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IN-TRAIL PROCEDURE (ITP) ALGORITHM DESIGN-~

César A. Muifioz and Radu I. Siminiceanu

ABSTRACT

The primary objective of this document is to provide a detailed description of the
In-Trail Procedure (ITP) algorithm, which is part of the Airborne Traffic Situational
Awareness — In-Trail Procedure (ATSA-ITP) application. To this end, the document
presents a high level description of the ITP Algorithm and a prototype implementation
of this algorithm in the programming language C.

’ Acronyms
ADS-B Automatic Dependent Surveillance-Broadcast
API Application Programming Interface
ATSA Airborne Traffic Situational Awareness
ITP In-Trail Procedure
FIR Flight Information Region

NATOTS | North Atlantic Organized Track System
RVSM Reduced Vertical Separation Minimum
TCAS Traffic Collision Avoidance System

1 INTRODUCTION

The In-Trail Procedure (ITP) algorithm is an airborne software module of the Airborne
Traffic Situational Awareness — In-Trail Procedure (ATSA-ITP) application in non-radar
airspace. This software module is responsible for computing the flight deck information
needed by the crew to determine whether the criteria required for an I'TP procedure are met
or not. This information is processed by a host application that decides how and when it is
displayed to the crew.

This document is organized as follows. Section 2 presents a list of definitions that are
relevant to the I'TP algorithm. Section 3 gives a high level description of the algorithm
that includes assumptions, configurable parameters, input and output data, and functional
behavior. Finally, a prototype implementation of the algorithm is described in Section 4.
Appendix A lists the complete code of the prototype implementation. Appendix B includes
auxiliary functions from Williams’ Aviation Formulary [3].

2 DEFINITIONS

The following is a list of definitions, based on the list provided in [2], that are relevant to
the description of the ITP algorithm.

e Altitude. “The vertical distance of a level, a point or an object considered as a point,
measured from mean sea level (Doc 4444 - PANS-ATM chapter 1).” [2].

*This work was supported in part by the National Aeronautics and Space Administration under the
cooperative agreement NCC-1-02043.
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Flight Level. “A surface of constant atmospheric pressure which is related to a
specific pressure datum, and is separated from other such surfaces by specific pressure
intervals (Doc 4444 - PANS-ATM chapter 1).” [2]. On a day with standard atmospheric
pressure (defined in the 1976 US Standard Atmosphere as 29.92 inches of mercury), a
flight level of 310 would correspond to an altitude of 31,000 feet mean sea level. Flight
levels are always in increments of 1,000 feet.

Flight Level Dead Band. Maximum altitude deviation beyond which an aircraft is
not considered to be in a flight level.

Ground Speed Differential. “The speed difference over the ground between the
ITP Aircraft and the Potentially Blocking Aircraft along each aircraft’s track. This
measurement would use a technique similar to the Doc 4444 - PANS-ATM longitudinal
separation procedure using DME (Doc 4444 - PANS-ATM section 5.4.2.3) to determine
the Ground Speed Differential. A Positive Ground Speed Differential signifies that the
ITP Aircraft and the Reference Aircraft are closing on each other (the separation is
being reduced).” [2].

Initial Flight Level. “The flight level of the ITP Aircraft when it determines a climb
or descent is desired and before it begins the climb or descent.” [2].

In Trail Procedure. “A procedure employed by an aircraft that desires to change its
flight level to a new flight level by climbing or descending in front or behind one, or be-
tween two Same Track, Potentially Blocking Aircraft which are at an Intervening Flight
Level and which are at less than the standard longitudinal separation minimum.” [2].

ITP Aircraft. “An aircraft that is fully qualified (from an equipment, operator,
and flight crew qualification standpoint) to conduct an ITP and whose flight crew is
considering a change of flight level.” [2]. For the ITP algorithm, the ITP Aircraft is
assumed not to be maneuvering.

ITP Maximum Range. Maximum horizontal range relative to ownship for any
aircraft to be included in the traffic list.

Maneuvering Aircraft. Nearby Aircraft whose altitude is between the ITP Aircraft’s
initial flight level and the Requested Flight Level, but off the altitude dead bands.

Nearby Aircraft. Aircraft within [TP Maximum Range that are flying in the Same
Vicinity, in the Same or Opposite Direction (only aircraft flying in a Cross Direction
are excluded).

Nearest Aircraft. At most two Potentially Blocking Aircraft that are closest to the
ITP Aircraft. For the ITP algorithm, if the two nearest aircraft are flying in the same
direction and at the same flight level, only the closest aircraft is considered to be a
nearest aircraft.

Opposite Direction. Aircraft are flying in Opposite Direction if their relative bearing
is between 135 degrees and 225 degrees.
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Positive Mach Difference. “The difference in Mach between the I'TP Aircraft and
the Reference Aircraft that would result in the aircraft closing on each other (the
separation is being reduced).” [2].

Potentially Blocking Aircraft. “Aircraft flying in the Same Direction at an Inter-
vening Flight Level whose ADS-B report data are available to the I'TP Aircraft.” [2].
For the ITP algorithm, aircraft data of a Potentially Blocking Aircraft may not be
qualified.

Qualified ADS-B. “Automatic Dependent Surveillance-Broadcast (ADS-B) that meets
the accuracy and integrity requirements determined to be required for the ITP.” [2].

Reference Aircraft. “One or two Potentially Blocking Aircraft that meet the ITP
criteria and that will be identified to ATC by the ITP Aircraft as part of the ITP
clearance request.” [2]. For the ITP algorithm, the data quality of a Reference Aircraft
must be qualified for ITP. Furthermore, a Reference Aircraft is not maneuvering and
is either the closest ahead or the closest behind Potentially Blocking Aircraft.

Requested Flight Level. “One same direction flight level above (for a climb) or
below (for a descent) the Intervening Flight Level, appropriate for the operational
region. A requested flight level may be:

a. 2,000 feet above or below the initial flight level in RVSM airspace with single-
direction tracks.

b. 4,000 feet above or below the initial flight level in non-RVSM airspace with single-
direction tracks.

c. 4,000 feet above or below the initial flight level in RVSM airspace with bi-directional
tracks with opposite direction traffic at alternating flight levels.” [2].

Same Direction. Aircraft are flying in the Same Direction if their relative bearing is
within 45 degrees.

Same Vicinity. Aircraft are located in the Same Vicinity, if their lateral offset is less
than a Maximum Lateral Offset.

Same Track. “Same direction tracks and intersecting tracks or portions thereof, the
angular difference of which is less than 45 degrees or more than 315 degrees, and
whose protection areas overlap (i.e., without lateral separation). (Doc 4444 - PANS-
ATM section 5.4.2.1.5). These tracks may be a portion of a user preferred route or
may be published routes, either fixed or flexible.” [2]. Since the information necessary
to compute the same track criterion is not available to the aircraft, the ITP algorithm
uses instead the more general concept of Same Direction, Same Vicinity.

Track. “The position on the earth’s surface of the path of an aircraft, the direction
of which path at any point is usually expressed as degrees from North (Doc 4444 -
PANS-ATM Chapter 1).” [2].



e Vertical Speed Dead Band. Maximum vertical speed deviation beyond which an

aircraft is considered to be maneuvering.

3 HIGH LEVEL DESCRIPTION

The main function of the ITP algorithm is called itpAlgorithm. This function is ex-
pected to run at a higher frequency than the traffic aircraft information is received. Hence,
itpAlgorithm assumes that the input data have been coasted and that error-checking has
been performed prior to its execution. More precisely, we assume:

3.1

e The position of each aircraft is projected to current time from the last state vector and

elapsed time. The error between the real position and the projected one is bounded
by the maximum cruise speed multiplied by the frequency of the algorithm.

Traffic input data have an indication of their quality. The value itpQualified in-
dicates that the aircraft is equipped with an ADS-B that meets the accuracy and
integrity required to perform an I'TP. In any other case, including the case of aircraft
only equipped with TCAS, this value is set to itpNonQualified. Aircraft data that is
itpQualified may be used for the computation of potentially blocking and reference
aircraft. Aircraft data that is itpNonQualified may only be used for the computation
of potentially blocking aircraft. In any case, for the purpose of the calculations, the
data is supposed to be correct.

The ADS-B reception range is much larger than the separation standards.

Run-time Configurable Parameters

The run-time configurable parameters of itpAlgorithm are depicted in Figure 1. A data
structure itpGlobalParamaters includes the following parameters:

itpGldbalParameters
( FlDeadBand ) ( VsDeadBand )
( MaxRange ) ( Rangel )
(MaxLateralOffset ) ( GSDiff1l )
( MaxTraffic ) ( Range? )
( MaxReference ) C GSDiff2 )

Figure 1: Run-time configurable parameters of ITP algorithm

e FlDeadband. Value of Flight Level Dead Band in hundreds of feet. The default value

1s 1.



e VsDeadband. Value of Vertical Speed Dead Band in feet per minute. The default value
is 300.

e MaxRange. Value of ITP Maximum Range in nautical miles. Currently, the default
value of this parameter is set to 160 (see below).

e MaxLateralOffset. Maximum lateral offset, in nautical miles, used for the definition
of Same Vicinity. Since the official Lateral Separation is defined by the current Flight
Information Region (FIR) where the aircraft is located and since this information may
not be available to the crew, further analysis is needed to determine an appropriate
value.

e Rangel and Range2. The values of the distance parameters used in determining the
ITP initiation criteria, in nautical miles. The default values are set to 15 and 20
nautical miles, respectively.

e GsDiffl and GsDiff2. The values of the ground speed differential parameters used in
determining the the I'TP initiation criteria, in knots. The default values are set to 20
and 30 knots, respectively.

The itpMaxRange configurable parameter is the maximum range, in nautical miles, beyond
which requesting an I'TP would not make sense. It is calculated using the Mach number
technique chart for a distance to fly between 1 and 600 nautical miles (in most cases the
distance between two consecutive way points should not exceed 600 nautical miles) and a
Mach difference of 0.03 (as specified for reference aircraft in [2]). In this case, the chart gives
an additional 3 minutes separation at common point to ensure at least minimum separation
at exit point. Therefore, a 15 minutes required separation at exit point (NATOTS uses
10 minutes but 15 minutes may be used in some airspaces [1]) amounts to a 18 minutes
separation at common point. Assuming a maximum cruising speed of Mach 0.87 (based on
NATOTS data — see [2]) and a 29000 feet altitude (which is the lowest NATOTS altitude [1]),
the maximum cruising speed is 514.93 knots (no wind is assumed). This yields a maximum
separation for an ITP of 514.93 x 18/60 ~ 154.48 nautical miles, which is rounded up to 160
nautical miles.

There are also two non-run-time configurable parameters:

e ITP MAX TRAFFIC. Maximum size of traffic aircraft list. This limit is imposed by the
design of the avionics system. Currently, this parameter is set to 159, as actual systems
allow storage of data for up to 128 traffic aircraft equipped with ADS-B and up to 31
traffic aircraft equipped with TCAS only (aircraft that have both ADS-B and TCAS
count only as ADS-B.)

e ITP MAX REFERENCE. Maximum number of aircraft that may meet the definition of
Reference Aircraft. Currently, this parameter is set to 2, corresponding to the nearest
potentially blocking aircraft in front and behind ownship, if either of those exist. This
setting corresponds to the case of a single Intervening Flight Level. The subsequent use
of this algorithm for multiple Intervening Flight Levels would require the adjustment
of this parameter according to the corresponding concept of operations.
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Figure 2: Data flow chart of ITP algorithm

3.2 Data Flow
Figure 2 presents a data flow chart of itpAlgorithm.

3.2.1 Inputs

The function itpAlgorithm gets as inputs a structure itpInputs consisting of:

e ownship. Data of ownship aircraft, of type itpAircraft. This aircraft should meet
the definition of ITP Aircraft.

e traffic. A list of coasted and error-checked traffic aircraft data. The maximum length
of this list is given by the non-configurable parameter ITP_MAX TRAFFIC. The elements
of this list are also of type itpAircraft.

e requested_fl. The requested cruise flight level (in hundreds of feet).

The itpAircraft data structure consists of

e a unique flight identifier (id), of type itpIdentifier (strings of up to 255 characters),
e latitude (lat), in degrees, in the interval [—90°,90°],

e [ongitude (lon), in degrees, in the interval [—180°, 180°) — excluding 180°; by convention
East longitudes are positive,



e altitude (alt) at standard barometric pressure, in hundreds of feet,
e ground speed (gs), in knots,
e vertical speed (vs), in feet per minute,

e ground track (trk), in degrees from true north, in the interval [0, 360) — excluding 360°,
and

e data quality flag (qlty), which is either itpQualified or itpNonQualified.

3.2.2 Outputs

The function itpAlgorithm outputs a data structure itpOutput that consists of a number
of lists of itpTraffic elements:

e traffic: a list of all aircraft that are within the itpMaxRange.

e nearby: a list of indices to traffic of all aircraft that meet the definition of Nearby

Aireraft.

e pblocking: a list of indices to traffic of all aircraft that meet the definition of
Potentially Blocking Aircraft. The maximum length of this list is given by the non-
configurable parameter ITP_MAX_TRAFFIC.

e nearest: a list of indices to traffic of all aircraft that meet the definition of Nearest
Aircraft.

e reference: a list of indices to traffic of aircraft that meet the definition of Reference
Aircraft. The maximum length of this list is also ITP_MAX_REFERENCE.

e maneuver: the type of In-Trail Procedure that is available, one of : {itpNone,
itpFollowingClimb, itpFollowingDescent, itpLeadingClimb, itpLeadingDescent,
itpCombinedLeadingFollowingClimb, itpCombinedLeadingFollowingDescent}.

The data structure itpTraffic consists of the following fields, which are computed by
itpAlgorithm:

e /TP range (range), in nautical miles: the relative distance to ITP aircraft with respect
to a common point. A negative value means that the aircraft is behind the I'TP aircraft.
Conversely, a positive value means that the aircraft is ahead of the I'TP aircraft.

e ground speed differential (gsdiff), in knots: the relative ground speed differential to
ITP aircraft. A negative value means that the aircraft is slower than the I'TP aircraft.
Conversely, a positive value means that the aircraft is faster than the ITP aircraft.

e lateral offset (offset): traffic relative lateral offset to ownship, in nautical miles.



e relative position (relpos): traffic relative position to ownship, from the enumerated
type itpRelPos: {itpOwnBehindTraffic, itpOwnAheadTraffic, itpNoRelPos},
where itpOwnBehindTraffic is assigned to traffic leading ownship, itpOwnAheadTraffic
to traffic following ownship, and itpNoRelPos to traffic that is flying in a cross direc-
tion, i.e., traffic that is neither same direction nor opposite direction.

e direction of flight (dir), from the enumerated type itpDirection: {itpSameDirection,
itpOppositeDirection, itpCrossDirection}.

e traffic type (actype), a numeric value that encodes the role of the traffic aircraft in
the ITP and, when necessary, an ITP error code corresponding to this aircraft. This
numerical code is computed by binary addition on the following constants (in hexadec-
imal):

— ITP_TRAFFIC 0x0

— ITP_NEARBY 0x1

— ITP_POTENTIALLY BLOCKING 0x2

— ITP_NEAREST 0x4

— ITP_REFERENCE 0x8

— ITP_BLOCKING 0x10

— ITP_MANEUVERING 0x20

— ITP_TOO_FAST 0x40

— ITP_TOO_CLOSE 0x80

— ITP_UNQUALIFIED_DATA 0x100
For example, a nearby aircraft that is maneuvering has the associated actype value of
0x1 + 0x20 = 0x21 hexadecimal (that is 33 decimal value).

3.3 Control Flow

As illustrated in Figure 3, the function itpAlgorithm calls, in sequence, the following func-
tions.

e itpGetNearby. This function computes the list nearby. If the list is empty the exe-
cution of itpAlgorithm ends.

e itpGetPotentially Blocking. This function computes the list potentially _blocking.
If the list is empty, the execution of itpAlgorithm ends.

e itpGetReference. This function computes the list reference.

e itpGetManeuver. Given the list reference, this function computes the I'TP maneuver
that is available to the ITP aircraft (or itpNone).
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Figure 3: Control flow chart of ITP algorithm

4 PROTOTYPE IMPLEMENTATION

A prototype implementation of the ITP Algorithm, written in the programming language
C, is electronically available at http://research.nianet.org/ munoz/ITP_Module. The
implementation consists of the following files:

e ITP Defs.h, included in Appendix A.1, contains constant and type declarations.

e ITP Parameters.c, included in Appendix A.2, contains the definition of configurable
parameters and utility functions to read and modify their values.

e ITP Algorithm.h, included in Appendix A.3, contains the program interface.

e ITP Algorithm.c, included in Appendix A.4, contains the definition of the main func-
tions.

e ITP_Aviation.h and ITP_Aviation.c, included in Appendix B, contain the imple-
mentation of auxiliary functions from Williams’ Aviation Formulary [3].

In the implementation, we use the following naming convention:
e Constants are written in uppercase letters and start with the prefix ITP_.
e Global variables, types, and function names start with the prefix itp.

The actual In-Trail Procedure is implemented by the function itpAlgorithm, which has
the following interface:



itpAlgorithm(itpInputs, itpOutputsx);

The function itpAlgorithm has two parameters: an input parameter of type itpInputs,
which is passed by value, and an output parameter of type itpOutputs, which is passed by
reference. The exact definition of these types is found in the file ITP Defs.h.

The configurable parameters of the algorithm are defined as global variables in the file
ITP Parameters.c. These variables are not intended to be directly read or modified by the
user. For that reason, the following functions are provided in the interface:

itpAltitude itpGetGlobalFlDeadband() ;

itpGetGlobalVsDeadband () ;
itpGetGlobalMaxRange () ;
itpGetGlobalMaxLateralOffset();
itpGetGlobalRangel () ;
itpGetGlobalGsDiff1();
itpGetGlobalRange2();
itpGetGlobalGsDiff2();

itpSetGlobalFlDeadband (itpAltitude) ;
itpSetGlobalVsDeadband ( );
itpSetGlobalMaxRange ( )
itpSetGlobalMaxLateralOffset ( )
itpSetGlobalRangel ( );
itpSetGlobalGsDiff1( );
itpSetGlobalRange2( );
itpSetGlobalGsDiff2( );

itpResetGlobalParameters() ;

As expected, functions with the prefix itpGetGlobal read the variables and functions with
the prefix itpSetGlobal write them. The function itpResetGlobalParameters resets all
the configurable global parameters to their default value.

Finally, the following functions are provided to check and decode the information returned
by the I'TP algorithm:

itpBool
itpBool
itpBool
itpBool
itpBool
itpBool
itpBool
itpBool
itpBool
itpBool

itpIsClosing(itpTraffic trf);
itpIsNearby(itpTraffic trf);
itpIsPotentiallyBlocking(itpTraffic trf);
itpIsNearest (itpTraffic trf);
itpIsReference(itpTraffic trf);
itpIsBlocking(itpTraffic trf);
itpIsManeuvering(itpTraffic trf);
itpIsUnqualifiedData(itpTraffic trf);
itpIsTooClose(itpTraffic trf);
itpIsTooFast (itpTraffic trf);
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itpBlckCode2String(itpIdentifier s,itpTraffic trf);
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A IMPLEMENTATION OF THE ITP ALGORITHM
A.1 Constant and Type Declaration

ITP_DEFS

ITP_DEFS

ITP_STR_LEN 265

ITP_VER "ITP_Module-6.d (10/11/06)"
ITP_INVALID_VALUE -999999

ITP_MAX_TRAFFIC 159

ITP_MAX_REFERENCE 2

ITP_FL_DEADBAND 1
ITP_VS_DEADBAND 300.0
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ITP_MAX_RANGE 160.0
ITP_MAX_LATERAL_OFFSET 15.0

ITP_RANGE_1 15.0
ITP_GS_DIFF_1 20.0
ITP_RANGE_2 20.0
ITP_GS_DIFF_2 30.0

{itpQualified, itpNonQualified} itpDataQuality;

{itpNone,

itpFollowingClimb, itpFollowingDescent,
itpLeadingClimb, itpLeadingDescent,
itpCombinedLeadingFollowingClimb,
itpCombinedLeadingFollowingDescent
} itpManeuver;

{itpOwnBehindTraffic, itpOwnAheadTraffic,
itpNoRelPos} itpRelPos;

{itpSameDirection, itpOppositeDirection,
itpCrossDirection} itpDirection;

itpAcType;

itpIdentifier [ITP_STR_LEN];
itpAltitude;
itpBool;

ITP_FALSE O
ITP_TRUE 1

12




typedef struct {

itpIldentifier id; /* flight identifier */
double lat; /* latitude, in degrees: -90 < lat < 90 x/
double lon; /* longitude, in degrees: -180 < lon < 180 */
/* (west is negative) */
itpAltitude alt; /* altitude, in 100s ft: alt > 0 */
double gs; /* ground speed, in knots: gs > 0 */
double vs; /* vertical speed, in ft/min */
double trk; /* ground true track, in degrees 0 < trk < 360 */

itpDataQuality qlty; /* data quality */
} itpAircraft;

typedef struct {
itpAircraft ac[ITP_MAX_TRAFFIC];
int len;

} itpAircraftlist;

typedef struct {
itpAircraft ownship;
itpAircraftlist traffic;
itpAltitude requested_f1;
} itpInputs;

typedef struct {

itpIldentifier id;

double range; /* ITP range to ownship */

double gsdiff; /% Ground speed differential */

double offset; /* Lateral offset */

itpRelPos relpos; /* Traffic relative position to ownship */

itpDirection dir; /* Direction: same, opposite, cross */

itpAcType actype; /* Type of aircraft. This is a bitmask that */
/* must be decoded through the functions: */
/* itpIsNearby,itpIsPotentiallyBlocking, */
/* itpIsNearest,itpIsReference */

13




} itpTraffic;

{
itpTraffic trf[ITP_MAX_TRAFFIC];
len;
} itpTrafficlist;

itpTrafficldx;

{
itpTrafficIdx nrbyx [ITP_MAX_TRAFFIC];
len;
} itpNearbyList;

{
itpTrafficIdx blckx[ITP_MAX_TRAFFIC];
len;
} itpBlockinglist;

{
itpTrafficIdx nrstx[ITP_MAX_REFERENCE] ;
len;
} itpNearestlist;

{
itpTrafficIdx refx[ITP_MAX_REFERENCE] ;
len;
} itpReferencelist;

{
itpTrafficlist  traffic;
itpNearbyList nearby;
itpBlockinglList pblocking;
itpNearestList  nearest;
itpReferencelist reference;
itpManeuver maneuver;

} itpOutputs;

14




itpEmptyOutputs (itpOutputs *outputs);

itpResetGlobalParameters() ;

itpAltitude itpGetGlobalFlDeadband();
itpGetGlobalVsDeadband () ;
itpGetGlobalMaxRange () ;
itpGetGlobalMaxLateralOffset();
itpGetGlobalRangel () ;
itpGetGlobalGsDiff1();
itpGetGlobalRange2();
itpGetGlobalGsDiff2();

itpSetGlobalFlDeadband (itpAltitude) ;
itpSetGlobalVsDeadband ( )
itpSetGlobalMaxRange ( )s
itpSetGlobalMaxLateralOffset ( )
itpSetGlobalRange1 ( );
itpSetGlobalGsDiff1( );
itpSetGlobalRange?2 ( );
itpSetGlobalGsDiff2( );

A.2 Global Parameters
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"ITP_Defs.h"

{
itpAltitude FlDeadband;
VsDeadband;
MaxRange;
MaxLateralOffset;

Rangel;
GsDiffl;
Range2;
GsDiff2;

} itpGlobalParameters = {
ITP_FL_DEADBAND,
ITP_VS_DEADBAND,
ITP_MAX_RANGE,
ITP_MAX_LATERAL_OFFSET,
ITP_RANGE_1,
ITP_GS_DIFF_1,
ITP_RANGE_2,
ITP_GS_DIFF_2
s

itpResetGlobalParameters() {
itpGlobalParameters.FlDeadband
itpGlobalParameters.VsDeadband ITP_VS_DEADBAND;
itpGlobalParameters.MaxRange ITP_MAX_RANGE;
itpGlobalParameters.MaxLateralOffset = ITP_MAX_LATERAL_OFFSET;
itpGlobalParameters.Rangel = ITP_RANGE_1;
itpGlobalParameters.GsDiff1l ITP_GS_DIFF_1;
itpGlobalParameters.Range2 ITP_RANGE_2;
itpGlobalParameters.GsDiff2 ITP_GS_DIFF_2;

ITP_FL_DEADBAND;
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itpSetGlobalFlDeadband (itpAltitude fdb) {
itpGlobalParameters.FlDeadband = fdb;

i
itpSetGlobalVsDeadband ( vdb) {
itpGlobalParameters.VsDeadband = vdb;
3
itpSetGlobalMaxRange ( maxr) {
itpGlobalParameters.MaxRange = maxr;
i
itpSetGlobalMaxLateralOffset ( latoff) {
itpGlobalParameters.MaxLateralOffset = latoff;
+
itpSetGlobalRangel ( rangel) {
itpGlobalParameters.Rangel = rangel;
i
itpSetGlobalGsDiff1( gs1) {
itpGlobalParameters.GsDiffl = gsi;
+
itpSetGlobalRange?2( range2) {
itpGlobalParameters.Range2 = range2;
i
itpSetGlobalGsDiff2( gs2) {
itpGlobalParameters.GsDiff2 = gs2;
i

itpAltitude itpGetGlobalFlDeadband() {
itpGlobalParameters.FlDeadband;
i

itpGetGlobalVsDeadband () {
itpGlobalParameters.VsDeadband;
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itpGetGlobalMaxRange () {
itpGlobalParameters.MaxRange;

+
itpGetGlobalMaxLateralOffset () {
itpGlobalParameters.MaxLateralOffset;
+
itpGetGlobalRangel () {
itpGlobalParameters.Rangel;
+
itpGetGlobalGsDiff1() {
itpGlobalParameters.GsDiff1;
+
itpGetGlobalRange2() {
itpGlobalParameters.Range2;
+
itpGetGlobalGsDiff2() {
itpGlobalParameters.GsDiff2;
+

A.3 Program Interface

ITP_ALG
ITP_ALG

"ITP_Defs.h"

itpBool itpIsClosing(itpTraffic trf);
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/* Blocking type recognizers */

itpBool itpIsNearby(itpTraffic trf);

itpBool itpIsPotentiallyBlocking(itpTraffic trf);
itpBool itpIsNearest(itpTraffic trf);

itpBool itpIsReference(itpTraffic trf);

itpBool itpIsBlocking(itpTraffic trf);

itpBool itpIsManeuvering(itpTraffic trf);

itpBool itpIsUnqualifiedData(itpTraffic trf);
itpBool itpIsTooClose(itpTraffic trf);

itpBool itpIsTooFast(itpTraffic trf);

/* Decodes actype */
itpBlckCode2String(itpIldentifier s,itpTraffic trf);

/* ITP main function */
itpAlgorithm(itpInputs, itpOutputsx*);

ITP algorithm main file
Author: Cesar A. Munoz (NIA)
Radu I. Siminiceanu (NIA)

File : ITP_Algorithm.c
Release: ITP_Module-6.d (10/11/06)

"ITP_Aviation.h"

"ITP_Algorithm.h"

<string.h>

/*::::::::::::::::::::::::::::::::::::::::::::::::::::::
Internal constants: Type of traffic aircraft

ITP_TRAFFIC 0x0
ITP_NEARBY 0x1
ITP_POTENTIALLY_BLOCKING 0x2
ITP_NEAREST 0x4
ITP_REFERENCE 0x8
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ITP_BLOCKING 0x10

ITP_MANEUVERING 0x20
ITP_TOO_FAST 0x40
ITP_TOO_CLOSE 0x80

ITP_UNQUALIFIED_DATA 0x100

itpGeoRange (itpAircraft acl,itpAircraft ac2) {
1t1, 1n1l, 1t2, 1n2;

1tl1 = acl.lat*ITP_RAD_PER_DEG;
Inl = acl.lon*ITP_RAD_PER_DEG;
1t2 = ac2.lat*ITP_RAD_PER_DEG;
In2 = ac2.lon*ITP_RAD_PER_DEG;
ITP_ABS(itpDistance(1lt1,1n1,1t2,1n2))*ITP_NMI_PER_RAD;
}
itpDirection itpGetDirection( trki, trk2, upto) {

delta;
trkl = itpTo360(trkl);
trk2 = itpTo360(trk2);
delta= ITP_MAX(trkil,trk2) - ITP_MIN(trkil,trk2);
(delta < upto || delta > 360-upto)
itpSameDirection;
(180-upto < delta && delta < 180+upto)
itpOppositeDirection;
itpCrossDirection;

itpGetTrafficData(itpInputs inputs, itpOutputs *outputs, i) {
itpAircraft own,ac;
lta, 1lna, lto, lno, crsa, crso, 1lti, 1lni, trkoa;
dai,doi;
eps;
inter;

own = inputs.ownship;

ac = inputs.traffic.ac[i];

lto = own.lat*ITP_RAD_PER_DEG;
Ino = own.lon*xITP_RAD_PER_DEG;
crso = own.trk*xITP_RAD_PER_DEG;
lta = ac.lat*ITP_RAD_PER_DEG;
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Ina = ac.lon*ITP_RAD_PER_DEG;
crsa = ac.trk*xITP_RAD_PER_DEG;
inter = itpIntersection(lta,lna,crsa,lto,lno,crso,&lti,&lni);

(inter < 0) {

trkoa = itpCourse(lto,lno,lta,lna)*ITP_DEG_PER_RAD;

eps = (itpGetDirection(own.trk,trkoa,90) == itpSameDirection? 1: -1);

outputs->traffic.trf[i] .range =
eps*ITP_ABS(itpDistance(lta,lna,lto,1lno))*ITP_NMI_PER_RAD;

outputs->traffic.trf[i] .offset = 0;

} {

doi = itpDistance(lto,lno,lti,1lni);

dai = itpDistance(lta,lna,lti,lni);

outputs->traffic.trf[i] .offset =
itpCrossTrackError(lto,1lno,lta,lna,lti,1lni)*ITP_NMI_PER_RAD;

(inter == 1 || inter == 3)
dai *= -1;
(inter == 2 || inter == 3)
doi *= -1;
(outputs->traffic.trf[i].dir == itpSameDirection)

outputs->traffic.trf[i] .range = (doi - dai)*ITP_NMI_PER_RAD;

outputs->traffic.trf[i] .range = (doi + dai)*ITP_NMI_PER_RAD;
}
outputs->traffic.trf[i] .relpos = outputs->traffic.trf[i].range < 0 ?
itpOwnAheadTraffic : itpOwnBehindTraffic;
(outputs->traffic.trf[i].dir == itpSameDirection)
outputs->traffic.trf[i].gsdiff = ITP_SIGN(outputs->traffic.trf[i].range)*
(inputs.ownship.gs - inputs.traffic.acli].gs);

outputs->traffic.trf[i] .gsdiff = ITP_SIGN(outputs->traffic.trf[i].range)*
(inputs.ownship.gs + inputs.traffic.ac[i].gs);

itpAltitude itpGetFlightLevel(itpAircraft ac) {
err = ac.alt % 10;
fl = ac.alt / 10;
(err < itpGetGlobalFlDeadband())
10*£1;
(err > 10-itpGetGlobalFlDeadband())
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10%(f1+1);
ITP_INVALID_VALUE;

itpBool itpIsManeuveringAircraft(itpAircraft ac) {

itpGetFlightLevel(ac) == ITP_INVALID_VALUE ||
ITP_ABS(ac.vs) > itpGetGlobalVsDeadband();

itpBool itpIsAtInterveningFlightLevels(itpInputs inputs, itpAircraft ac) {
eps;
itpAltitude flown;

flown = itpGetFlightLevel (inputs.ownship);
eps = ITP_SIGN(inputs.requested_fl - flown);

flown !'= ITP_INVALID_VALUE &&
eps*flown < eps*ac.alt &&
eps*ac.alt < eps*inputs.requested_fl;

itpGetNearby(itpInputs inputs,
itpOutputs *outputs) {
i

outputs->traffic.len = O;
outputs->nearby.len = O;
(i=0; i < inputs.traffic.len; i++) {
outputs->traffic.trf[i] .actype = ITP_TRAFFIC;
strcpy(outputs->traffic.trf[i].id,inputs.traffic.ac[i].id);
outputs->traffic.trf[i] .dir = itpGetDirection(inputs.traffic.ac[i].trk,
inputs.ownship.trk,45);
(outputs->traffic.trf[i] .dir == itpSameDirection ||
outputs->traffic.trf[i].dir == itpOppositeDirection) {
itpGetTrafficData(inputs,outputs,i);

(itpGeoRange (inputs.traffic.ac[i],inputs.ownship) <=

itpGetGlobalMaxRange() &&

outputs->traffic.trf[i] .offset < itpGetGlobalMaxLateralOffset()) {
outputs->traffic.trf[i] .actype |= ITP_NEARBY;
outputs->nearby.nrbyx [outputs->nearby.len] = i;
outputs->nearby.lent++;

3
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+ {

outputs->traffic.trf[i] .offset = ITP_INVALID_VALUE;
outputs->traffic.trf[i] .range = ITP_INVALID_VALUE;

outputs—->traffic.trf[i].gsdiff
outputs->traffic.trf[i] .relpos

b

outputs->traffic.lent++;

b

itpNoRelPos;

¥

itpBool itpIsClosing(itpTraffic trf) {
trf.gsdiff > O;
+

itpAcType itpGetBlockingType(itpInputs inputs,
itpTrafficlist traffic,
itpTrafficIdx idx) {
itpAircraft ac;
itpTraffic trf;
itpAcType actype;

actype = 0x0;
ac = inputs.traffic.ac[idx];
trf = traffic.trf[idx];

(itpIsManeuveringAircraft(ac))
actype |= ITP_MANEUVERING;
(ac.qlty != itpQualified)
actype |= ITP_UNQUALIFIED_DATA;
(ITP_ABS(trf.range) < itpGetGlobalRangel())
actype |= ITP_TOO_CLOSE;
(itpIsClosing(trf)) {
(trf.gsdiff > itpGetGlobalGsDiff2() ||
ITP_ABS(trf.range) > itpGetGlobalRangel() &&
ITP_ABS(trf.range) < itpGetGlobalRange2() &&
trf.gsdiff > itpGetGlobalGsDiff1())
actype |= ITP_TOO_FAST;
(trf.gsdiff > itpGetGlobalGsDiffl() &&
trf.gsdiff < itpGetGlobalGsDiff2() &&
ITP_ABS(trf.range) < itpGetGlobalRange2())
actype |= ITP_TOO_CLOSE;

(lactype)
actype = ITP_BLOCKING;
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ITP_POTENTIALLY_BLOCKING | actype ;

itpBlckCode2String(itpIdentifier s,itpTraffic trf) {
strcpy(s,"");

(itpIsBlocking(trf))
strcat(s,"B");

(itpIsManeuvering(trf))
strcat(s,"M");

(itpIsUnqualifiedData(trf))
strcat(s,"U");

(itpIsTooClose(trf))
strcat(s,"C");

(itpIsTooFast (trf))
strcat(s,"F");

itpBool itpIsNearby(itpTraffic trf) {
trf.actype & ITP_NEARBY;
+

itpBool itpIsPotentiallyBlocking(itpTraffic trf) {
trf.actype & ITP_POTENTIALLY_BLOCKING;
}

itpBool itpIsNearest(itpTraffic trf) {
trf.actype & ITP_NEAREST;
+

itpBool itpIsReference(itpTraffic trf) {
trf.actype & ITP_REFERENCE;
}

itpBool itpIsBlocking(itpTraffic trf) {
trf.actype & ITP_BLOCKING;
}

itpBool itpIsManeuvering(itpTraffic trf) {
trf.actype & ITP_MANEUVERING;
+

itpBool itpIsTooClose(itpTraffic trf) {
trf.actype & ITP_TOO_CLOSE;
}
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itpBool itpIsTooFast(itpTraffic trf) {
trf.actype & ITP_TOO_FAST;
}

itpBool itpIsUnqualifiedData(itpTraffic trf) {
trf.actype & ITP_UNQUALIFIED_DATA;
}

itpGetPotentiallyBlocking(itpInputs inputs,
itpOutputs *outputs) {
i,idx;

outputs->pblocking.len = 0;
(i=0; i < outputs->nearby.len; i++) {
idx = outputs->nearby.nrbyx[i];
(outputs->traffic.trf[idx] .dir == itpSameDirection &&
itpIsAtInterveningFlightLevels(inputs,inputs.traffic.acl[idx])) {
outputs->traffic.trf[idx].actype |=

itpGetBlockingType (inputs,outputs->traffic,idx);
outputs—->pblocking.blckx [outputs->pblocking.len] = idx;
outputs->pblocking.len++;

}

}
}

itpGetNearest (itpInputs inputs,
itpOutputs *outputs) {

i,j,k,idx, jdx;
outputs->nearest.len = 0;

(i=0; i < outputs->pblocking.len; i++) {
idx = outputs->pblocking.blckx[i];
(j=0; j < outputs->nearest.len; j++) {
jdx = outputs->nearest.nrstx[j];
(ITP_ABS(outputs->traffic.trf[idx] .range) <
ITP_ABS(outputs->traffic.trf[jdx].range))

I

(j < ITP_MAX_REFERENCE) {
(k=ITP_MIN(outputs->nearest.len,ITP_MAX_REFERENCE-1); k > j; k--)
outputs—->nearest.nrstx[k] = outputs->nearest.nrstx[k-1];
outputs->nearest.nrstx[j]=idx;
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(outputs->nearest.len < ITP_MAX_REFERENCE)
outputs->nearest.lent++;

idx=outputs->nearest.nrstx[0];
(i=0, j=1,idx=outputs->nearest.nrstx[0]; j < outputs->nearest.len; j++)
jdx = outputs->nearest.nrstx[j];

(itpGetFlightLevel (inputs.traffic.ac[idx]) !=
itpGetFlightLevel (inputs.traffic.ac[jdx]) ||
ITP_SIGN(outputs->traffic.trf[idx] .range) !=
ITP_SIGN(outputs->traffic.trf[jdx] .range)) {

outputs->traffic.trf[idx].actype |= ITP_NEAREST;

idx = jdx;

i++;
}

}

(i < outputs->nearest.len) {
outputs->traffic.trf[idx].actype |= ITP_NEAREST;
i++;

}
outputs->nearest.len = 1i;

}

itpGetReference(itpInputs inputs,
itpOutputs *outputs) {

i,idx;
itpGetNearest (inputs,outputs) ;
outputs->reference.len = 0;
(i=0; i < outputs->nearest.len; i++) {
idx = outputs->nearest.nrstx[i];
('itpIsBlocking(outputs->traffic.trf[idx])) {
outputs->reference.len = 0;
} {
outputs->traffic.trf[idx].actype |= ITP_REFERENCE;
outputs->reference.refx[outputs->reference.len] = idx;
outputs->reference.len++;
+
}
+

itpGetManeuver (itpInputs inputs,
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itpOutputs *outputs) {
itpBool climb,lead,follow;
i;

outputs->maneuver = itpNone;

lead = 0;

follow = 0;

climb = (inputs.requested_fl > inputs.ownship.alt);

(i=0; i<outputs->reference.len; i++) {
(outputs->traffic.trf[outputs->reference.refx[i]].relpos ==
itpOwnAheadTraffic)

lead = 1;

follow = 1;

(lead && follow)
outputs->maneuver = (climb? itpCombinedLeadingFollowingClimb :
itpCombinedLeadingFollowingDescent) ;
(lead)
outputs->maneuver

(climb? itpLeadingClimb : itpLeadingDescent);

outputs->maneuver (climb? itpFollowingClimb : itpFollowingDescent);

itpSetOutputs (itpOutputs *outputs) {
outputs->traffic.len = O;
outputs->nearby.len = 0;
outputs->pblocking.len
outputs->nearest.len = O;
outputs->reference.len = 0;
outputs->maneuver = itpNone;

0;

o

itpAlgorithm(itpInputs inputs, itpOutputs *outputs) {
itpSetOutputs (outputs) ;
itpGetNearby (inputs,outputs) ;
(litpIsManeuveringAircraft(inputs.ownship) &&
outputs->nearby.len > 0) {
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itpGetPotentiallyBlocking(inputs,outputs);
(outputs->pblocking.len > 0) {
itpGetReference (inputs,outputs) ;
(outputs->reference.len > 0)
itpGetManeuver (inputs,outputs) ;

B AVIATION FORMULARY

Except for the function ITP_intersection, which was developed by R. Siminiceanu, all the
other functions were taken from William’s Aviation Formulary [3].

B.1 Program Interface

ITP_AVI
ITP_AVI

<math.h>

ITP_MAX(a,b) ((a) > (b) 7 (a) : (b))
ITP_MIN(a,b) ((a) < (b) 7 (a) : (b))
ITP_ABS(x) ((x) < 0 7 -(x) : x)
ITP_SQ(x) (x*x)

ITP_SIGN(x) ((x) <0 7 -1 : 1)

ITP_PI 3.14159265358979323846
ITP_RAD_PER_DEG (ITP_PI/180.0)
ITP_DEG_PER_RAD (180.0/ITP_PI)
ITP_FT_PER_NMI  6076.11548556431
ITP_EARTH_RADIUS_FT 20898908.0
ITP_NMI_PER_RAD (ITP_EARTH_RADIUS_FT/ITP_FT_PER_NMI)
ITP_ALMOST_ZERO 0.00001

itpIsAlmostZero( x) ;
itpSqrtSafe( x);
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itpAsinSafe( Xx);

itpAcosSafe( X);
itpAtanyxSafe( vy, X);
itpTo2pi( X);
itpTo360( x);
itpDistance( lati, loni, lat2,
itpCourse ( lati, loni, lat?2,
itpIntersection( latil, lonli, crsi3,
lat2, lon2, crs23,
xlati, *loni) ;
itpCrossTrackError( latl, loni,
lat2, lon2,
lat3, lon3);
B.2 Code

These formulas are taken from Aviation Formulary v1.42:
http://williams.best.vwh.net

- all units are in radians

- modified to convention "east is positive"

Author: Cesar A. Munoz (NIA)
Radu I. Siminiceanu (NIA)

File : ITP_Aviation.c

Release: ITP_Module-6.d (10/11/06)
<stdio.h>
<stdlib.h>

"ITP_Aviation.h"

itpIsAlmostZero( x) {
ITP_ABS(x) < ITP_ALMOST_ZERO;
}
itpSqrtSafe( x) {
sqrt (ITP_MAX(x,0.0));
}

itpAsinSafe( x) {
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asin(ITP_MAX(-1.0,ITP_MIN(x,1.0)));

itpAcosSafe( x) {
acos (ITP_MAX(-1.0,ITP_MIN(x,1.0)));

itpAtanyxSafe( vy, x) o
(itpIsAlmostZero(x) && itpIsAlmostZero(y))
0.0;
atan2(y,x);
itpTo2pi ( x) {

mod = x - 2*xITP_PIx*x(( ) (x/(2xITP_PI)))
(mod < 0) mod += 2*ITP_PI;
mod;

itpTo360( x) {
mod = x - 360.0%((int) (x/360.0));
(mod < 0) mod += 360.0;
mod;

itpDistance( lati, loni,

)

lat2,
2xitpAsinSafe (itpSqrtSafe(ITP_SQ(sin((latl-1lat2)/2)) +

lon2) {

cos(latl)*cos(lat2)*sin((lon2-1lonl)/2)*
sin((lon2-1lonl1)/2)));

itpCourse ( latl, loni,
(itpIsAlmostZero(cos(latl)))
(lat1>0 ? ITP_PI : 0.0);

itpTo2pi(itpAtanyxSafe(sin(lon2-lonl)*cos(lat2),

cos(latl)*sin(lat2)-

lat2,

lon2) {

sin(latl)*cos(lat2)*cos(lon2-1lonl)));
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itpIntersection( latil, lonli, crsi3,
lat2, lon2, crs23,
xilat, *ilon) {
crsl2, crs21, angl, ang2, ang3, dstl2, dstl3, lat3, lon3;
modcrs13, modcrs23, delta;
flippedl, flipped2;

crs13 = itpTo2pi(crsi3);

crs23 = itpTo2pi(crs23);

dst12 = itpDistance(latl, lonl, lat2, lon2);
crs12 = itpCourse(latl, lonl, lat2, lon2);
crs21 = itpCourse(lat2, lon2, latl, lonl);

angl=crs13-crsi2;
ang2=crs2l-crs23;

(ITP_ABS(sin(angl)) < 0.1 &&
ITP_ABS(sin(ang2)) < 0.1)

_1;
flippedl = O;
flipped2 = O;
modcrsl3 = crsi3;
modcrs23 = crs23;

(0<=crs13 && crs13<=ITP_PI) {
(crs13 < crs21 && crs21 < crsi13+ITP_PI) {
(crs23 > crsi13+ITP_PI || crs23 < crsi13) {
modcrs23 = itpTo2pi(crs23 + ITP_PI);
flipped2 = 1;
}
flippedl = (crs21 < modcrs23 && modcrs23 < crsi13+ITP_PI);
}
{
(crs23 > crs13 && crs23 < crsi13+ITP_PI) {
modcrs23 = itpTo2pi(crs23 + ITP_PI);
flipped2 = 1;
}
(itpIsAlmostZero(ITP_ABS(crs21))) crs21 = crs21 + 2xITP_PI;
flippedl = ((crs21 > crsi13+ITP_PI &&
crs13+ITP_PI < modcrs23 && modcrs23 < crs21) ||
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(crs21 < crsi13 && (modcrs23 > crsl13+ITP_PI ||
modcrs23 < crs21)));

{
(crs21 > crsi13 || crs21 < crs13-ITP_PI) {
(crs13-ITP_PI < crs23 && crs23 < crsi13) {
modcrs23 = itpTo2pi(crs23 + ITP_PI);
flipped2 = 1;
+
flippedl = ((crs21 > crsi13 && (modcrs23 > crs21 ||
modcrs23 < crsi3-ITP_PI)) ||
(crs21 < crsi13-ITP_PI && modcrs23 > crs2l &&

modcrs23 < crsi13-ITP_PI));

{

(crs23 > crs13 || crs23 < crs13-ITP_PI) {
modcrs23 = itpTo2pi(crs23 + ITP_PI);
flipped2 = 1;

}

(itpIsAlmostZero(ITP_ABS(crs21))) crs21 = crs21 + 2+ITP_PI;
flippedl = (modcrs23 > crs13-ITP_PI && modcrs23 < crs21);
}

}
angl = itpTo2pi(crsi3-crs12+ITP_PI) - ITP_PI;
ang?2 = itpTo2pi(crs21l-modcrs23+ITP_PI) - ITP_PI;
angl = ITP_ABS(angl);
ang?2 = ITP_ABS(ang2);
(flippedl) {

angl = itpTo2pi(ITP_PI - angl);

modcrs13 = itpTo2pi(crsi3 + ITP_PI);
}

ang3 = itpAcosSafe(-cos(angl)*cos(ang2) + sin(angl)*sin(ang2)*cos(dst12));
(itpIsAlmostZero(sin(ang3))) {

*¥ilat = 0.0;
*¥ilon = 0.0;
_1,

dst13 = itpAsinSafe(sin(ITP_ABS(ang2))*sin(dst12)/sin(ang3));
lat3 = itpAsinSafe(sin(latl)*cos(dst13)+cos(latl)*sin(dst13)*cos(modcrsi3)
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delta = itpAsinSafe(sin(crs13)*sin(dst13)/cos(lat3));

(flipped1==0)
lon3 = itpTo2pi(lonl + delta + ITP_PI) - ITP_PI;

lon3 = itpTo2pi(lonl - delta + ITP_PI) - ITP_PI;

*xilat
*ilon

lat3;
lon3;
2xflipped2 + flippedl;

itpCrossTrackError( latil, lonil,
lat2, lon2,
lat3, lon3) {

crs31, crs32,dst32;
dst32 = itpDistance(lat3, lon3, lat2, lon2);
(itpIsAlmostZero(cos(lat3))) {

crs3l

crs32
} {

crs31 = itpCourse(lat3, lon3, latl, lonl);

crs32 = itpCourse(lat3, lon3, lat2, lon2);
}

loni;
lon2;

ITP_ABS(itpAsinSafe(sin(dst32)*sin(crs32-crs31)));
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