

High Energy 2-micron Laser Developments

Jirong Yu^a, Bo C. Trieu^a, Mulugeta Petros^b, Yingxin Bai^c, Paul J. Petzar^c, Grady J. Koch^a, Upendra N. Singh^a, Michael J Kavaya^a

aNASA Langley Research Center, MS 468, Hampton, VA 23681 bScience and Technology Corporation, Hampton, VA 23666 cSAIC, Hampton, VA 23666

> 2007 Solid State Diode Laser Technology Review

June 28, 2007

Outline

- Overview 2-micron solid state lasers
- Modeling and population inversion measurement
- Side pump oscillator
- One Joule 2-µm Laser
- Conclusion

- Tm Lasers
	- YAG, YLF, YAlO $_{\rm 3}$, YVO $_{\rm 4}$
- Ho:Tm Lasers
	- LuLF, YLF, GdLF, YAG, \rm{YVO}_4
	- Tm pumped Ho lasers (pump diodes 780nm)

 $(pump$ diodes 780-805nm)

Ho:Tm Lasers (pump diodes 780-805nm)

- Tm solid state laser pumped Ho Laser
- Tm fiber laser pumped Ho Laser
- Ho Lasers

(pump diodes 1900nm)

- YAG
- Tm Fiber Lasers

Energy transfers between Ho^{3+} and Tm^{3+} ions and Pump-probe experiment

Evolution of the probe beam transmission and the corresponding population of the Ho $^{5}I_{7}$ manifold

Probe beam transmission and the population of the Ho 5I $_7$ manifold

Ho 5I₇ population at lasing and without lasing condition

Oscillator features

- •Injection seeded
- •Cavity length $>2m$ Ring
- •Output coupler Reflectivity \sim 70%
- •Diode pump lasers: 36 bars 100W/bar conductive cooled
- •crystal doped material length 21mm
- •undoped LuLF length 15 mm
- •Laser crystal cooling : H_2O
- •
- •

Tube size: $\frac{1}{2}$ 6mm OD 5mm ID AR coated for 792nm Laser rod ends wedged 0.5° along c-axis AR coated for 2.053µm

Cavity Mode Simulation

(Ring Cavity with two curved high reflectors)

minimum spot size (y-plane) = 1166.1

Laser Output Energy

Laser beam profile

Seeding verification

June 28, 2007

Amplifier features

- •
- •
- •
- •Doped Crystal length 41mm
- •
- •Laser crystal cooling H_2O
- •
- •
- \bullet Path configuration double pass

Pump energy 7.2Joules12x6 bar arrays with 100w/bar Diode laser conductive cooled 'A'Pkg Laser crystal Ho:Tm:LuLF 0.5% Ho 6%Tm Ends diffusion bonded 15 mm undoped LuLF crystals Flow tube size 7mm OD 6mm ID AR coatedRod ends AR coated for 2.053 μ m flat

Absorbed pump power distribution

Single and Double Pass Amplification

Amplifier Performances

Objective

- • Develop a technology that enables the production of a highenergy and a high- efficiency 2 mm LIDAR transmitter capable of measuring global wind from various platforms.
- • Enhance the understanding atmospheric phenomena and improve weather prediction accuracy.
- Reduce risks associated with Doppler Lidar transmitter.
- • Identify lifetime sensitive components and initiate early testing.

Compact Laser Design Goal

- Pulse energy: >250 mJ
- •Repetition rate: 10Hz
- •Wavelength: 2.053 µm
- •
- •Pulse length: > 100 ns
- •Line width: $< 2.5 \text{ MHz}$
- •Heterodyne frequency offset: 105 MHz
- •
- •

Laser material: LuLF 0.5% Ho, 6% Tm Beam quality: $\langle 1.3 \text{ diffraction limit} \rangle$ Beam size: 6 mm at the amplifier output

Environment Requirements

- •
- •Operational Temperature 0° C -30°C
- •Operating Altitude Range Sea level to 30,000 ft
- •Vibration 2.0 g-rms
- •Coolant Temperature 5 °C and 15 °C
- • Coolant Flow
	- Laser rod .5 GPM
	- Diode Laser 2 GPM
	- Bench
- •Coolant Pressure

 Platform: ground-based (Airborne qualify-able)

> 2 GPM 50 psi at 6 GPM

Mechanical Design Guidelines

- Laser enclosure
	- compact, sealed, and dry air purged
- Optical bench
	- populated on both sides temperature controlled
- Optical mounts
	- hardened- space laser inherited Optical height 1 inch

Enclosure & Optical Bench

Optical Layout Side 1

Optical Layout Side 2

June 28, 2007

- The rod is placed between two curved mirrors.
- \bullet Angles between the folding mirrors minimized.
- In the final configuration a 4m radius of curvature mirror is selected.

Seeding Verification

Oscillator Line Width

Amplifier Architecture Considerations

June 28, 2007 Option 3 selected - Minimum loss, No optical damage, and Optical distortion corrected

Amplifier rod size selection

- 4 and 5 mm diameter rods were compared
- Probe energy and size were varied

Single pass gain for 4mm rod ~ 2.3 4mm rod with a 3mm probe performs better.

4.0 mm Diameter Laser Rod Absorption

Amplifier Thermal Lensing

- Amplifier thermal lensing is -1.1m in the x-axis and -1.8m in y-axis.
- To reduce this effect the c-axis of the amplifier rod is oriented orthogonal to the oscillator rod.
- Once the thermal lensing was measured, the parameter is used in an optical model and a cylindrical correction lens was chosen and implemented that circularized the beam.

Amplifier gain: double pass ~3

Conclusion

• **A diode-laser-side-pumped 2** µ**m Ho:Tm:LuLF laser oscillator and two amplifiers (MOPA) have been developed**

