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Abstract— This paper presents the characteristics of coplanar 
waveguide transmission lines fabricated on R-plane sapphire 
substrates as a function of temperature across the temperature 
range of 25 to 400˚ C. Effective permittivity and attenuation are 
measured on a high temperature probe station. Two techniques 
are used to obtain the transmission line characteristics, a Thru-
Reflect-Line calibration technique that yields the propagation 
coefficient and resonant stubs. To a first order fit of the data, the 
effective permittivity and the attenuation increase linearly with 
temperature. 

I. INTRODUCTION 
There is an increasing demand for microwave circuits that 

operate throughout the temperature range of 25 to 650˚C for 
wireless sensors in aircraft engine performance monitoring, oil 
drilling, and mining machinery [1], [2]. Wide bandgap 
semiconductors such as GaN and SiC are expected to operate 
through 500˚ C [3]. GaN and SiC transistors and circuits are 
often monolithically fabricated on SiC substrates. Microwave 
components on high purity 4-H SiC have been shown to have 
low loss through 500˚ C [4], [5], but most GaN and SiC 
transistors are fabricated on 6-H SiC, which has been shown 
to introduce very high loss in microwave transmission lines at 
elevated temperatures [6].  An alternative substrate for GaN 
and SiC transistors and circuits is Sapphire, and some research 
has been reported on GaN contacts formed on an r-plane 
Sapphire substrate operating 500˚ C [7]. Furthermore, 
Sapphire is a potential substrate for System in Package (SiP) 
and System on Chip (SiC) because of its low loss tangent. 

Before Sapphire may be used as a substrate for wireless 
sensors operating at high temperatures, its characteristics and 
those of transmission lines built on Sapphire must be 
understood. Prior research on the characteristics of 
transmission lines on Sapphire as a function of temperature is 
very limited. Sapphire cavity resonators were used to measure 
the change in the effective permittivity over the frequency 
range of 2 to 12 GHz and a temperature range of -100 to 
+200˚ C [8]. Dielectric resonators were used to measure the 
permittivity at 60 GHz over the temperature range of -50 to 
+80˚ C [9], and coaxial probes were used to measure the 
permittivity from 0.5 to 3 GHz at 600 and 800˚ C [10]. 

In this paper, the effective permittivity and attenuation of 
coplanar waveguide (CPW) on r-plane sapphire is measured 
by three different methods. The measurements are performed 

over the frequency range of 1 to 50 GHz and the temperature 
range of 25 to 400˚C. 

II. EXPERIMENTAL TECHNIQUE 
A 430 μm thick, r-plane Sapphire substrate is used. The 

CPW test structures are e-beam evaporated using standard 
lithography, and they are comprised of 0.025 μm of Ti and 1.4 
μm of Au. The CPW center conductor width is 130 μm and 
the slot width is 60 μm, which results in a characteristic 
impedance of 50 Ω. The measurements are performed on a 
unique RF probe station that permits measurements across the 
temperature range of 25 to 500˚ C [11] and a Vector Network 
Analyzer. A Thru-Reflect-Line (TRL) calibration was 
performed at each temperature using a thru line of 5000 μm 
and delay lines of 5844, 7950, 11000, and 20000 μm [12]. The 
TRL calibration was implemented with the software package 
Multical from NIST. The temperature of the wafer chuck was 
set to the desired temperature and held there for 10 minutes 
before measurements started to allow the Sapphire substrate 
temperature to stabilize. Measurements were made from 25 to 
400˚C in 50˚ C increments. 

 

A. Effective Permittivity and Attenuation by TRL Calibration 
Because the TRL calibration routine has more data than 

necessary to determine the error coefficients for the Vector 
Network Analyzer, this extra information can be used to 
determine the propagation constant of the thru line used in the 
calibration [13]. By using multiple delay lines that are 
averaged in a weighted manner, a very accurate determination 
of the attenuation, α, and effective permittivity, εeff, of the 
CPW is measured. Therefore, besides using the TRL 
calibration to set the reference plane for later measurements, it 
is used to measure the CPW propagation constant. 

B. Effective Permittivity by Series Stub 
A CPW short circuit terminated series stub, or spurline 

filter, and its equivalent circuit are shown in Fig. 1 [14]. 
Omitting the parasitic reactances of the structure [15], the stub 
has a transmission minimum when the stub length is an odd 
multiple of λg/4 where λg is the guided wavelength of the 
stub, or when the short circuit termination is translated to a 
series open circuit. A reflection minimum occurs when the 
stub length is an even multiple of λg/4, or when the short 
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circuit is translated to a series short circuit. Therefore, the 
effective permittivity may be determined by: 
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where n is the order of the resonance, c is the velocity of light, 
L=6492 μm (chosen to have first resonance at 5 GHz), and fn 
is the frequency of the minimum for the nth resonance. 
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Figure 1: (a) Schematic of short circuit terminated series stub (b) and 
equivalent circuit. 

C. Effective Permittivity by Shunt Stub 
A CPW open circuit terminated shunt stub and its 

equivalent circuit are shown in Fig. 2. Omitting the parasitic 
reactances of the structure, the stub has a transmission 
minimum when the stub length is an odd multiple of λg/4, or 
when the open circuit termination is translated to a shunt short 
circuit at the tee junction. Therefore, the effective permittivity 
may be determined from (1) [16]. Wirebonds are used at the 
T-junction to minimize the excitation of the slotline parasitic 
mode. Stubs of length 6455 and 19365 μm were built with the 
same strip and slot width as the CPW. 

III. RESULTS 
The measured attenuation as a function of frequency for 

each temperature by the TRL technique is shown in Fig. 3. It 
is seen that the attenuation increases as approximately as f0.5, 
which verifies that the attenuation is conductor loss dominated. 
It has been reported that the loss tangent of Sapphire is less 
than 10-4 through 80˚ C [9], so this result is expected. It is 
further seen in Fig. 3 that the attenuation remains low, less 
than 2 dB/cm at 50 GHz, even for a temperature of 400˚ C. 

 
(a) 

 
(b) 

Figure 2: (a) Schematic of open circuit terminated shunt stub and (b) 
equivalent circuit. 
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Figure 3: Measured attenuation as a function of frequency by the TRL method. 

Using the data in Fig. 3, the measured attenuation as a 
function of temperature for two frequencies is shown in Fig. 4. 
It is seen that, to a first order approximation, the attenuation 
increases linearly with temperature, which is expected for thin 
metal lines since, to a first order, metal resistivity increases 
linearly with temperature. If the metal lines were thicker than 
three skin depths and the second order model for resistivity as 
a function of temperature were used, the attenuation would 
increase at a faster rate. The 1.4 μm thick metal lines are less 
than three skin depths over most of the frequency and 
temperature range due to the increasing metal resistivity with 
temperature. For 5 and 25 GHz, the attenuation increases at a 
rate of 0.0021 (dB/cm/˚C). 

The measured S-parameters of the short circuit terminated 
series stub at 25 and 400˚ C is shown in Fig. 5. The downward 
shift in the resonant frequency as temperature increases is 
seen. It is also seen that the minimums in S11 and S21 are 
easily obtained. Using this data and the similar data for the 
shunt stubs, εeff is extracted from (1). 
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Figure 4: Measured attenuation as a function of temperature. 
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Figure 5: Measured S-parameters of short circuit terminated series stub at 25 
and 400˚ C. 

Figure 6 shows measured εeff from the TRL calibration, the 
short circuit terminated series stub, and the two open circuit 
terminated shunt stubs as a function of frequency for 25 and 
400˚ C. The average difference in εeff for all of the data is less 
than 3 percent, which indicates the accuracy of the measured 
εeff. Figure 7 shows the measured εeff as a function of 
frequency and temperature. It is seen that for all temperatures, 
εeff has the same variation with frequency, which indicates that 
there are no physical changes in the CPW lines on Sapphire 
over the tested temperature range. Finally, Fig. 8 shows the 
measured εeff as a function of temperature at 25 GHz. It is 
seen that εeff increases linearly with temperature with a slope 
of 0.0012 /˚C. Therefore passive circuit characteristics on 
Sapphire will not change by more than 8 percent over the 375˚ 
C temperature range. If the standard approximation, 
εeff=(εr+1)/2 where εr is the relative dielectric constant, is used 
for the CPW, it is found that εr of the Sapphire is 10 at 25˚ C, 
10.2 at 80˚ C, and 11 at 400˚ C. This compares favourably 
with 9.42 at 25˚ C [9], 9.46 at 80˚ C [9], and 10.5 at 600˚ C 
[10] reported in the literature. 

Frequency (GHz)
0 10 20 30 40 50

ε e
ff

5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0

TRL
Short Shunt Stub
Long Shunt Stub
Series Stub400°C

25°C

 
Figure 6: Measured effective permittivity as a function of frequency by three 
different methods. 

Frequency (GHz)
0 10 20 30 40 50

ε e
ff

5.5

5.6

5.7

5.8

5.9

6.0

6.1

6.2

6.3

6.4

400°C
350°C
300°C
250°C
200°C
150°C
100°C
50°C
25°C

 
Figure 7: Measured effective permittivity as a function of frequency and 
temperature by the TRL method. 
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Figure 8: Measure effective permittivity as a function of temperature by three 
different methods at 25 GHz. 

IV. CONCLUSIONS 
Initial experiments to determine the characteristics of CPW 

lines on r-plane Sapphire as a function of temperature and 
frequency have been reported. Three different methods to 



extract the data showed excellent agreement. The attenuation 
and effective permittivity increase linearly with temperature 
for the 375˚ C range. Both the attenuation and the effective 
permittivity increase at a slow rate. Therefore, Sapphire 
should be a good high temperature substrate for integrated 
circuits and packaging at high temperature. 
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