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Receptivity and stability of hypersonic boundary layers are numerically investigated for 
boundary layer flows over a 5-degree straight cone at a free-stream Mach number of 6.0. To 
compute the shock and the interaction of shock with the instability waves, we solve the Navier-
Stokes equations in axisymmetric coordinates. The governing equations are solved using the 5th –
order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and 
using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. 
After the mean flow field is computed, disturbances are introduced at the upstream end of the 
computational domain. Generation of instability waves from leading edge region and receptivity 
of boundary layer to slow acoustic waves are investigated. Computations are performed for a cone 
with nose radii of 0.001, 0.05 and 0.10 inches that give Reynolds numbers based on the nose radii 
ranging from 650 to 130,000. The linear stability results showed that the bluntness has a strong 
stabilizing effect on the stability of axisymmetric boundary layers.  The transition Reynolds 
number for a cone with the nose Reynolds number of 65,000 is increased by a factor of 1.82 
compared to that for a sharp cone. The receptivity coefficient for a sharp cone is about 4.23 and it 
is very small, ~10-3, for large bluntness. 

Introduction 

ransition from laminar to turbulent state in shear flows occurs due to evolution and interaction of different 
disturbances inside the shear layer. Though there are several mechanisms and routes to go from a laminar to a 

turbulent state, most of them generally follow these fundamental processes; a) receptivity b) linear instability c) 
nonlinear instability and saturation d) secondary instability and breakdown to turbulence.  

 The transition onset mainly depends on the boundary layer characteristics and on the frequency, wave number 
distributions, and the amplitudes of the disturbances that enter the boundary layer. The boundary layer profiles 
depend on the flow parameters such as Mach number, Reynolds number, wall temperature, and model geometry. In 
supersonic and hypersonic boundary layers one important geometrical parameter is the nose bluntness. The effects 
of bluntness on transition have been studied experimentally and numerically by many researchers1-6. It was found 
that the bluntness generally stabilizes the boundary layer. The critical Reynolds numbers for blunt cones are much 
higher compared to that for sharp cones. However, the transition Reynolds number increased only by a factor of two 
compared to the sharp cones. It was identified that the entropy layer that is formed near the bow shock region 
persists for a long distance downstream and makes the boundary layer more stable compared to the sharp cone case. 
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 After the entropy layer and the boundary layer that is developing along the surface merges together, the 
boundary layer becomes unstable. It was also found that in addition to first and the second modes instability waves, 
other inviscid type disturbances grow inside the entropy layer. It was also observed that with increasing bluntness 
the stabilizing trend is reversed in axisymmetric boundary layers. Another influence of the bluntness is in the 
generation of instability waves near the leading edge region. The objectives of this work are to estimate the 
stabilizing effect of the bluntness on the hypersonic boundary layers over blunt cones, to estimate the transition 
Reynolds number based on the eN criteria, and to compute the receptivity coefficient of the instability waves 
generated inside the boundary layer. To investigate the effect of the Reynolds number based on the nose bluntness, 
simulations are performed at different leading edge radii r0 = 0.001, 0.05 and 0.10 inches at a unit Reynolds number 
of 7.8*106/ft for a 5-deg. half-angle cone. To differentiate the unit Reynolds number effect from the nose Reynolds 
number effect, one simulation is performed at a higher unit Reynolds number of 15.6*106/ft with 0.05 inches 
bluntness. These parameters yield the Reynolds number based on the nose radius to vary from 650 to 130,000. The 
results consist of: (1) mean flow profiles, linear stability and transition onset Reynolds numbers at different 
bluntness, and (2) receptivity coefficients for different bluntness. A schematic diagram of the computational set up is 
depicted in Fig. 1. 

 

I. Literature Review 
Stetson7 carried out boundary layer experiments to investigate the effects of nose tip bluntness on 8-degree half 

angle cone containing two rays of thermocouples in AEDC Tunnel F at Mach 6. The location of boundary layer 
transition was obtained from heat transfer measurements. It was found that the small nose tip bluntness had a 
stabilizing effect upon boundary layer when transition occurred at locations where the entropy layer nearly 
swallowed. Also Stetson et al.1 investigated the stability of the laminar boundary layer experimentally on a blunt, 7-
degree half angle cone at Mach 8 and identified disturbances growing outside the boundary layer, in the entropy 
layer, indicating the existence of an inviscid instability. Recently Maslov et al. 8, 9 conducted stability experiments on 
sharp and blunt cones at Mach 5.92. Rufer and Schneider10 measured mass flux profiles over 7-degree half angle 
sharp and blunt (0.020 in.  radius) cones to study the amplitude and growth of instability waves. Also Schneider11, 12 
published additional stability experimental results of Stetson’s1 experiment. An experimental investigation was 
conducted on a 5-degree half-angle cone in a conventional Mach 6 wind tunnel done by Horvath et al13 to examine 
the effects of facility noise on boundary layer transition. In addition, the model nose tip radius was varied from 
0.0001 in. to 0.0625 in. to examine the effect of bluntness on transition onset. 

 Malik et al.3 computed the effect of nose bluntness on boundary layer instability for Mach 8 flow past a 7-
degree half angle cone. They included the entropy-layer effect using Parabolized Navier-Stokes equations. It is 
concluded that nose bluntness stabilizes the boundary layer and the effect of unit Reynolds number in the 
aeroballistic range data of Potter14 was a nose bluntness effect. Rosenboom et al15 and Zhong16 did further study on 
the effect of nose bluntness on the linear stability of hypersonic flow over Stetson’s blunt cone and focused on the 
transition reversal phenomenon. However, no instability reversal observed as the nose radius increased in both 
studies. Their results indicated that to understand the cause of the transition reversal phenomenon it is necessary to 
conduct further studies on the nose bluntness. Balakumar17 performed computations for a blunt flat plate with 
thicknesses from 0.0001 to 0.01 inches and a wedge of 10-degree half angle with different leading edge radii 0.001 
and 0.01 inches to find out the effect of nose bluntness on the stability of two dimensional boundary layers. He 
found that the bluntness has a strong stabilizing effect on the stability of two dimensional boundary layers and the 
boundary layers on wedges are far more stable that on blunt flat plates. 

Here, we employ a fifth order weighted essentially non-oscillatory (WENO) scheme for spatial discretization and 
use third order total variation diminishing (TVD) Runge-Kutta scheme for time integration to solve for the 
hypersonic boundary layer receptivity problem. For this study, we have selected the flow conditions and geometry 
used by Horvath et al13. The nose radii are varied from r0 = 0.001 to 0.10 inches and the flow around the leading 
edge is resolved by using a sufficiently dense grid. We assume adiabatic wall conditions for steady flow 
computations.   
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II. Governing Equations 
The equations solved are the conservative unsteady compressible two-dimensional axisymmetric Navier-Stokes 

equations 

 v vF GQ F G
S

t x y x y
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where Q is the solution flow field vector, F and G are the axial- and radial-direction inviscid flux vectors given by 
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and Fv and Gv are the axial- and radial-direction viscous and heat conduction flux vectors given by 
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The vector S contains viscous flux and source terms associated with the axisymmetric geometry.  

The source term, shear stresses and heat fluxes have the following form 
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A singularity exists along the axis of symmetry y=0. After applying L’Hopital rule and taking limit as y goes to 

zero using the symmetry conditions 0, =0 at y=0
u T p

v
y y y y
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= = = =
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, source term along the axis y=0 

becomes 
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Applying same procedure to shear stresses and heat fluxes we get a new term without a problem at y=0. 
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Here (x, y) are the two-dimensional and (x, y, θ) are the axisymmetric coordinates and (u, v) are the 
corresponding velocity components, ρ is the density, p is the pressure. E is the total energy given by 

 

2 2

2

,
v

u v
E e

e c T p RT!

+
= +

= =

  

Here e is the molecular internal energy and T is the temperature.  

 The viscosity (µ) is computed using Sutherland’s law and the coefficient of conductivity (k) is given in terms of 
Prandtl number (Pr). The variables ρ, p, T and velocity are non-dimensionalised by their corresponding reference 

variables ρ∞, p∞, T∞ and RT respectively. The reference value for length is computed by
0
/x U!

" , where x0 is 

the location of the beginning of the computational domain in the stream wise direction. For the computation, the 
equations are transformed from physical coordinate system (x, y) to the computational curvilinear coordinate system 
(ξ,η) in a conservative manner and the governing equations become 
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 The components of the flux in the computational domain related to the flux in the physical domain by 
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III. Solution Algorithm 
The governing equations are solved using 5th order accurate weighted essentially non-oscillatory (WENO) 

scheme for space discretization and using third order total-variation-diminishing (TVD) Runge-Kutta scheme for 
time integration. These methods are suitable in flows with discontinuities or high gradient regions. These schemes 
solve the governing equations discretely in a uniform structured computational domain in which flow properties are 
known at the grid nodes. WENO scheme approximate the spatial derivatives in a given direction to a higher order at 
the nodes, using the neighboring nodal values in that direction. TVD-RK scheme integrates the resulting equations 
in time to get the point values as a function of time. Since the spatial derivatives are independent of the coordinate 
directions, the method can easily add other dimensions. It is well known that approximating a discontinuous 
function by a higher order (two or more) polynomial generally introduces oscillatory behavior near the 
discontinuity, and this oscillation increases with the order of the approximation. The essentially non oscillatory 
(ENO) and the improvement of these WENO methods are developed to keep the higher order approximations in the 
smooth regions and to eliminate or suppress the oscillatory behavior near the discontinuities. They are achieved by 
systematically adopting or selecting the stencils based on the smoothness of the function, which is being 
approximated. Shu18 explains the WENO and the TVD methods and the formulas. Atkins19 gives the application of 
ENO method to the N-S equations. Balakumar20 describes in detail the solution method implemented in this 
computation. 

At the outflow boundary, extrapolation boundary condition is used. At the wall, the simulation uses viscous 
conditions for the velocities and an adiabatic temperature condition, and it computes density from the continuity 
equation. In the mean flow computations, the simulation prescribes the free-stream values at the outer boundary, 
which lies outside the bow shock. The blunt cone is assumed to align with the free stream. In the unsteady 
computations, it superimposes the acoustic perturbations to the uniform mean flow at the upper boundary. The 
procedure is to first compute the steady mean flow by performing unsteady computations using a variable time step 
until the maximum residual reaches a small value ~10-11. These computations use a CFL number of 0.2. The next 
step is to introduce unsteady disturbances at the upper boundary of the computational domain and to perform time 
accurate computations to investigate the interaction and evolution of these disturbances to downstream. Since we 
use very fine spatial grid to resolve the leading edge region, these computations require very small time step which 
is taken as the minimum time step allowable for a CFL number of 0.2. 

The grid is generated using analytical formulae. The grid stretches in the η direction close to the wall and is 
uniform outside of the boundary layer. In the ξ direction, the grid is symmetric about the leading edge and very fine 
near the nose and is uniform in the flat region. The outer boundary that lies outside the shock follows a parabola so 
that the boundary layer growth could be captured accurately. The computational domain extends from x=-0.015 to 
36.0 inches in the axial direction in this computation depending on the bluntness. Calculations were performed using 
a grid which has 32 blocks and each block has 127x256 grid points. Computational domain has approximately 1 
million grid points. Due to the very fine grid requirement near the nose, the allowable time step is very small and the 
computations become very expensive to simulate the unsteady computations in the entire domain. 

The acoustic field that impinges on the outer boundary is taken to be in the following form. 

{ }ac aci x i y i t
p Real pe

! " #± $% = %  

 Here αac, εac are the x, y wave numbers, respectively, of the acoustic wave and ω is the corresponding frequency 
of the acoustic disturbance. The incident angle θ of the acoustic wave is defined as 
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and in this paper computations are performed for zero incidence angles. 

IV. Results  
Computations are performed for hypersonic flows at a free stream Mach number of 6.0 over a 5-degree half-

angle cone with blunt leading edges. The flow parameters are given in Table 1 and the boundary layer edge 
conditions for a sharp cone are given in Table 2. Fig. 1 shows the schematic diagram of the computational set up. 
The nose region of the cone is modeled as a circle of the form 
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Here r0  is the nose radius. Simulations are performed for nose radii r0= 0.001, 0.05 and 0.10 inches at a unit 
Reynolds numbers 7.8*106/ft. This provides nose Reynolds numbers of 650, 32,500 and 65,000. To achieve higher 
nose Reynolds numbers, two computations are performed at a higher unit Reynolds number of 15.6*106/ft for the 
nose radii of r0= 0.05 and 0.10 inches. Different cases are summarized in Table 3. 

 

Table 1. Flow parameters for Horvath’s13 wind tunnel model. 
Free stream    

Mach number  M∞ = 6.0 
Unit Reynolds number Re∞ = 7.8x106 / ft 
Density Ρ∞ = 7.059x10-3 lbm / ft3 
Velocity U∞ = 3140.21 ft/s 

Reservoir Pressure P0 = 475 psi 
Reservoir Temperature T0 = 475 °F 
Wall temperature Adiabatic condition 
Prandtl number Pr = 0.70 
Ratio of specific heats γ = 1.4 
Length scale (x0=0.5 inch) 

0
/x U!

" "
= 7.30882x10-5 ft 

The non-dimensional frequency F is 
defined as  
 

F =
2!"# f

U#

2
,  F=1.0*10-4. f = 390 kHz 

Local Reynolds number 

! 

Re
x

 

! 

Ux

"
  

 

Table 2. Parameters along the cone surface. 
(Var.)edge / (Var.)∞ Sharp Cone 
Mach Number 0.932 
Pressure Ratio 1.560 
Density Ratio 1.372 
Temperature Ratio 1.137 

 
 

Table 3. Parameters in the computations. 
 

 
 
 
 

 
 

 

 

Nose radius  
r0

  in. 
Unit 

Reynolds 
number /ft 

Reynolds number 
based on nose 

radius 
0.001 7.8*106 650 

0.05 7.8*106 32,500 

0.10 7.8*106 65,000 

0.05 15.6*106 65,000 

0.10 15.6*106 130,000 
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Linear Stability  

Linear stability results for the similarity boundary layer over the cone using the inviscid conditions at the surface 
are presented in Fig. 2. Figure 2(a) shows the neutral stability diagram in (√Rex, F) and (√Rex,,α) planes for two-
dimensional disturbances. The figure shows the first and second mode unstable regions and the variation of the wave 
number with the Reynolds number. Figure 2(b) shows the N-Factor curves for different frequencies. Here the 
variables are non-dimensionalized by the variables at the edge of boundary layer. To obtain the variables non-
dimensionalized by the free stream values as given in Table 1, the variables in this section should be multiplied by 
the appropriate factors from Table 2. The frequency variable F has to be multiplied by 1.174 to obtain the values in 
terms of free stream values.  

The neutral stability curve clearly shows the unstable first and the second mode regions for the boundary layers 
over the cone at a free stream Mach number 6.0. The first mode and the second mode neutral stability curves merge 
at a Reynolds number of √Rex =1600 for the cone. The transition Reynolds numbers based on an N-Factor of 10 are 
about 3750 and the most amplified frequency is about F=0.85x10-4. 

Mean Flow  
Figure 3 shows the mean flow density contours computed using the WENO code. The figures 3(a-e) show the 

results for the 5-degree half-angle cone at different nose radii r0= 0.001, 0.05, 0.10 and 0.10(at two-times the unit 
Reynolds number) inches. Smaller nose radii cases r0= 0.001, 0.05 and 0.10 are performed at a unit Reynolds 
number of 7.8*106/ft which yield Reynolds numbers based on the nose radius of 650 to 65,000. Figure 3(e) shows 
the results obtained at a higher unit Reynolds number of 15.6*106/ft with r0= 0.10 which yields the Reynolds 
number based on the nose radius of 130,000. Figure 3(a) shows the density contours in larger domain and other 
figures show the flow field near the nose region.  One interesting observation is that the inviscid density contours 
and the shock locations are same between Figs. 3(d) and (e) which are obtained with the same bluntness r0= 0.10 but 
at different unit Reynolds numbers 7.8 and 15.6 *106. The leading edge shocks are located approximately at 0.0002, 
0.008 and 0.016 in. upstream of the leading edge. The density profiles at different axial locations are plotted in Fig. 
4(a)-(d) for the different bluntness cases r =0.001, 0.05, 0.05(Re∝/ft =15.6*106) and 0.10 inches in the similarity 
coordinates. The compressible Blasius similarity profile is also included for comparison and Fig. 4(d) and (e) show 
the profiles for r0 = 0.05 and 0.10 inches in the physical coordinate. With increasing bluntness, the profiles did not 
approach the similarity profiles within the computational domain, which is closer to the transition onset point. The 
difference between the profiles with the bluntness and the similarity profiles increases with the bluntness. 

Figures 5(a)-(d) depict the entropy contours for different bluntness cases r0= 0.001, 0.05, 0.10 and 0.10 
(Re∝/ft=15.6*106) inches. For the small bluntness case r0= 0.001, only the boundary layer appears near the nose 
region and the entropy layer is not discernable in the outer part of the boundary layer. For the higher bluntness cases 
the entropy layer that is visible near the nose region persists downstream and eventually merges with the boundary 
layer. Figures 6(a)-(d) show the entropy profiles at different axial locations for different bluntness cases. As was 
observed in the contours any discernable entropy layer appears for the small bluntness case. For the bluntness case 
r0= 0.05, two layers are clearly seen in the profiles at x= 0.50 and 1.0 inches. One layer is very close to the wall with 
large gradient and the other is away from the wall with a small gradient. The outside entropy layer merges with the 
boundary layer near the wall close to x= 2.0 inches. At higher bluntness cases, the two layers are more evident and 
the merging occurs at larger distances from the nose. For the bluntness case r0= 0.10, the two layers merge close to 
x= 6.0 inches and for the case r0= 0.10 with larger unit Reynolds number the merging occurs close to x= 6.0 inches 
which is equivalent to 12.0 inches when it is converted to the same unit Reynolds number.   

Figures 7(a) and (b) show the N-Factors and the growth rates for the most amplified disturbances computed 
using the mean profiles obtained from the numerical simulation for different bluntness r0= 0.001, 0.05, 0.10 with the 
unit Reynolds number of 7.8*106/ft and for r0= 0.05, 0.10 with the higher unit Reynolds number of 15.6*106/ft. For 
comparison, the results for the Blasius similarity profiles, which model a sharp leading edge, are also shown in the 
figure. The frequency for the most amplified wave is about F= 0.90*10-4 for the similarity profiles. There is 
significant difference both for the mean flow and the stability results with increasing bluntness. The growth rates 
become smaller and the N-Factor curves move downstream. For the smaller bluntness r0= 0.001, the N-Factor curve 
remains closer to the similarity curve.  For the larger bluntness cases the growth rates become smaller and the N-
Factor curves move further to the right. The most amplified frequencies are (0.85*10-4, 0.75*10-4, 0.60*10-4, 
0.425*10-4) for r0= 0.001, 0.05, 0.10 and 0.10 (with higher unit Reynolds number) inches respectively. This shows 
that the frequencies of the most amplified disturbances become smaller with increasing bluntness. The growth rate 
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curves are similar to the Blasius profile for all the cases. The transition Reynolds numbers obtained using the N-
factor of 10.0 for different bluntness cases are summarized in Table 5 and plotted in Fig. 8. The ratio between the 
transition Reynolds number with bluntness and the transition Reynolds number for the similarity profile, 
(ReT)r0/(ReT)Similarity,

 is about 1.10, 1.27, 1.82, 3.33 respectively for Rer0 = 650, 32500, 65000 and 130000.  To 
differentiate between the effects of free stream unit Reynolds number and the nose Reynolds number  one simulation 
is performed for the bluntness case r0= 0.05 at twice the unit Reynolds number of 2*7.8*106/ft. The expectation is 
that the results from this simulation should be close to the results obtained for the case with r0= 0.10 at a unit 
Reynolds number of 7.8*106/ft. It is interesting to see in Fig. 7 that the growth rates and the N-Factor curves are 
very close to each other and the most amplified non-dimensional frequencies are also the same F=0.60*10-4. The 
transition Reynolds numbers are 21.90*106 and 23.70*106 for the cases r0 = 0.10 and 0.05 (higher unit Reynolds 
number) respectively. The transition Reynolds number for this case is also included in Fig. (8).   This implies that 
the stability and the transition over blunt bodies are determined by the nose Reynolds number. Previous 
experiments1 and the stability calculations3 showed that the transition Reynolds number for a blunt cone at a Mach 
number of 8 with nose Reynolds numbers of 30,000 increased by a factor of 1.7~2.0 compared to a sharp cone.  
Potter5 found from a series of aeroballistic range experiments on nominally sharp cones that the transition Reynolds 
number increases with the free stream unit Reynolds number as a power of 0.63. A line with the slope of 0.60 is 
included in Fig. (8)  for comparison. The prediction from the present calculations follows this slope closely.   

 
Table 5. Transition Reynolds number for the blunt cones. 

 
 
 
 
 
 

 

 

 

 
 

 

Interaction of Slow Acoustic Waves with the Boundary Layer 

After the mean flow is computed two dimensional slow acoustic disturbances are introduced at the outer 
computational boundary and the time accurate simulations are performed. Unsteady simulation results are presented 
for the cases r0= 0.001, 0.05, 0.05(2*Re∝), 0.10 inches at the most amplified frequencies F=0.80 x10-4, 0.75 x10-4, 
0.60 x 10-4 and 0.60*10-4. These frequencies correspond to 304, 285, 228 and 556 kHz respectively for these unit 
Reynolds numbers. To remain in the linear regime, the amplitude of the forcing freestream acoustic waves is given a 
small value of

! 

pac / p" = 2*10
#6 . Even with this small amplitude, nonlinearity starts to develop near the end of 

computational domain for the small bluntness case r0=0.001 case with the frequency F=0.80 x10-4. 

Figures 9(a) and (b) show the results for the evolution of unsteady fluctuations obtained from the simulations for 
the slow wave at a fixed time for the case r0=0.05 and F=0.75 x10-4. Figure 9(a) shows the contours of the density 
fluctuations near the nose region up to x ~ 6.0 inches and Fig. 9(b) depicts the results near the end of the 
computational domain x=15~25 inches. Figures 10(a)-(d) display the expanded view of the density contours near the 
wall along the axial direction. The perturbation field can be divided into three regions. One region is the area outside 
the shock where the acoustic waves propagate uniformly. The second region is the shock layer across which the 
acoustic waves are transmitted. The third region is the area between the shock and the boundary layer. This region 
consists of transmitted external acoustic field and the disturbances that are radiated from the boundary layer. The 
figures also show that the flow field between the shock and the wall exhibit four different regions of excitations. 

Nose radius  
r0

  in. 
Reynolds number 

based on nose 
radius 

Transition 
location X (in.) 

Transition 
Reynolds number 

*106 

Ratio 
(ReT)ro/(ReT)Similarity 

0.0 0 18.55 12.06 1.00 

0.001 650 20.50 13.32 1.10 

0.05 32,500 23.50 15.30 1.27 

0.10  65,000 33.70 21.90 1.82 

0.10 (2*7.8) 130,000 61.88 40.22 3.33 

0.05 (2*7.8)  65,000 36.44 23.70 1.96 
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One is the region directly below the shock where small wave diffraction occurs, second is the region below this 
diffraction zone and above the entropy layer where the disturbances are quieter, third is the entropy layer and the 
boundary layer edge region where large perturbations exist and fourth is the region near the wall. The first important 
observation is that near the nose region (Figs.9 (a), 10(a)) the acoustic disturbances propagate across the leading 
edge bow shock and perturb the entropy layer.  These disturbances as they evolve downstream remain inside the 
entropy layer and get into the boundary layer further downstream. Figures 10(b)-(d) clearly show that these 
disturbances remain near the edge of the boundary layer for a long distance before they become the highly unstable 
second mode. Another interesting observation is that the region between the boundary layer and the shock layer is 
quieter compared to the acoustic waves outside the shock layer. This quiet region originates from the leading edge 
region (Figs 9(a), 10(a)) where the bow shock and the oblique shock meet. This implies that the acoustic waves are 
weakly transmitted through the shock and do not directly interact with the boundary layer further downstream. This 
was also observed in the flat plate simulation21 where as the acoustic wave incidence angle is increased disturbances 
become quiets in the windward side.  

Figures 11(a)-(h) show the evolution of the wall pressure fluctuations for different cases. Figures 11(a), (c), (e), 
and (g) show the amplitude of the pressure fluctuations along the wall in a linear scale, while Figs. 11(b), (d), (f) and 
(h) depict the results in a log scale. This figure also includes the results from the parabolized stability equations 
(PSE) computations obtained for the same mean boundary layer profiles. The growth of the disturbances agrees very 
well with the PSE results. The figures clearly show the generation and the eventual exponential growth of the 
instability waves inside the boundary layer.  First observation is that there are large differences in the amplitude 
levels of the disturbances attained between the small bluntness case and the large bluntness cases. In all the cases the 
amplitude of the free stream acoustic pressure is the same

! 

pac / p" = 2*10
#6. For the small bluntness case r0=0.001, 

Figs. 11(a) and (b), the disturbances grow from the leading edge and  reach large amplitude levels of  0.50 near the 
predicted transition onset point. The slow wave whose wavelength is closer to the wavelength of the instability wave 
transform into instability wave smoothly near the nose region. The parallel linear computations show that the first 
mode amplifies weakly up to x~10 inch for this frequency and yields an N-Factor of 1.0 near x~10. However, the 
simulation shows that the first mode disturbances are growing much stronger near the leading edge and yields an N-
Factor of 3.0 near x~10. Hence, the non-parallel effects are stronger in the small bluntness case near the nose region. 
The maximum amplitudes obtained for the large bluntness cases r0=0.05, 0.05(2*Re∝), 0.10 ( Figs. 11(c-d), (e-f), (g-
h))  are very small in the range of ~10-4.  The reason for this is the disappearance of the amplification of the first 
modes in the early part of the evolution. The disturbances not only grow but decay by two orders in magnitude 
before they start to grow due to the instability of second modes. This may be due to the thickening of the boundary 
layer due to the entropy layer.  

Following the PSE results up to the neutral point, the initial amplitude of the instability waves at the neutral 
point can be estimated. From these values the receptivity coefficients defined by the amplitude of the pressure 
fluctuations at the wall at the neutral point non-dimensionalized by the free-stream acoustic pressure can be 
evaluated.  

 
,

( )
wall

wall n
recpt p

ac

p
C

p
=  

 

Table 6 shows the amplitude of the pressure fluctuations (pwall)n  at the neutral point and the receptivity coefficients 
for different nose radii.  The amplitudes are 8.5*10-6 for the small bluntness case and they are on the order of 10-9 for 
the large bluntness cases. This reflects in the magnitude of the receptivity coefficients.  The receptivity coefficients 
are 4.23, 1.85*10-3 and 4.75*10-3 for the cases the =0.001, 0.05 and 0.10 inches. Another interesting observation is 
comparison of the amplitudes and the receptivity coefficients for the two cases r0=0.10 and r0=0.05(2*Re∝). The 
amplitudes and the receptivity coefficients are almost the same for these two cases. Hence it is not only the 
instability properties but the receptivity coefficients also depend only on the nose Reynolds number. This implies 
that unit Reynolds number effect is directly the consequence of the variation in the nose Reynolds numbers. 
 

Figure 12 shows the density fluctuations inside the boundary layer near the nose region for a small r0=0.001 and 
a large r0=0.10 cases. This clearly shows the effect of bluntness in the generation of disturbances near the nose 
region. As was discussed previously, at small bluntness case there is no entropy layer and the disturbances excite the 
boundary layer up to the wall. In the large bluntness case, the disturbances are seen only away from the wall inside 
the entropy region.  
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Table 6. Receptivity coefficients for different nose radii. 
  
 

 

 

 

 

 

 

 

Discussion and Conclusion 
The receptivity and the stability of hypersonic boundary layers over a blunt cone with 5 degrees half-angle are 

numerically investigated at a free stream Mach number of 6.0 and at a Reynolds number of 7.8x106/ft.  Both steady 
and unsteady solutions are obtained by solving compressible Navier-Stokes equations using the 5th order accurate 
weighted essentially non-oscillatory (WENO) scheme for space discretization and using a third-order total-variation-
diminishing (TVD) Runge-Kutta scheme for time integration. Computations are performed for different nose radii 
r0= 0.001, 0.05, 0.05 (2*Re∝), 0.10, 0.10 (2*Re∝) inches which yields nose Reynolds numbers of 650, 32500, 65000, 
65000, 130000. 

 
The results show that the bluntness has a strong stabilizing effect on the stability of the boundary layers. The 

transition Reynolds number increases slowly up to a nose Reynolds number of 30,000 and then increases sharply at 
higher nose Reynolds numbers. The transition Reynolds number for a cone at a nose Reynolds number of 65,000 is 
about 1.8 times larger than that for the Blasius boundary layer. This is due to the entropy layers that are generated 
near the leading edges. These layers persist for longer distances with increasing bluntness. There may be other 
unstable modes in the entropy layer as were observed in the experiments1 other than the first-mode type instabilities 
that were considered in this paper. Whether they exist and what role these waves play in the transition process still 
has to be investigated. 

 
At small bluntness case, the disturbances grow starting from the nose region and reach very large values ~0.50 

near the transition point. The growth of the first mode is much stronger for this case due to the non-parallel effects. 
The amplitude levels of the disturbances are much smaller in the order of 10-4 in the larger bluntness cases. There is 
no unstable first modes in the large bluntness cases and the disturbances decay by two orders before they start to 
grow due to the second mode instability.  The receptivity coefficients at small bluntness r0=0.001 inches is about 
4.23 and they are much smaller in the order of ~ 10-3 in the larger bluntness cases. This raises some questions about 
the transition process over blunt bodies. If the receptivity coefficients are very small for the second modes as was 
found in this paper, how can the amplitude of the disturbances attain high values. One possibility is that the N-
Factors are larger, about 15~16, in these cases. This will increase the transition Reynolds number further than that is 
computed in this paper. Another possibility is that the receptivity coefficients at non-zero acoustic incident angles 
may be larger than is obtained at zero incident angles. These computations have to be carried out to find the largest 
receptivity coefficients.  
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Nose radii  
r0 (in.) 

Nose 
Reynolds 
number 

4( x10 )F
!  

 
( pwall ) n , ,wallrecpt p SlowC  

0.001 650 0.80 8.5*10-6 
4.23 

0.05 32,500 0.75 3.7*10-9 
1.85*10-3 

0.10 65,000 0.60 9.5*10-9 
4.75*10-3 

0.05 (2*RE) 65,000 0.60 10.0*10-9 
5.00*10-3 
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Figure 1. Schematic diagram of the computational model 
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Figure 2. (a) Neutral stability diagram and variation of wave number with Reynolds number. (b) N-Factor 

curves for decreasing frequency for blunt cone. r0=0.001”. 
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Figure 3. Contours of the density for flow over a cone with different bluntness at M=6.0. (a), (b)  r0=0.001 in. 
Re=7.8x106, (c) r0=0.05 in. Re=7.8x106, (d) r0=0.10 in. Re=7.8x106, (e) r0=0.10 in. Re=15.6x106. 
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Figure 4. Mean density profiles at different X locations using similarity coordinates for (a) r0=0.001 in. Re=7.8x106, 

(b) r0=0.05 in. Re=7.8x106, (c) r0=0.05 in. Re=15.6x106, (d) r0=0.10 in. Re=7.8x106.  Density profiles versus Y 
coordinate for (e) r0=0.05 in. Re=7.8x106, (f) r0=0.10 in. Re=7.8x106. 
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Figure 5. Contours of the entropy for flow over a cone with different bluntness at M=6.0. (a) r0=0.001 in. 
Re=7.8x106, (b) r0=0.05 in. Re=7.8x106, (c) r0=0.10 in. Re=7.8x106, (d) r0=0.10 in. Re=15.6x106. 



 
American Institute of Aeronautics and Astronautics 

 

16 

0 2 4 6

0.00

0.02

0.04

0.05

0.10

0.25

1.00

5.00

(a) r
0
=0.001 in.

Entropy

Y (in.)

X (in.)

0 2 4 6

0.00

0.05

0.10

0.15

0.50

1.00

2.00

4.00

10.00

(b) r
0
=0.05 in.

Entropy

Y (in.)

X (in.)

0 2 4 6

0.00

0.05

0.10

0.15

0.50

1.00

2.00

4.00

10.00

15.00

(d) r
0
=0.10 in. 2 x RE

Entropy

Y (in.)

X (in.)

0 2 4 6

0.00

0.05

0.10

0.15

0.50

1.00

2.00

4.00

10.00

15.00

(c) r
0
=0.10 in.

Entropy

Y (in.)

X (in.)

 
Figure 6.  Entropy profiles at different X stations for (a) r0=0.001 in. Re=7.8x106, (b) r0=0.05 in. Re=7.8x106, (c) 

r0=0.10 in. Re=7.8x106, (d) r0=0.10 in. Re=15.6x106. 
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Figure 7. N-Factors (a)  and growth rates (b) for the most amplified disturbances for  r0=0.001, 0.05, 0.10 in. 
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Figure 8. The transition Reynolds numbers for different bluntness.  

 
 
 

  
Figure 9. Contours of the unsteady density fluctuations due to the interaction of slow acoustic wave with a blunt cone: 

F=0.75x10-4. (a) Nose part. (b) Flat end.  
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Figure 10. Expanded view of the contours of unsteady density fluctuations near the wall along the axial direction. 
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Figure 11. Amplitude of the pressure fluctuation on the wall (a), (c), (e), (g), and comparison with the PSE (b), 

(d), (f), (g). 
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Figure 12. Contours of unsteady density fluctuations inside the boundary layer near the nose region for two 

bluntness cases  (a) r0=0.001, F=0.80x10-4 and (b) r0=0.10, F=0.60x10-4. 
 
 
 

 


