns, with the midpoint defined as a fly-by waypoint. The algorithm also uses the waypoint forecast
wind speed profile in a linear interpolation to calculate the wind speed at the altitude the computed
trajectory crosses the waypoint. Wind speed values are then used to calculate the groundspeeds along the
path.

The major complexity in computing a 4D trajectory involves the interrelationship of groundspeed with
the path distance around turns. In a turn, the length of the estimated ground path and the associated turn
radius will interact with the waypoint winds and with any change in the specified speed during the turn,
i.e., a speed crossing-restriction at the waypoint. Either of these conditions will cause a change in the

 2

estimated turn radius. The change in the turn radius will affect the length of the ground path which can
then interact with the distance to the deceleration point, which then affects the turn radius calculation. To
accommodate these interactions, the algorithm uses a multi-pass technique in generating the 4D path, with
the ground path estimation from the previous calculation used as the starting condition for the current
calculation.

Algorithm Overview

The basic functions for this trajectory algorithm are shown in figure 1. Note that waypoints are
considered to be TCPs but not all TCPs are waypoints.

For the 2D input, the first and last waypoints must be fully constrained, i.e., have both a speed and
altitude constraint defined. With the exception of the first waypoint, which is the waypoint farthest from
the runway threshold, constraints must also include a variable that defines the means for meeting that
constraint. For altitude constraints, this is the inertial descent angle; for speed constraints, it is the air
mass CAS deceleration rate. A separate, single Mach / CAS transition speed (CAS) value may also be
input for profiles that involve a constant Mach / CAS descent segment.

The algorithm computes the altitude and speed for each waypoint. It also calculates every point along
the path where an altitude or speed transition occurs. These points are considered vertical TCPs (VTCPs).
TCPs also define the beginning and ending segments of turns, with the midpoint defined as a fly-by
waypoint. Turn data are generated by dividing the turn into two parts (from the beginning of the turn to
the midpoint and from the midpoint to the end of the turn) to provided better groundspeed (and resulting
turn radius) data relative to a single segment estimation. A fixed, average bank angle value is used in the
turn radius calculation. The algorithm also uses the forecast wind speed profile for a waypoint in a linear
interpolation to calculate the wind speed at the altitude the computed trajectory crosses the waypoint (if
the crossing altitude is not at a forecast altitude). For non-waypoint TCPs, the generator uses the forecast
wind speed profile from the two waypoints on either side of the TCP in a double linear interpolation
based on altitude and distance (to each waypoint). Of significant importance for the use of the data
generated by this algorithm is that altitude and speeds (Mach or CAS) change linearly between the TCPs,
thus allowing later calculations of DTG or TTG for any point on the path to be easily performed.

 3

Figure 1. Basic functions.

Trajectory calculation:
2D input data, crossing data,
and wind forecast data

Copy crossing angles: Beginning at the runway, for TCPs that do not have crossing
angles, copy the downstream angle into this TCP.

Compute the Mach / CAS TCP: If required, compute the Mach / CAS transition
altitude. Compute the DTG to this altitude and insert the Mach / CAS TCP.

Compute the TCP speeds: Beginning at the runway (the last waypoint) work backwards
and compute the speed at each prior TCP. If a speed is computed to be reached before
the next previous TCP, insert a new speed TCP.

Initialize the waypoint turn data: Waypoints that have more than a 3 degree change in
ground track from the previous waypoint are considered turn-waypoints. Mark each as
a turn-waypoint and insert a turn-entry and turn-exit TCP on each side of this waypoint.

Compute the TCP altitudes: Beginning at the runway (the last waypoint) work
backwards and compute the altitude at each prior TCP. If an altitude is computed to be
reached prior to the previous TCP, insert a new altitude TCP.

Compute secondary speeds for each TCP: Compute the Mach (for a CAS TCP) or CAS
(for a Mach TCP) and groundspeed for each TCP.

loop n times

Update turn data: For each turn waypoints, use the new speed values to compute the
turn radius. Update the data for the turn waypoint, turn-entry, and turn-exit TCPs.

Delete VTCPs: Delete the altitude, speed, and Mach / CAS TCPs.

Update the DTG Data: Beginning at the runway, work backwards and compute the
DTG for each TCP, adjusting for the turn distances.

Check turn validity: Check that each turn is completed prior to the next waypoint or the
start of the next turn.

continued

else if this is not the last loop

Generate the initial tracks and distances: Using great-circle calculations, determine the
distances and ground tracks between waypoints. Calculate the DTG for each waypoint.

 4

Figure 1 (continued). Basic functions.

Algorithm Input Data

The algorithm takes as input a list of waypoints, their trajectory-specific data, and associated wind
profile data. The list order must begin with the first waypoint on the trajectory and end with the runway
threshold waypoint. The trajectory-specific data includes: the waypoint's name and latitude / longitude
data, e.g., Latitude2 and Longitude2; an altitude crossing restriction, if one exists, and its associated
crossing angle, e.g., Crossing Altitude2 and Crossing Angle2; and a speed crossing restriction (Mach or
CAS), if one exists, and its associated CAS rate, e.g., Crossing CAS2 and Crossing Rate2. A value of 0 as
an input for an altitude or speed crossing constraint denotes that there is no constraint at this point. A
Crossing Mach may not occur after any non-zero Crossing CAS input. The units for Crossing Rate are
knots per second.

For the wind forecast, a minimum of two altitude reports (altitude, wind speed, and wind direction)
should be provided at each waypoint. The altitudes should span the estimated altitude crossing at the
associated waypoint. The algorithm assumes that the input data are valid.

Internal Algorithm Variables

The significant variables computed by this algorithm are:

Altitude the computed altitude at the TCP

CAS the computed CAS at the TCP

DTG the computed, cumulative distance from the runway

Ground Speed the computed ground speed at the TCP

Ground Track the computed ground track at the TCP

Mach the computed Mach at the TCP

TTG the computed, cumulative time from the runway

Compute TCP latitude and longitude data: Compute the altitude and longitude data for
the altitude, speed, and Mach / CAS TCPs.

Compute the TCP times: Beginning at the runway (the last waypoint) work backwards
and compute the TTG to each TCP.

terminate

continued

 5

Additionally, the algorithm denotes TCPs in accordance with how they are generated. TCPs are identified
as: input, from the input waypoint data; turn-entry, identifying a TCP that marks the start of a turn;
turn-exit, identifying a TCP that marks the end of a turn; vertical TCPs (VTCPs), denoting a change in the
altitude or speed profile; and a Mach / CAS TCP, denoting the Mach / CAS transition point. TCPs are
also denoted relative to the associated speed value, whether the crossing speed is Mach or CAS derived.

Description of Major Functions

The functions shown in figure 1 are described in detail in this section. The functions are presented in
the order shown in the figure. Secondary functions are described in a subsequent section. In these
descriptions, the waypoints, which are from the input data and are fixed geographic points, are considered
to be TCPs but not all TCPs are waypoints. Nesting levels in the description are denoted by the level of
indentation of the document formatting. Additionally, long sections of logic may end with end of
statements to enhance the legibility of the text.

Generate Initial Tracks and Distances

This is an initialization function that initializes the Mach Segment flag, denoting that the speed in this
segment is based on Mach, and calculates the point-to-point distances and ground tracks between input
waypoints. Great circle equations are used for these calculations, noting that the various dimensional
conversions, e.g., degrees to radians, are not shown in the following text.

Generate the initial distances, the center-to-center distances, and ground tracks between input
waypoints

for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

Start with setting the Mach segments flags to false.

Mach Segmenti = false

Compute the waypoint-center to waypoint-center distances.

if (i = index number of the first waypoint) Center to Center Distancei = 0

else

Center to Center Distancei =
arccosine(sine(Latitudei-1) * sine(Latitudei) + cosine(Latitudei-1) * cosine(Latitudei) *

cosine(Longitudei-1 - Longitudei))

Ground Tracki-1 =
arctangent2(sine(Longitudei - Longitudei-1) * cosine(Latitudei), cosine(Latitudei-1) *

sine(Latitudei) - sine(Latitudei-1) * cosine(Latitudei) * cosine(Longitudei -
Longitudei-1))

end of for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

 6

Now set the runway's ground track.

Ground Tracklast waypoint = Ground Tracklast waypoint - 1

The cumulative distance, DTG, is computed as follows:

DTGlast waypoint = 0

for (i = index number of the last waypoint; i > index number of the first waypoint; i = i - 1)

DTGi-1 = DTGi + Center to Center Distancei

Initialize Waypoint Turn Data

This is an initialization function that determines if a turn exists at a waypoint and if so, inserts
turn-entry and turn-exit TCPs. Waypoints that have more than a 3 degree change in ground track between
the previous waypoint and the next waypoint are considered turn-waypoints. This function is performed
in the following manner:

i = index number of the first waypoint + 1

Last Track = Ground Trackfirst waypoint

Note that the first and last waypoints cannot be turns.

while (i < index number of the last waypoint)

Track Angle After = Ground Tracki

a = DeltaAngle(Last Track, Track Angle After)

Check for a turn that is greater than 135 degrees.

if (absolute(a) > 135)

Set an error and ignore the turn.

a = 0

If the turn is more than 3-degrees, compute the turn data.

if (absolute(a) > 3)

half turn = a / 2

Track Angle Center = Last Track + half turn

This is the center of the turn, e.g., the original input waypoint.

Ground Tracki = Track Angle Center

 7

Turn Data Track1i = Last Track

Turn Data Track2i = Track Angle After

Turn Data Turn Radiusi = 0

Turn Data Path Distancei = 0

Insert a new TCP at the end of the turn.

The new TCP is inserted at location i+1 in the TCP list. The TCP is inserted between TCPi
and TCPi+1 from the original list. The function InsertWaypoint should be appropriate for the
actual data structure implementation of this function.

InsertWaypoint(i + 1)

Note that TCPi+1 is the new TCP.

TCPi+1 = turn-exit

DTG i+1 = DTG i

Ground Track i+1 = Track Angle After

The start of the turn TCP is as follows,

InsertWaypoint(i)

TCPi = turn-entry

Note that the original TCP is now at index i + 1.

DTGi = DTGi+1

Ground Track i = Last Track

Last Track = Track Angle After

i = i + 2

end of if (absolute(a) > 3)

else Last Track = Ground Track i

i = i + 1

end of while (i < index number of the last waypoint)

 8

Effectively, this function marks each turn-waypoint and sets its ground track angle to the computed
angle at the midpoint of the turn; inserts a co-distance turn-entry TCP before this turn-waypoint with the
ground track angle for this turn-entry TCP set equal to the inbound ground track; and inserts a co-distance
turn-exit TCP after this turn-waypoint with the ground track angle for this turn-exit TCP set equal to the
outbound ground track. An example illustrating the inserted turn-start and turn-end TCPs is shown in
figure 2.

Figure 2. Initialized turn waypoint.

Compute TCP Altitudes

Beginning with the last waypoint, this function computes the altitudes at each previous TCP and inserts
any additional altitude TCPs that may be required to denote a change in the altitude profile. The function
uses the current altitude constraint (TCPi in fig. 3), searches backward for the previous constraint (TCPi-3
in fig. 3), and then computes the distance required to meet this previous constraint. The altitudes for all of
the TCPs within this distance are computed and added to the data for the TCPs. If the along-path distance
to meet the previous constraint is not at a TCP, a new altitude VTCP is inserted at this distance. An
example of this is shown in figure 4. This function is performed in the following steps:

Figure 3. Input altitude crossing constraints.

Turn waypoint, Ground Tracki = 105o

Turn-entry, Ground Tracki-1 = 90o

Ground Tracki-2 = 90o
Turn-exit, Ground Tracki+1 = 120o

Ground Tracki+2 = 120o
DTGi-1 = DTGi+1 = DTGi

 9

Figure 4. Computed altitude profile with TCP added.

Set the current constraint index number, cc, equal to the index number of the last waypoint,

cc = index number of the last waypoint

Set the altitude of this waypoint to its crossing altitude,

Altitudecc = Crossing Altitudecc

While (cc > index number of the first waypoint)

Determine if the previous constraint cannot be met.

If (Altitudecc > Crossing Altitudecc)

The constraint has not been made.

If this is the last pass through the algorithm, set an error condition

Altitudecc = Crossing Altitudecc

Find the prior waypoint index number pc that has an altitude constraint, e.g., a crossing altitude
(Crossing Altitudepc ≠ 0). This may not always be the previous (i.e., cc - 1) waypoint.

Initial condition is the previous TCP.

pc = cc - 1

while ((pc > index number of the first waypoint) and ((TCPpc ≠ input waypoint) or
(Crossing Altitude pc = 0))) pc = pc - 1

Save the previous crossing altitude,

Prior Altitude = Crossing Altitudepc

 10

Save the current crossing altitude (Test Altitude) at TCPcc and the descent angle (Test Angle)
noting that the first and last waypoints always have altitude constraints and except for the first
waypoint, all constrained altitude points must have descent angles.

Test Altitude = Crossing Altitudecc

Test Angle = Crossing Anglecc

Compute all of the TCP altitudes between the current TCP and the previous crossing waypoint.

k = cc

while k > pc

If the previous altitude has already been reached, set the remaining TCP altitudes to the
previous altitude.

if (Prior Altitude ≤ Test Altitude)

for (k = k - 1; k > pc; k = k - 1) Altitudek = Test Altitude

Set the altitude at the last test point.

Altitudepc = Test Altitude

else

Compute the distance from TCPk to the Prior Altitude using the altitude difference
between the Test Altitude and the Prior Altitude with the Test Angle. If there is no point at
this distance, add a TCP at that distance.

Compute the distance dx to make the altitude.

dx = (Prior Altitude - Test Altitude) / (6076 * tangent(Test Angle))

Compute the altitude z at the previous TCP.

z = ((DTGk-1 - DTGk) * 6076) * tangent(Test Angle) + Test Altitude

If there is a TCP prior to this distance or if z is very close to the Prior Altitude, compute
and insert its altitude.

if ((DTGk-1 < (DTGk + dx)) or (absolute(z - Prior Altitude) < some small value))

if (absolute(z - Prior Altitude) < some small value) Altitude k-1 = Prior Altitude

else Altitude k-1 = z

Check to see if the constraint has been reached, if not, set an error condition.

 11

if ((k-1) = pc)

if (absolute(Altitudepc - Crossing Altitudepc) > 100ft) set an error here

Always set the crossing exactly to the crossing value.

Altitudepc = Crossing Altitudepc

Update the Test Altitude.

Test Altitude = Altitude k-1

Decrement the counter to set it to the prior TCP.

k = k - 1

end of if ((DTGk-1 < (DTGk + dx)) or (absolute(z - Prior Altitude) < some small value))

else

The altitude constraint is reached prior to the TCP, a new VTCP will need to be
inserted at that point. The distance to the new TCP is,

d = DTGk + dx

Compute the ground track at distance d along the trajectory and save it as Saved
Ground Track.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between
TCPk-1 and TCPk from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.

InsertWaypoint(k)

Update the data for the new VTCP which is now TCPk.

DTGk = d

Altitudek = Prior Altitude

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputedGndTrk are described in subsequent
sections.

if (WptInTurn(k)) Ground Trackk = ComputedGndTrk(k, d)

else Ground Trackk = Saved Ground Track

 12

Compute and add the wind data at distance d along the path to the data of TCPk.

GenerateWptWindProfile(d, TCPk)

Test Altitude = Prior Altitude

Since TCPk, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc = cc + 1

The function loops back to while k > pc.

Now go to the next altitude change segment on the profile.

cc = k

The function loops back to while cc > index number of the first waypoint.

Copy Crossing Angles

This is a simple function that starts with the next to last TCP and copies the subsequent crossing angle
if the current TCP does not have a crossing angle. E.g.,

for (i = index number of the last waypoint - 1; i ≥ index number of the first waypoint; i = i - 1)

if (Crossing Anglei = 0) Crossing Anglei = Crossing Anglei+1

Compute Mach / CAS TCP

If required, compute the Mach / CAS altitude and insert a TCP at this point. This function is only
performed if the input data starts with a Mach Crossing Speed for the first waypoint. The function
determines the appropriate Mach and CAS values, calculates the altitude that these values are equal, and
then determines the along-path distance where this altitude occurs on the profile. A Mach / CAS TCP is
then inserted into the TCP list at this point.

Find the last Crossing Mach and the first Crossing CAS in the list.

First CAS = 0

i = index number of the first waypoint

while ((i <index number of the last waypoint) and (First CAS = 0))

if (Crossing Machi > 0)

Last Mach = Crossing Machi

Last Mach Altitude = Altitudei

 13

else if (Crossing CASi > 0)

First CAS = Crossing CASi

CAS Rate = CAS Ratei

i = i + 1

If there is a Mach / CAS transition speed input, use this value for the First CAS value.

if (Mach CAS Transition > 0) First CAS = Mach CAS Transition

Compute the Mach / CAS transition altitude.

z = (1.0 - (((((0.2 * ((FirstCas/661.48)2.0) + 1.0)3.5) - 1.0) /

 (((0.2 * (LastMach2.0) + 1.0)3.5) - 1.0))0.19026)) / 0.00000687535

For an actual implementation, it would be beneficial to check for an error at this point. If z greater
than the altitude associated with the Last Mach TCP or if z less than the altitude associated with the
First CAS TCP, then an error should be noted.

Find where z first occurs.

i = index number of the first waypoint + 1

finished = false

while ((i < index number of the last waypoint) and (finished = false))

if (Altitudei > z) i = i + 1

else finished = true

Find the distance to this altitude.

x = Altitudei-1 - Altitudei

if (x ≤ 0) ratio = 0

else ratio = (z - Altitudei) / x

d = ratio * (DTGi-1 - DTGi) + DTGi

Compute the ground track at distance d along the trajectory and save it as Saved Ground Track.

Saved Ground Track = GetTrajGndTrk(d)

 14

Insert a new TCP at location i in the TCP list. The TCP is inserted between TCPi-1 and TCPi from the
original list. The function InsertWaypoint should be appropriate for the actual data structure
implementation of this function.

InsertWaypoint(i)

Mark this TCP as the Mach / CAS transition TCP.

Add the data for this new TCP.

Crossing Machi = Last Mach

Crossing CASi = First CAS

CAS Ratei = CAS Rate

DTGi = d

Altitudei = z

Ground Tracki = Saved Ground Track

Machi = Last Mach

CASi = First CAS

Compute and add the wind data at distance d along the path to the data of TCPi.

GenerateWptWindProfile(DTGi, TCPi)

Mark all TCPs from the first TCP (TCPfirst waypoint) to TCPi-1 as Mach TCPs.

Compute TCP Speeds

This function is similar to Compute TCP Altitudes in its design. Beginning with the last waypoint, this
function computes the Mach or CAS at each previous TCP and inserts any additional speed TCPs that
may be required to denote a change in the speed profile. The function uses the current speed constraint,
searches backward for the previous constraint, and then computes the distance required to meet this
previous constraint. The speeds for all of the TCPs within this distance are computed and added to the
data for the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new speed
VTCP is inserted at this distance. This function invokes two secondary functions, described in the
subsequent text, with the invocation dependent on the constraint speed, whether it is a Mach or a CAS
value. This function is performed in the following steps:

Set the current constraint index number, cc, equal to the index number of the last waypoint,

cc = index number of the last waypoint

The speed of the first waypoint is set to its crossing speed.

 15

if (Crossing Machfirst waypoint > 0)

Mach first waypoint = Crossing Machfirst waypoint

CAS first waypoint = MachToCas(Mach first waypoint, Altitude first waypoint)

else

CAS first waypoint = Crossing CASfirst waypoint

Mach first waypoint = CasToMach(CAS first waypoint, Altitude first waypoint)

The speed of the last waypoint is set to its crossing speed,

CAS cc = Crossing CAScc.

A flag signifying that Mach segment computation has begun is set to false,

Doing Mach = false

While (cc > index number of the first waypoint)

Set the Mach flag if the current TCP is the Mach / CAS transition point.

if (TCPcc = Mach CAS Transition) Doing Mach = true

if (Doing Mach) ComputeTcpMach(cc)

else ComputeTcpCas(cc)

end of while cc > index number of the first waypoint

Compute Secondary Speeds

This function adds the Mach values to CAS TCPs, the CAS values to Mach TCPs, and the groundspeed
values to all TCPs. This function is preformed in the following steps:

Doing Mach = false

Working backwards form the runway, compute the relevant speeds.

for (i = index number of the last waypoint; i ≥ index number of the first waypoint; i = i - 1)

Set the flag if the current TCP is the Mach / CAS transition point.

if (TCPi = Mach CAS Transition) Doing Mach = true

if (Doing Mach) Casi = MachToCas(Machi, Altitudei)

 16

else Machi = CasToMach(Casi, Altitudei)

Compute the ground track.

if (i = index number of the first waypoint) track = Ground Tracki

else if (WptInTurn(i) or (TCPi = turn-exit)) track = Ground Tracki

else track = Ground Tracki-1

Compute the groundspeed. Compute the wind at this point.

InterpolateWindWptAltitude(Wind Profilei, Altitudei,Wind Speed, Wind Direction)

Ground Speedi = ComputeGndSpeedUsingTrack (Casi, track, Altitudei, Wind Speed,
Wind Direction)

end of for (i = index number of the last waypoint; i ≥ index number of the first waypoint; i = i - 1)

Update Turn Data

This function computes the turn data for each turn waypoint and modifies the associated waypoint's
turn data sub-record. This function performs as follows:

KtsToFps = 1.69

Nominal Bank Angle = 22

index = index number of the first waypoint + 1

while (index < index number of the last waypoint)

Find the next input waypoint with a turn.

while ((index < index number of the last waypoint) and ((TCPindex ≠ input waypoint) or
(not WptInTurn(index)))) index = index + 1

If there are no errors and there is a turn of more than 3-degrees, compute the turn data.

if (index < index number of the last waypoint)

Find the start of the turn.

i = index - 1

while (TCPi ≠ turn-entry) i = i - 1

start = i

 17

The following are all approximations and are based on a general, constant radius turn.

The start of turn to the midpoint data is as follows, noting that the groundspeeds for all points
must be valid at this point.

The overall distance d for this part of the turn is,

d = DTGstart - DTGindex

The special case with 0 distance between the points is,

if (d <= 0) AvgGsFirstHalf = (Ground Speedstart + Ground Speedindex) / 2

else

The overall average ground speed is computed as follows, noting that it is the sum of
segment distance / overall distance * average segment groundspeed.

AvgGsFirstHalf = 0

for (j = start; j ≤ (index - 1); j = j + 1)

dx = DTGj - DTGj+1

AvgGsFirstHalf = AvgGsFirstHalf + (dx / d)
* (Ground Speedj + Ground Speedj+1) / 2

Now, find the end of the turn.

i = index + 1

while (TCPi ≠ turn-exit) i = i + 1

end = i

Now, find the midpoint to the end of the turn.

The overall distance for this part of the turn is,

d = DTGindex - DTGend

Test for the special case, 0 distance between the points.

if (d ≤ 0)

AvgGsLastHalf = (Ground Speedindex + Ground Speedend) / 2

else

 18

Compute the overall average ground speed noting that it is the sum of segment
distance / overall distance * average segment groundspeed.

AvgGsLastHalf = 0

for (j = index; j ≤ (end - 1); j = j+ 1)

dx =DTGj - DTGj+1

AvgGsLastHalf = AvgGsLastHalf + (dx / d) *
(Ground Speedj + Ground Speedj+1) / 2

end of for (j = index; j <= (end - 1); j = j + 1)

end of else if (d ≤ 0)

The general equation is turn rate = c tan(bank angle) / v. If the bank angle is a constant, turn
rate = c0 / v. The Nominal Bank Angle = 22 degrees.

c0 = 57.3 * 32.2 / KtsToFps * tangent(Nominal Bank Angle)

full turn = DeltaAngle(Ground Trackstart, Ground Trackend)

half turn = full turn / 2

Compute the outputs from the average groundspeed.

Average Ground Speed = (AvgGsFirstHalf + AvgGsLastHalf) / 2

Save the ground speed data in the turn data for this waypoint.

Turn Data Average Ground Speedindex = Average Ground Speed

w = c0 / Average Ground Speed

The time to make the turn is,

Turn Data Turn Timeindex = absolute(full turn) / w

The turn radius is,

Turn Data Turn Radiusindex = (57.3 * KtsToFps * Average Ground Speed) / (6076 * w)

The along-path distance for the turn is,

Turn Data Path Distanceindex = absolute(full turn) * Turn Data Turn Radiusindex / 57.3

Save the turn data for the first half of the turn, denoted by the "1" in the variable name.

 19

Turn Data Cas1index = CASstart

Turn Data Average Ground Speed1index = AvgGsFirstHalf

Turn Data Track1index = Ground Trackstart

The Straight Distance values are the distances from the turn-entry TCP to the waypoint and
from the waypoint to the turn-exit TCP. See the example in figure 5.

Turn Data Straight Distance1index = Turn Data Turn Radius index *
tangent(absolute(half turn))

Figure 5. Turn distances for waypointi.

The Path Distance values are the along-the-path distances from the turn-entry TCP to a point
one-half way along the turn and from this point to the turn-exit TCP. See the example in
figure 5.

Turn Data Path Distance1index = absolute(half turn) * Turn Data Turn Radiusindex / 57.3

w = c0 / AvgGsFirstHalf

Turn Data Turn Time1index = absolute(half turn) / w

The data for the midpoint to the end of the turn, denoted by the "2" in the variable name, are
as follows:

Turn Data Cas2index = CASend

Turn Data Average Ground Speed2index = AvgGsLastHalf

Turn Data Track2index = Ground Trackend

The distances for the second half of the turn are the same as for the first, but their calculates
are recomputed here for clarity.

Turn Data Straight Distance2index = Turn Data Turn Radius index *
tangent(absolute(half turn))

 20

Turn Data Path Distance2index = absolute(half turn) * Turn Data Turn Radiusindex / 57.3

w = c0 / AvgGsLastHalf

Turn Data Turn Time2index = absolute(half turn) / w

The DTG values are as follows:

DTGstart = DTGindex + Turn Data Path Distance1index

DTGend = DTGindex - Turn Data Path Distance2index

Since the turn waypoints have been moved, the wind data need to be updated for the new
locations.

GenerateWptWindProfile(DTGstart, TCPstart)

GenerateWptWindProfile(DTGend, TCPend)

end of if (index < index number of the last waypoint)

index = index + 1

end of while (index < index number of the last waypoint)

Delete TCPs

This function simply deletes the altitude, speed, and Mach / CAS TCPs. The remaining TCPs will only
consist of input waypoints, turn-entry, and turn-exit TCPS.

Update DTG Data

This function is performed after the turn data have been updated and the VTCPs have been deleted.
Only input, turn-entry, and turn-exit TCPs should be in the list at this time.

DTGfirst waypoint = 0

i = index number of the last waypoint

while (i > 0)

Determine if there is a turn at either end and adjust accordingly.

if (WptInTurn(i))

DTGi-1 = DTGi + Turn Data Path Distance1i

The following is the difference between going directly from the waypoint to going along the
curved path.

 21

PriorDistanceOffset = Turn Data Straight Distance1i - Turn Data Path Distance1i

else PriorDistanceOffset = 0

Find the next input waypoint.

nn = i - 1

while (TCPnn ≠ input waypoint) nn = nn - 1

if (WptInTurn(nn))

The following is the difference between going directly from the waypoint to going along the
curved path.

DistanceOffset = Turn Data Straight Distance2nn - TurnData.PathDistance2nn

The DTG to the input waypoint is then:

DTGnn = (Center to Center Distancei - PriorDistanceOffset - DistanceOffset) + DTGi

The turn-exit DTG is then,

DTGnn+1 = DTGnn - Turn Data Path Distance2nn

else

The next waypoint is not in a turn.

DTGnn = Center to Center Distancei - PriorDistanceOffset + DTGi

i = nn

end of while (i > 0)

Check Turn Validity

This function is performed after the turn data have been updated and the VTCPs have been deleted.
Only input, turn-entry, and turn-exit TCPs should be in the list at this time. The function simple checks
that there are no turns within turns.

for (i = index number of the first waypoint; i < index number of the last waypoint; i = i + 1)

if (DTGi < DTGi+1) mark this as an error condition

 22

Compute TCP Times

Beginning at the runway (the last waypoint), work backwards and compute the TTG to each TCP.

TTGindex number of the last waypoint = 0

for (i = index number of the last waypoint; i > index number of the first waypoint; i = i - 1)

Average Ground Speed = (Ground Speedi-1+ Ground Speedi) / 2

x = DTGi-1 - DTGi

Delta Time = 3600 * x / Average Ground Speed

TTGi-1 = TTGi + Delta Time

Compute TCP Latitude and Longitude Data

With the exception of the input waypoints, this functions computes the latitude and longitude data for
all of the TCPs.

In Turn = false

Past Center = false

Last Base = index number of the first waypoint

Next Input = index number of the first waypoint

Turn Index = index number of the first waypoint

Turn is Clockwise = true

Turn Adjustment = 0

Base Latitude = LatitudeLast Base

Base Longitude = LongitudeLast Base

for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

if (TCPi == turn-entry)

Turn Adjustment = 0

InTurn = True;

Find the major waypoint for this turn.

 23

Next Input = i + 1

while ((TCPNext Input ≠ input waypoint) and (Next Input ≤ index number of the last waypoint))
Next Input = Next Input + 1

Turn Index = Next Input

Find the center of the turn.

a = DeltaAngle(Ground Tracki, Ground TrackNext Input)

x = Turn Data Turn RadiusTurn Index / cosine(a)

if (a > 0) Turn Clockwise =true

else Turn Clockwise = false

if (Turn Clockwise) a1 = Ground TrackTurn Index + 90

else a1 = Ground TrackTurn Index - 90.0

Now compute the relative latitude and longitude values. The function RelativeLatLon is
described in a subsequent section.

RelativeLatLong(LatitudeTurn Index, LongitudeTurn Index, a1, x), returning Center Latitude and
Center Longitude

end of if (TCPi = turn-entry)

if (In Turn)

Turn Adjustment = 0

if (Turn Clockwise) a1 = Ground Tracki - 90

else a1 = Ground Tracki + 90

if (TCPi = input waypoint)

RelativeLatLong(Center Latitude, Center Longitude, a1, x), returning Turn Data
Latitudei and Turn Data Longitudei

Compute the location for the center of the turn.

a2 = DeltaAngle(Turn Data Track1i, Turn Data Track2i)

if (a2 > 0) b = Ground Tracki + 90

else b = Ground Tracki - 90

 24

Compute the latitude and longitude from Turn Data Latitudei, Turn Data Longitudei, the
angle b, and the distance, Turn Data Turn Radiusi.

RelativeLatLon(Turn Data Latitudei, Turn Data Longitudei, b, Turn Data Turn Radiusi),
returning Turn Data Center Latitudei and Turn Data Center
Longitudei.

end of if (TCPi = input waypoint)

else RelativeLatLon(Center Latitude, Center Longitude, a1, Turn Data Turn RadiusNext Input),
returning Latitudei and Longitudei

if (TCPi = turn-exit)

Turn Adjustment = Turn Data Straight Distance2Turn Index -
Turn Data Path Distance2Turn Index

In Turn = false

Last Base = Next Input

Base Latitude = LatitudeLast Base

Base Longitude = LongitudeLast Base

end of if (In Turn)

else

if (TCPi = input waypoint)

Turn Adjustment = 0

Last Base = i

Base Latitude = LatitudeLast Base

Base Longitude = LongitudeLast Base

else

RelativeLatLong(Base Latitude, Base Longitude, Ground Tracki-1, DTGLast Base - DTGi +
Turn Adjustment), returning Latitudei and Longitudei

end of for (i = index number of the first waypoint; i ≤ index number of the last waypoint; i = i + 1)

 25

Secondary Function Descriptions

The secondary functions are listed in alphabetical order. Note that standard aeronautical functions, such
as CAS to Mach conversions, CasToMach, are not expanded in this document but may be found
numerous references, e.g., reference 21. It may also be of interest to include atmospheric temperature or
temperature deviation in the wind data input and calculate the temperature at the TCP crossing altitudes to
improve the calculation of the various speed terms.

ComputeGndSpeedUsingTrack

This function computes a ground speed from track angle (versus heading), CAS, altitude, and wind
data.

b = DeltaAngle(track, Wind Direction)

if (CAS <= 0) r = 0

else r = (Wind Speed / CasToTas Conversion(CAS, Altitude)) * sine(b)

Limit the correction to something reasonable.

if (absolute(r) > 0.8) r = 0.8 * r / absolute(r)

heading = track + arcsine(r)

a = DeltaAngle(heading, Wind Direction)

TAS = CasToTas Conversion(CAS, Altitude)

Ground Speed = (Wind Speed2+ TAS2 - 2.0 * Wind Speed * TAS * cosine(a))0.5

ComputeGndSpeedUsingMachAndTrack

This function computes a ground speed from track angle (versus heading), Mach, altitude, and wind
data.

CAS = MachToCas(Mach,Altitude)

Ground Speed = ComputeGndSpeedUsingTrack

ComputedGndTrk

This function computes the ground track at the along-path distance equal to distance., where distance
must lie between TCPi-1 and TCPi+1. It is assumed that the value for Ground Tracki is invalid. The
function uses a linear interpolation based on DTGi-1 and DTGi+1, with the index value i input into the
function and where the distance distance must lie between these points.

d = DTG i-1 - DTG i+1

 26

if (d ≤ 0) Ground Track = Ground Track i-1

else

a = (1.0 - (distance - DTG i+1) / d) * DeltaAngle(Ground Track i-1, Ground Track i+1)

Ground Track = Ground Track i-1 + a

ComputeTcpCas

The variable cc is passed into and out of this function. Beginning with the last waypoint, this function
computes the CAS at each previous TCP and inserts any additional speed TCPs that may be required to
denote a change in the speed profile. The function uses the current speed constraint, searches backward
for the previous constraint, and then computes the distance required to meet this previous constraint. The
speeds for all of the TCPs within this distance are computed and added to the data for the TCPs. If the
along-path distance to meet the previous constraint is not at a TCP, a new speed VTCP is inserted at this
distance. Because there is no general closed form solution to compute distances to meet the deceleration
constraints, an iterative technique is used in this function. This function is performed in the following
steps:

While ((cc > index number of the first waypoint) and (TCPcc ≠ Mach CAS Transition))

Determine if the previous constraint cannot be met.

If (CAScc > Crossing CAScc)

If this is the last pass through the algorithm, set this as an error condition

CAScc = Crossing CAScc

Find the prior waypoint index number pc that has a CAS constraint, e.g., a crossing CAS
(Crossing CASpc ≠ 0). This may not always be the previous (i.e., cc - 1) waypoint.

Initial condition is the previous TCP.

pc = cc - 1

while ((pc > index number of the first waypoint) and (TCPpc ≠ Mach CAS Transition)
and (Crossing CAS pc = 0)) pc = pc - 1

Save the previous crossing speed,

Prior Speed = Crossing CASpc

Save the current crossing speed (Test Speed) at TCPcc and the deceleration rate (Test Rate) noting
that the first and last waypoints always have speed constraints and except for the first waypoint,
all constrained speed points must have deceleration rates.

Test Speed = Crossing CAScc

 27

Test Rate = Crossing Ratecc

Compute all of the TCP speeds between the current TCP and the previous crossing waypoint.

k = cc

while k > pc

If the previous speed has already been reached, set the remaining TCP speeds to the previous
speed.

if (Prior Speed ≤ Test Speed)

for (k = k - 1; k > pc; k = k - 1)

CASk = Test Speed

Machk = CasToMach(CASk, Altitudek)

Set the speeds at the last test point.

CASpc = Test Speed

if (Machpc = 0) Machpc = CasToMach(CASpc, Altitudepc)

else

Estimate the distance required to meet the crossing restriction using the winds at the
current altitude. This is a first-estimation.

Compute the time to do the deceleration.

t = (Prior Speed - Test Speed) / Test Rate

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profilek, Altitudek,Wind Speed1, Wind Direction1)

The ground track at the current point is,

if (WptInTurn(k)) Track = Ground Trackk

else Track = Ground Trackk-1

Current Ground Speed = ComputeGndSpeedUsingTrack(Test Speed, Track,
Altitudek,Wind Speed1, Wind Direction1)

The ground speed at the prior point.

 28

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, GndTrackk-1,
Altitudek-1, Wind Speed1, Wind Direction1)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2.

The distance estimate, dx, is Average Ground Speed * t.

dx = Average Ground Speed * t / 3600

Recompute the distance required to meet the speed using the previous estimate distance
dx.

Begin by computing the altitude, AltD, at distance dx.

if (Altitudek ≥ Altitudek-1) AltD = Altitudek

else AltD = (6076 * d) * tangent(Crossing Anglek) + Altitudek

Compute the winds at AltD and distance dx.

InterpolateWindAtDistance(AltD, dx, Wind Speed2, Wind Direction2)

The track angle at this point, with GetTrajGndTrk defined in a this section:

Track2 = GetTrajGndTrk(DTGk - dx)

The ground speed at altitude AltD is then,

Prior Ground Speed = ComputeGndSpeedUsingTrack(Prior Speed, Track2, AltD, Wind
Speed2, Wind Direction2)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2.

dx = Average Ground Speed * t / 3600

If there is a TCP prior to dx, compute and insert its speed.

If the distance is very close to the waypoint, just set the speed.

if ((DTGk-1 < (DTGk + dx + some small value))

if (absolute(DTGk-1 - DTGk - dx) < some small value) CASk-1 = Prior Speed

else

Compute the speed at the waypoint using v2 = v0
2 + 2ax to get v.

The headwinds at the end point is,

 29

HeadWind2 = Wind Speed2 * cosine(Wind Direction2 - Ground Trackk-1)

dx = DTGk-1 - DTGk

The value of CASk-1 is computed using function EstimateNextCas, described in
this section.

CASk-1 = EstimateNextCas(Test Speed, Current Ground Speed, Prior Speed,
Head Wind2, Altitudek, dx, Crossing Ratecc)

Determine if the constraint is met.

if ((k-1) = pc)

Was the crossing speed met within 1 kt? If not, set this as an error.

if (absolute(CASpc - Crossing CASpc) > 1.0) Mark this as an error condition

Always set the crossing exactly to the crossing speed.

CASpc = Crossing CASpc

Set the test speed to the computed speed.

Test Speed = CASk-1

Back up the index counter to the next intermediate TCP.

k = k - 1

end of if ((DTGk-1 < (DTGk + dx + some small value))

else

The constraint occurs between this TCP and the previous TCP. A new VTCP needs
to be added at this point.

The along path distance d where the VTCP is to be inserted is:

d = DTGk + dx

Save the ground track value at this distance.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between
TCPk-1 and TCPk from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.

 30

InsertWaypoint(k)

Update the data for the new VTCP which is now TCPk.

DTGk = d

The altitude at this point is computed as follows, recalling that the new waypoint is
TCPk:

if (Altitudek+1 ≥ Altitudek-1) Altitudek = Altitudek-1

else Altitudek = (6076 * dx) * tangent(Crossing Anglek+1) + Altitudek+1

CASk = Prior Speed

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputedGndTrk are described in this sections.

if (WptInTurn(k)) Ground Trackk = ComputedGndTrk(k, d)

else Ground Trackk = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCPk.

GenerateWptWindProfile(d, TCPk)

Test Speed = Prior Speed

Since TCPk, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc = cc + 1

end of while k > pc.

Now go to the next altitude change segment on the profile.

cc = k

end of while cc > index number of the first waypoint

ComputeTcpMach

The variable cc is passed into and out of this function. This function is similar to ComputeTcpCas with
the exception that the computed Mach rate will need to be recomputed with any change of altitude.
Beginning with the last Mach waypoint (the Mach waypoint that is closest to the runway in terms of
DTG), this function computes the Mach at each previous TCP and inserts any additional speed TCPs that
may be required to denote a change in the speed profile. The function uses the current speed constraint,
searches backward for the previous constraint, and then computes the distance required to meet this

 31

previous constraint. The speeds for all of the TCPs within this distance are computed and added to the
data for the TCPs. If the along-path distance to meet the previous constraint is not at a TCP, a new speed
VTCP is inserted at this distance. Because there is no general closed form solution to compute distances
to meet the deceleration constraints, an iterative technique is used in this function. This function is
performed in the following steps:

While (cc > index number of the first waypoint)

Determine if the previous constraint cannot be met.

If (Machcc > Crossing Machcc)

If this is the last pass through the algorithm, mark this as an error condition

Machcc = Crossing Machcc

Find the prior waypoint index number pc that has a Mach constraint, e.g., a crossing Mach
(Crossing Machpc ≠ 0). This may not always be the previous (i.e., cc - 1) waypoint.

Initial condition is the previous TCP.

pc = cc - 1

finished = false

while ((pc > index number of the first waypoint) and (TCPpc ≠ Mach CAS Transition)
and (Crossing CAS pc = 0)) pc = pc - 1

Save the previous crossing speed,

Prior Speed = Crossing Machpc

Save the current crossing speed (Test Speed) at TCPcc and the deceleration rate (Test Rate) noting
that the first and last waypoints always have speed constraints and except for the first waypoint,
all constrained speed points must have deceleration rates.

Test Speed = Crossing Machcc

Test Rate = CasToMach(Altitudecc, Crossing Ratecc)

Compute all of the TCP speeds between the current TCP and the previous crossing waypoint.

k = cc

while k > pc

If the previous speed has already been reached, set the remaining TCP speeds to the previous
speed.

if (Prior Speed ≤ Test Speed)

 32

for (k = k - 1; k > pc; k = k - 1)

Machk = Test Speed

CASk = MachToCas(Machk, Altitudek)

Mark TCPk as a Mach segment.

Set the speeds at the last test point.

Machpc = Test Speed

CASpc = MachToCas(Machpc, Altitudepc)

else

Estimate the distance required to meet the crossing restriction using the winds at the
current altitude. This is a first-estimation.

Compute the time to do the deceleration.

t = (Prior Speed - Test Speed) / Test Rate

Compute the wind speed and direction at the current altitude.

InterpolateWindWptAltitude(Wind Profilek, Altitudek,Wind Speed1, Wind Direction1)

The ground track at the current point.

if (WptInTurn(k)) Track = Ground Trackk

else Track = Ground Trackk-1

Current Ground Speed = ComputeGndSpeedUsingMachAndTrack(Test Speed, Track,
Altitudek,Wind Speed1, Wind Direction1)

The ground speed at the prior altitude and speed.

Prior Ground Speed = ComputeGndSpeedUsingMachAndTrack(Prior Speed,
GndTrackk-1, Altitudek-1, Wind Speed1, Wind Direction1)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2.

The distance estimate, dx, is Average Ground Speed * t.

dx = Average Ground Speed * t / 3600

Compute the distance required to meet the speed using the previous estimate distance dx.

 33

Begin by computing the altitude, AltD, at distance dx.

if (Altitudek >= Altitudek-1) AltD = Altitudek

else AltD = (6076 * d) * tangent(Crossing Anglek) + Altitudek

Compute the average Mach rate.

MRate1 = CasToMach(Crossing Ratecc, Altitudek)

MRate2 = CasToMach(Crossing Ratecc, AltD)

Test Rate = (MRate1 + MRate2) / 2

t = (Prior Speed - Test Speed) / Test Rate

Compute the winds at AltD and distance dx.

InterpolateWindAtDistance(AltD, dx, Wind Speed2, Wind Direction2)

The track angle at this point, with GetTrajGndTrk defined in this section, is:

Track2 = GetTrajGndTrk(DTGk - dx)

The ground speed at altitude AltD is then,

Prior Ground Speed = ComputeGndSpeedUsingMachAndTrack(Prior Speed, Track2,
AltD, Wind Speed2, Wind Direction2)

Average Ground Speed = (Prior Ground Speed + Current Ground Speed) / 2.

dx = Average Ground Speed * t / 3600

If there is a TCP prior to dx, compute and insert its speed.

If the distance is very close to the waypoint, just set the speed.

if ((DTGk-1 < (DTGk + dx + some small value))

if (absolute(DTGk-1 - DTGk - dx) < some small value)

Machk-1 = Prior Speed

Mark TCPk as a Mach segment.

else

Compute the speed at the waypoint using v2 = v0
2 + 2ax to get v.

 34

The headwind at the end point is,

HeadWind2 = Wind Speed2 * cosine(Wind Direction2 - Ground Trackk-1)

dx = DTGk-1 - DTGk

Compute the average Mach rate.

MRate1 = CasToMach(Crossing Ratecc, Altitudek)

MRate2 = CasToMach(Crossing Ratecc, Altitudek-1)

Test Rate = (MRate1 + MRate2) / 2

The value of Machk-1 is computed using function EstimateNextmach, described in
this section.

Machk-1 = EstimateNextMach(Test Speed, Current Ground Speed, Prior Speed,
Head Wind2, Altitudek, dx, Test Rate)

Determine if the constraint is met.

if ((k-1) = pc)

Was the crossing speed met within 0.002 Mach? If not, set this as an error.

if (absolute(Machpc - Crossing Machpc) > 0.002)
Mark this as an error condition

Always set the crossing exactly to the crossing speed.

Machpc = Crossing Machpc

Set the test speed to the computed speed.

Test Speed = Machk-1

Back up the index counter to the next intermediate TCP.

k = k - 1

end of if ((DTGk-1 < (DTGk + dx + some small value))

else

The constraint occurs between this TCP and the previous TCP. A new VTCP needs
to be added at this point.

The along path distance d where the VTCP is to be inserted is:

 35

d = DTGk + dx

Save the ground track value at this distance.

Saved Ground Track = GetTrajGndTrk(d)

Insert a new VTCP at location k in the TCP list. The VTCP is inserted between
TCPk-1 and TCPk from the original list. The function InsertWaypoint should be
appropriate for the actual data structure implementation of this function.

InsertWaypoint(k)

Update the data for the new VTCP which is now TCPk.

DTGk = d

The altitude at this point is computed as follows, recalling that the new waypoint is
TCPk:

if (Altitudek+1 ≥ Altitudek-1) Altitudek = Altitudek-1

else Altitudek = (6076 * dx) * tangent(Crossing Anglek+1) + Altitudek+1

Machk = Prior Speed

Mark TCPk as a Mach segment.

Add the ground track data which must be computed if the new VTCP occurs within a
turn. The functions WptInTurn and ComputedGndTrk are described in this sections.

if (WptInTurn(k)) Ground Trackk = ComputedGndTrk(k, d)

else Ground Trackk = Saved Ground Track

Compute and add the wind data at distance d along the path to the data of TCPk.

GenerateWptWindProfile(d, TCPk)

Test Speed = Prior Speed

Since TCPk, has now been added prior to pc, the current constraint counter cc needs
to be incremented by 1 to maintain its correct position in the list.

cc = cc + 1

end of while k > pc.

Now go to the next altitude change segment on the profile.

 36

cc = k

end of while cc > index number of the first waypoint.

DeltaAngle

This functions returns angle a, the difference between Angle1 and Angle2. The returned value may be
negative, i.e., -180 degrees ≥ DeltaAngle ≥ 180 degrees.

a = Angle2 - Angle1

Adjust "a" such that 0 ≥ a ≥ 360

if (a > 180) a = a - 360

EstimateNextCas

This is an iterative function to estimate the CAS value, CAS, at the next TCP. Note that this is no
closed-form solution for this calculation. The input variable names in this description are from the calling
function. Also, the input deceleration value must be greater than 0, Test Rate > 0.

CAS = Test Speed

Set up a condition to get at least one pass.

d = -10 * dx

size = 1.01 * (Prior Speed - Test Speed)

count = 0

if ((dx > 0) and (Test Rate > 0))

Iterate a solution. The counter count is used to terminate the iteration if the distance estimation
does reach a solution within 0.001 n.mi.

while ((absolute(d - dx) > 0.001) && (count < 10))

if (d > dx) CAS = CAS - size

else CAS = CAS + size

size = size / 2

The estimated time t to reach this speed,

t = (CAS - Test Speed) / Test Rate

The new ground speed,

 37

Gs2 = CasToTas Conversion(guess, Altitude) - Head Wind2

d = ((Current Ground Speed + Gs2) / 2) * (t / 3600)

count = count + 1

end of the while loop

Limit the computed CAS, if necessary.

if (CAS > Prior Speed) CAS = Prior Speed

EstimateNextMach

This is an iterative function to estimate the Mach value, Mach, at the next TCP. Note that this is no
closed-form solution for this calculation. The input variable names in this description are from the calling
function. Also, the input deceleration value must be greater than 0, Mach Rate > 0.

Mach = Test Speed

Set up a condition to get at least one pass.

d = -10 * dx

size = 1.01 * (Prior Speed - Test Speed)

count = 0

if ((dx > 0) and (Test Rate > 0))

Iterate a solution. The counter count is used to terminate the iteration if the distance estimation
does reach a solution within 0.001 n.mi.

while ((absolute(d - dx) > 0.001) && (count < 10))

if (d > dx) Mach = Mach - size

else Mach = Mach + size

size = size / 2

The estimated time t to reach this speed,

t = (Mach - Test Speed) / Test Rate

The new ground speed,

CAS = MachToCas(Mach, Altitude)

Gs2 = CasToTas Conversion(CAS, Altitude) - Head Wind2

 38

d = ((Current Ground Speed + Gs2) / 2) * (t / 3600)

count = count + 1

end of the while loop

Limit the computed Mach, if necessary.

if (Mach > Prior Speed) Mach = Prior Speed

GenerateWptWindProfile

The function GenerateWptWindProfile is used to compute new wind profile data. This function is a
double-linear interpolation using the wind data from the two bounding input waypoints to compute the
wind profile for a new VTCP, TCPk. The interpolations are between the wind altitudes from the input data
and the ratio of the distance d at a point between TCPi-1 and TCPi and the distance between TCPi-1 and
TCPi. E.g.,

− Find the two bounding input waypoints, TCPi-1 and TCPi, between which d lies, e.g.,
TCPi-1 ≥ d ≥ TCPi.

− Using the altitudes from the wind profile of TCPi, compute and temporarily save each wind at these
altitudes using the wind data from TCPi-1 (e.g., Wind SpeedTemporary, Altitude1).

− Compute the wind speed and wind direction for each altitude using the ratio r of the distances.
Assuming that the difference between DTGi-1 and DTGi ≠ 0, and that DTGi-1 > DTGi.

r = (DTGi-1 - d) / (DTGi-1 - DTGi)

Iterate the following for each altitude in the profile.

Wind Speedk, Altitude1 = ((1.0 - r) * Wind SpeedTemporary, Altitude1) + (r * Wind Speedi, Altitude1)

a = DeltaAngle(Wind DirectionTemporary, Altitude1, Wind Directioni, Altitude1)

Wind Directionk, Altitude1 = Wind Directionk, Altitude1 + (r * a)

GetTrajectoryData

This function computes the trajectory data at the along-path distance equal to d and saves these data in
a temporary TCP record. The function uses a linear interpolation based on the DTG values of the two
TCPs bounding this distance and the distance d to compute the trajectory data at this point.

 39

GetTrajGndTrk

This function computes the ground track at the along-path distance, distance.

if (distance < 0) Ground Track = Ground Tracklast waypoint

else if (distance > DTGfirst waypoint) Ground Track = Ground Trackfirst waypoint

else

Find where distance is on the path.

i = index number of the last waypoint

while (distance > DTGi) i = i -1

if (distance = DTGi) Ground Track = Ground Tracki

else

x = DTGi - DTGi+1

if (x ≤ 0.0) r = 0

else r = (distance - DTGi+1) / x

dx = r * DeltaAngle(Ground Tracki, Ground Tracki+1)

Ground Track = Ground Tracki + dx

InterpolateWindAtDistance

This function is used to compute the wind speed and direction at an altitude, Altitude, for a specific
distance, Distance, along the path. This function is a linear interpolation using the wind data from the
input waypoints that bound the along-path distance.

Find the bounding input waypoints.

i0 = index number of the first waypoint

while ((i0 < (index number of the last waypoint - 1)) and (TCPi0 ≠ input waypoint) and
(Distance > DTGi0 + 1)) i0 = i0 + 1

i1 = i0

while ((i1 < index number of the last waypoint) and (TCPi1 ≠ input waypoint) and
(Distance > DTGi1)) i1 = i1 + 1

if (i1 > index number of the last waypoint) i1 = index number of the last waypoint

 40

if (i0 = i1) InterpolateWindWptAltitude(TCPi0, Altitude)

else

Interpolate the winds at each waypoint.

InterpolateWindWptAltitude(TCPi0, Altitude), returning Spd0 and Dir0

InterpolateWindWptAltitude(TCPi1, Altitude), returning Spd1 and Dir1

Interpolate the winds between the two waypoints.

r = (DTGi0 - Distance) / (DTGi0 - DTGi1)

Wind Speed = ((1.0 - r) * Spd0) + (r * Spd1)

a = DeltaAngle(Dir0, Dir1)

Wind Direction = Dir0 + (r * a)

InterpolateWindWptAltitude

The function InterpolateWindWptAltitude is used to compute the wind speed and direction at an
altitude, Altitude, for a specific TCP. This function is a linear interpolation using the wind data from the
current TPC.

Find the index numbers, p0 and p1, for the bounding altitudes.

p0 = 0

p1 = 0

for (k = 1; k <= Number of Wind Altitudesi; k = k + 1)

if (Wind Altitudei, k <= Altitude) p0 = k

if ((Wind Altitudei, k >= Altitude)and (p1 = 0)) p1 = k

if (p1 = 0) p1 = Number of Wind Altitudesi

If Altitude = Wind Altitudep0 or if Altitde = Wind Altitudep1 then the wind data from that point is
used. Otherwise, Altitude is not at an altitude on the wind profile of TCPi, i.e., z = Wind Altitudei, k,
then:

r = (Altitude - Wind Altitudep0) / (Wind Altitudep1 - Wind Altitudep0)

Wind Speed = ((1 - r) * Wind Speedp0) + (r * Wind Speedp1)

a = DeltaAngle(Wind Directionp0, Wind Directionp1)

 41

Wind Direction = Wind Directionp0 + (r * a)

RelativeLatLon

This function computes the latitude and longitude from input values of latitude, BaseLat, longitude,
BaseLon, angle, Angle, and range, Range.

if (Angle = 180) Latitude = -range / 60 + BaseLat

else Latitude = ((Range * cos(Angle)) / 60) + BaseLat

if ((BaseLat = 0) or (BaseLat = 180)) Longitude = BaseLon

else if (Angle = 90) Longitude = BaseLon + range / (60 * cos(BaseLat))

else if (Angle = 270) Longitude = BaseLon - Range / (60 * cos(BaseLat))

else

r1 = tangent(45 + 0.5 * Latitude)

r2 = tangent(45 + 0.5* BaseLat)

if ((r1 = 0) or (r2 = 0)) Longitude = 20, just some number, this is an error.

else Longitude = BaseLon + (180 / pi *(tangent(Angle)* (log(r1) - log(r2))))

WptInTurn

This function simply determines if the waypoint is between a turn-entry TCP and a turn-exit TCP. If
this is true, then the function returns a value of true, otherwise it returns a value of false.

Summary

The algorithm described in this document takes as input a list of waypoints, their trajectory-specific
data, and associated wind profile data. A full 4D trajectory can then be generated by the techniques
described. A software prototype has been developed from this documentation. An example of the data
input and the prototype-generated output is provided in Appendix A.

 42

References

1. Abbott, T. S.; and Moen, G. C,: Effect of Display Size on Utilization of Traffic Situation Display for Self-
Spacing Task, NASA TP-1885, 1981.

2. Abbott, Terence S.: A Compensatory Algorithm for the Slow-Down Effect on Constant-Time-Separation
Approaches, NASA TM-4285, 1991.

3. Sorensen, J. A.; Hollister, W.; Burgess, M.; and Davis, D.: Traffic Alert and Collision Avoidance System
(TCAS) - Cockpit Display of Traffic Information (CDTI) Investigation, DOT/FAA/RD-91/8, 1991.

4. Williams, D. H.: Time-Based Self-Spacing Techniques Using Cockpit Display of Traffic Information
During Approach to Landing in a Terminal Area Vectoring Environment, NASA TM-84601, 1983.

5. Koenke, E.; and Abramson, P.: DAG-TM Concept Element 11, Terminal Arrival: Self Spacing for Merging
and In-trail Separation, Advanced Air Transportation Technologies Project, 2004.

6. Abbott, T. S.: Speed Control Law for Precision Terminal Area In-Trail Self Spacing, NASA TM 2002-
211742, 2002.

7. Osaguera-Lohr, R. M.; Lohr, G. W.; Abbott, T. S.; and Eischeid, T. M.: Evaluation Of Operational
Procedures For Using A Time-Based Airborne Interarrival Spacing Tool, AIAA-2002-5824, 2002.

8. Lohr, G. W.; Osaguera-Lohr, R. M.; and Abbott, T. S.: Flight Evaluation of a Time-based Airborne Inter-
arrival Spacing Tool, Paper 56, Proceedings of the 5th USA/Europe ATM Seminar at Budapest, Hungary,
2003.

9. Krishnamurthy, K.; Barmore, B.; Bussink, F. J.; Weitz, L.; and Dahlene, L.: Fast-Time Evaluations Of
Airborne Merging and Spacing In Terminal Arrival Operations, AIAA-2005-6143, 2005.

10. Barmore, B.; Abbott, T. S.; and Capron, W. R.: Evaluation of Airborne Precision spacing in a Human-in-
the-Loop Experiment, AIAA-2005-7402, 2005.

11. Hoffman, E.; Ivanescu, D.; Shaw, C.; and Zeghal, K.: Analysis of Constant Time Delay Airborne Spacing
Between Aircraft of Mixed Types in Varying Wind Conditions, Paper 77, Proceedings of the 5th
USA/Europe ATM Seminar at Budapest, Hungary, 2003.

12. Ivanescu, D.; Powell, D.; Shaw, C.; Hoffman, E.; and Zeghal, K.: Effect Of Aircraft Self-Merging In
Sequence On An Airborne Collision Avoidance System, AIAA 2004-4994, 2004.

13. Weitz, L.; Hurtado, J. E.; and Bussink, F. J. L.: Increasing Runway Capacity for Continuous Descent
Approaches Through Airborne Precision Spacing, AIAA 2005-6142, 2005.

14. Barmore, B. E.; Abbott, T. S.; and Krishnamurthy, K.: Airborne-Managed Spacing in Multiple Arrival
Streams, Proceedings of the 24th Congress of the International Council of Aeronautical Sciences,, 2004.

15. Baxley, B.; Barmore, B.; Bone, R.; and Abbott, T. S.: Operational Concept for Flight Crews to Participate
in Merging and Spacing of Aircraft, 2006 AIAA Aviation Technology, Integration and Operations
Conference, 2006.

16. Lohr, G. W.; Oseguera-Lohr, R. M.; Abbott, T. S.; Capron, W. R.; and Howell, C. T.: Airborne Evaluation
and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool, NASA/TM-2005-213772, 2005.

 43

17. Oseguera-Lohr, R. M.; and Nadler, E. D.: Effects of an Approach Spacing Flight Deck Tool on Pilot
Eyescan, NASA/TM-2004-212987, 2004.

18. Lohr, G. W.; Oseguera-Lohr, R. M.; Abbott, T. S.; and Capron, W. R.: A Time-Based Airborne Inter-
Arrival Spacing Tool: Flight Evaluation Result, ATC Quarterly, Vol 13 no 2, 2005.

19. Barmore, B.; Krishnamurthy, K.; Capron, W.; Baxley, B.; and Abbott, T. S.: An Experimental Validation of
Merging and Spacing by Flight Crew, 2006 AIAA Aviation Technology, Integration and Operations
Conference, 2006.

20. Krishnamurthy, K.; Barmore, B.; and Bussink, F. J. L.: Airborne Precision Spacing in Merging Terminal
Arrival Routes: A Fast-time Simulation Study, Proceedings of the 6th USA/Europe ATM Seminar, 2005.

21. Olson, Wayne M.: Aircraft Performance Flight Testing, AFFTC-TIH-99-01, 2000.

 44

Appendix A Example Data Sets

Input Trajectory Data

An example input trajectory data set is provided below. The Mach / CAS transition speed for this
example is 300 knots. Note that Waypoint-18 is the runway threshold.

Table A1. Example of trajectory input data.

Identifier Latitude Longitude
Crossing
Altitude

Crossing
Angle

Crossing
CAS

Crossing
Mach

Crossing
Rate

Waypoint-01 31.87476 -103.244 37000 0 0 0.82 0

Waypoint-02 32.48133 -99.8635 0 0 0 0.8 0.25

Waypoint-03 32.20548 -98.9531 0 0 0 0 0

Waypoint-04 32.19398 -98.6621 0 0 0 0 0

Waypoint-05 32.17042 -98.113 0 0 0 0 0

Waypoint-06 32.15959 -97.8777 0 0 0 0 0

Waypoint-07 32.34026 -97.6623 0 0 0 0 0

Waypoint-08 32.46908 -97.5079 0 0 0 0 0

Waypoint-09 32.64444 -97.2967 11700 3.0 0 0 0

Waypoint-10 32.71448 -97.2119 11000 1.1 240 0 1.0

Waypoint-11 32.74948 -97.1695 0 0 0 0 0

Waypoint-12 32.97496 -97.1783 0 0 0 0 0

Waypoint-13 33.10724 -97.1754 5300 2.3 220 0 0.75

Waypoint-14 33.10658 -97.0537 4300 1.8 190 0 0.75

Waypoint-15 33.03645 -97.0541 0 0 0 0 0

Waypoint-16 33.00561 -97.0542 2400 3.1 170 0 0.75

Waypoint-17 32.95953 -97.0544 1495 3.0 127 0 0.75

Waypoint-18 32.91582 -97.0546 660 3.0 127 0 0.75

 45

Input Wind Data

An example wind speed data set is provided below.

Table A2. Example of wind speed input data.

Identifier Altitude
Wind
Speed

Wind
Direction

Waypoint-01 0 20 180

 10000 50 270

 20000 60 340

 40000 70 350

Waypoint-02 0 20 180

 10000 50 270

 20000 60 340

 40000 70 350

Waypoint-03 0 20 180

 10000 50 270

 20000 60 340

 40000 70 350

Waypoint-04 0 20 180

 10000 50 270

 20000 60 340

 40000 70 350

Waypoint-05 0 20 180

 10000 50 270

 20000 60 340

 40000 70 350

Waypoint-06 0 20 180

 10000 50 270

 20000 60 340

 40000 70 350

Waypoint-07 0 20 160

 10000 50 240

 20000 60 320

 40000 70 330

 46

Table A2 (continued). Example of wind speed input data.

Identifier Altitude
Wind
Speed

Wind
Direction

Waypoint-08 0 20 160

 10000 50 240

 20000 60 330

 40000 70 340

Waypoint-09 0 20 160

 10000 50 240

 20000 60 330

 40000 70 340

Waypoint-10 0 20 160

 10000 50 240

 20000 50 330

 40000 60 340

Waypoint-11 0 20 160

 10000 50 240

 20000 50 330

 40000 60 340

Waypoint-12 0 20 160

 10000 50 240

 20000 50 330

 40000 60 340

Waypoint-13 0 20 160

 10000 50 240

 20000 50 330

 40000 60 340

Waypoint-14 0 20 160

 10000 40 240

 20000 50 330

 40000 60 340

 47

Table A2 (continued). Example of wind speed input data.

Identifier Altitude
Wind
Speed

Wind
Direction

Waypoint-15 0 20 160

 10000 40 240

 20000 50 330

 40000 60 340

Waypoint-16 0 20 160

 10000 40 240

 20000 50 330

 40000 60 340

Waypoint-17 0 20 160

 10000 40 240

 20000 50 330

 40000 60 340

Waypoint-18 0 20 160

 10000 40 240

 20000 50 330

 40000 60 340

Output Trajectory Data

An example of the data available from this trajectory algorithm is provided below. Not shown, but also
available, are the latitude and longitude data for each TCP.

Table A3. Example of the trajectory output data.

TCP type Identifier Altitude Mach CAS
Mach

Segment
Ground
Speed Track DTG TTG

Input Waypoint-01 37000 0.82 266.9 true 461.7 77.1 366.2696 3230.593

VTCP 37000 0.82 266.9 true 461.7 77.1 194.0326 1887.718

Turn-entry 37000 0.814 264.8 true 458.4 77.1 193.1277 1880.637

Input Waypoint-02 37000 0.8 259.7 true 469.7 93.3 190.8595 1863.04

Turn-exit 37000 0.8 259.7 true 488.5 109.5 188.5913 1845.996

Turn-entry 37000 0.8 259.7 true 488.5 109.5 143.1244 1510.896

Input Waypoint-03 37000 0.8 259.7 true 478.8 101 141.9039 1501.811

 48

Table A3 (continued). Example of the trajectory output data.

TCP type Identifier Altitude Mach CAS
Mach

Segment
Ground
Speed Track DTG TTG

Turn-exit 37000 0.8 259.7 true 468.8 92.6 140.6834 1492.538

Input Waypoint-04 37000 0.8 259.7 true 468.8 92.8 127.1251 1388.423

VTCP 37000 0.8 259.7 true 469 93 125.6414 1377.032

MACH CAS 30595 0.8 300 false 486 93 105.528 1225.392

Input Waypoint-05 28581 0.769 300 false 472.4 93.1 99.20118 1177.863

Turn-entry 25687 0.727 300 false 453.8 93.1 90.11265 1107.212

Input Waypoint-06 24824 0.715 300 false 422.2 69.1 87.40335 1084.944

Turn-exit 23961 0.703 300 false 396.5 45.2 84.69404 1061.117

Input Waypoint-07 19976 0.651 300 false 390.6 45.3 72.17835 946.627

Input Waypoint-08 16474 0.61 300 false 392.3 45.4 61.18281 845.5085

Input Waypoint-09 11700 0.558 300 false 397.8 45.5 46.18899 708.8793

VTCP 11648 0.558 300 false 397.7 45.5 45.74832 704.8911

Input Waypoint-10 11000 0.443 240 false 326.6 45.5 40.19145 649.6558

VTCP 11000 0.443 240 false 326.6 45.5 39.80241 645.3679

Turn-entry 10743 0.441 240 false 326.4 45.5 38.74742 633.7369

Input Waypoint-11 10385 0.438 240 false 314.3 21.8 37.28263 617.277

Turn-exit 10028 0.435 240 false 297.3 358.1 35.81784 600.0319

Input Waypoint-12 7104 0.412 240 false 296.7 1 23.83597 454.794

VTCP 6312 0.406 240 false 295.9 1 20.59182 415.378

Turn-entry 5799 0.402 240 false 294 1 18.4906 389.7323

Input Waypoint-13 5300 0.366 220 false 270 45.7 16.44533 363.6217

Turn-exit 4918 0.363 220 false 244.7 90.3 14.40006 335.0103

VTCP 4759 0.362 220 false 243.2 90.3 13.56449 322.682

Turn-entry 4500 0.333 203.3 false 223.1 90.3 12.20674 301.7185

Input Waypoint-14 4300 0.31 190 false 186 135.3 11.1612 283.3168

Turn-exit 3956 0.308 190 false 173.7 180.2 10.11566 262.3908

Input Waypoint-15 3009 0.303 190 false 172.4 180.2 7.238161 202.5426

VTCP 2794 0.302 190 false 172.2 180.2 6.583648 188.8699

Input Waypoint-16 2400 0.268 170 false 151.2 180.2 5.387746 162.2466

VTCP 2147 0.267 170 false 151.1 180.2 4.670449 145.1618

Input Waypoint-17 1495 0.197 127 false 107 180.2 2.622742 88.03505

Input Waypoint-18 660 0.194 127 false 107.5 180.2 0 0

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Contractor Report

 4. TITLE AND SUBTITLE
A Trajectory Algorithm to Support En Route and Terminal Area
Self-Spacing Concepts

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Abbott, Terence S.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
Langley Technical Monitor: Anthony M. Busquets
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 01
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This document describes an algorithm for the generation of a four dimensional aircraft trajectory. Input data for
this algorithm are similar to an augmented Standard Terminal Arrival Route (STAR) with the augmentation in
the form of altitude or speed crossing restrictions at waypoints on the route. Wind data at each waypoint are also
inputs into this algorithm. The algorithm calculates the altitude, speed, along path distance, and along path time
for each waypoint.

15. SUBJECT TERMS
Aircraft operations; Approach spacing; Aircraft systems

18. NUMBER
 OF
 PAGES

56
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

L-70750D
5e. TASK NUMBER

5f. WORK UNIT NUMBER

411931.02.07.07

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2007-214899

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
09 - 200701-

