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Noise Generation in Hot Jets 
 

Abbas Khavaran 
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Cleveland, Ohio 44135 
 

Donald C. Kenzakowski 
Combustion Research & Flow Technology, Inc. (CRAFT Tech) 

Pipersville, Pennsylvania 18947 
 

     A prediction method based on the generalized acoustic analogy is presented, and used to 
evaluate aerodynamic noise radiated from high speed hot jets.  The set of Euler equations 
are split into their respective non-radiating and residual components. Under certain 
conditions, the residual equations are rearranged to form a wave equation. This equation 
consists of a third-order wave operator, plus a number of non-linear terms that are 
identified with the equivalent sources of sound and their statistical characteristics are 
modeled.  A specialized RANS solver provides the base flow as well as turbulence quantities 
and temperature fluctuations that determine the source strength.   The main objective here 
is to evaluate the relative contribution from various source elements to the far-field spectra 
and to show the significance of temperature fluctuations as a source of aerodynamic noise in 
hot jets. 

I.   Introduction 
HERE is ever-increasing demand on the aircraft manufacturers to achieve meaningful levels of noise reduction 
in order to meet the stringent regulations that are being set for noise emission. To address the noise concerns 

near airports, NASA introduced a stretched “pillar” goal in 1997, with a stated goal of reducing the perceived noise 
levels of the future aircraft by 20 EPNdB by 2022 relative to 1994 technology.  Jet noise is of particular interest 
because of its dominant contribution to the community noise at the high thrust conditions during takeoff.  As part of 
an ongoing research effort at the NASA Glenn Research Center, a statistical-based jet noise prediction methodology 
(JeNo code) is being developed to provide the state-of-the-art in the source modeling and propagation.  Since jet 
mixing-noise is broadband, with frequencies that cover significant levels of noise within three octave band, a 
successful predictive capability needs to incorporate sufficient physics to produce a reasonably accurate spectrum 
over a broad range of conditions.  The goal is to achieve practical levels of accuracy in noise prediction from this 
more generalized modeling methodology to help designers with concept evaluation and down selection within a 
reasonable time frame. 
 Predicting and suppressing noise from heated jets is of particular interest in aeroacoustics since this is the 
condition under which real engines operate.  In an earlier study [Ref. 1], an acoustic analogy methodology was 
presented based on the premise that an identified fluctuating velocity/enthalpy source term was a major heat-related 
source contribution in hot jets.  The present paper aims to further examine individual source terms in an 
inhomogeneous variable density Pridmore-Brown wave equation for their relative contribution to the far-field jet 
noise spectra.  Lighthill [Ref. 2] defined the  equivalent sources of aerodynamic noise as the double divergence of 
the stress tensor 2( )ij i j ij ijT v v p cρ ρ δ τ∞= + − −  , where ρ  denotes the density, 1 2 3( , , )v ν ν ν=  is the fluid velocity, 

p is the pressure, c∞ is the ambient speed of sound, and i jτ  denotes the viscous stress tensor.  This definition has 
been a subject of wide-spread scrutiny and interpretations and has led to scaling laws that relate the far-field sound 
to flow parameters such as velocity and temperature in a variety of forms.  The viscous stresses are usually 
considered to be unimportant in noise generation and the momentum flux term 2 2/i j i jv v x xρ∂ ∂  is regarded as the 
primary source of sound in isothermal jets.    Heat addition has a multitude of effects on noise that depends on the jet 
velocity, frequency, and angle.   Experimental observations [Refs. 3,4,5] show that at high speeds (i.e., above 
acoustic Mach numbers of 0.9), heat addition results in noise reduction at all frequencies.  At low speeds, nominally  

T 
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acoustic Mach number of 0.50 and below, it amplifies the low to mid frequency jet noise with minimal effect at the 
high frequency.   In between, e.g. at acoustic Mach number of 0.70, the spectrum shows a cross-over relative to the 
unheated case that indicates an enhancement of the low-frequency noise and slight weakening of the high-frequency 
amplitude. 
 These observations have compelled many researchers in the field to examine the pressure/density 
difference 2( )p c ρ∞−  that appears in Lighthill’s stress tensor [Ref. 2], as a potential contributing source and 

formulate scaling laws that resemble the usual 8U law suggested based on the first source term.   Some recent 
examination of jet noise data [6, 7] conclude a more general power law nAU , where the amplitude A and exponent 
n are parameters that depend on angle and jet stagnation temperature.  Morfey et al. [8] revised Lush and Fisher’s 
[9] version of entropy source term and offered a new two-scaling hypothesis, in favor of 6U and 4U power laws, 
and with some dependence on the mean temperature gradient. Additionally, they attempted to account for the mean 
flow effects by using a simplified form of the Geometric Acoustic approximation.  Lilley [10] proposed a second 
order wave equation for the pressure fluctuations, similar to Lighthill’s, but replaced 2( )p c ρ∞−  with a different 
expression that explicitly displays its isentropic and non-isentropic components.   His new contribution to the total 
acoustic power consisted of a Dipole term with 6U dependency, which also multiplied the variance of the total 
enthalpy.  He provided some estimate of the relevance of the new source term without actually calculating the 
required enthalpy fluctuations 
 The acoustic equations described in the following section are derived from equations of motion after each 
flow variable is decomposed into its base flow and radiating components.  The Euler equations, rewritten within the 
framework of Goldstein’s generalized acoustic analogy [Ref. 11], are expressed as two set of equations that govern a 
non-radiating background flow plus its residuals.  The residuals components are simply the difference between the 
original dependent variables and their base-flow equivalents.   These are later rearranged to form alternate analogies, 
and equivalent sources of sound are identified with the non-linear terms in each analogy.  Of key significance in the 
current study, all analogies include, among other factors, a fluctuating velocity/enthalpy term as a heat-related 
source component.      
 The non-radiating base flow alluded to above is taken to be the jet mean flow as calculated from a 
specialized RANS solver that predicts the variance in total temperature (or enthalpy) in addition to the standard 
turbulence-related parameters. The approach, which is discussed in [Ref. 12], makes use of a baseline k-ε turbulence 
model demonstrated in past work to predict correct mean flow velocity mixing and turbulent kinetic energy for 
heated and unheated subsonic round jets.  A generalized two-equation scalar variance model is available [Ref. 12] 
within this turbulence model framework, which utilizes an independent dissipation rate equation as well as the 
locally available turbulent velocity and time-scale information.  Determination of the scalar variance variable is 
principally achieved by selecting the appropriate mean flow quantity gradient for its production source term 
(Appendix-A).  In the past, this model has been used to predict the local variations in the turbulent Prandtl number 
and to study its impact on jet thermal mixing using an energy variance approach that tracked the variance in static 
temperature.  The current study traces the variance of the total enthalpy instead as the parameter of interest for 
subsequent jet noise predictions.  The stagnation temperature fluctuations are then deduced from this quantity.  The 
difference between utilizing static versus stagnation fluctuation values for noise prediction becomes increasingly 
obvious with jet speed.  Specifically, a noticeable static temperature variance appears within the jet shear layer for 
unheated conditions at high exhaust speeds, compared to a practically insignificant total temperature variance.  From 
the standpoint of turbulence model generality, it is interesting to note that, at least for the jet cases studied, the use of 
total enthalpy variance does not significantly alter predictions for variable turbulent Prandtl number.  The local 
turbulent thermal diffusivity is partially determined from the thermal time-scale; the predicted values for the 
variance dissipation rate are also affected proportionately by the scalar variance production term selection. 
 The remainder of this paper is organized as follows.  The governing acoustic equations and the sources of 
jet noise in the specialized case of a locally parallel mean flow are presented in section 2.  A summary of the 
baseline scalar variance model governing the transport of total temperature variance and its dissipation rate is 
provided in Appendix A.    Details regarding the model development can be found in [Refs. 12 and 13].  Section 3 
illustrates the sensitivity of stagnation temperature variance to heated and exit velocity conditions for a number of 
round jets.  A comprehensive study of the relative strength of various source components and their far-field noise at 
90o is presented in section 4.  The comparisons cover a host of subsonic jets in an attempt to identify the most 
significant sound sources for a wide range of conditions. Source statistics and modeling features appear in 
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Appendices B and C. The current prediction methodology is calibrated around two source components only, and 
sample results are presented in section 4. 
 

II.   Acoustic Analogies 
 The details provided here are for completeness and for drawing attention to the underlying assumptions and 
noise sources in each analogy.  Spectral predictions use a third-order inhomogeneous wave equation.  This equation 
assumes a locally parallel mean flow, and consists of a linear wave operator that accounts for the refraction of sound 
due to flow in-homogeneities, plus a host of source terms that are all non-linear in fluctuating variables (i.e., velocity 
and total enthalpy fluctuations).     
 
We neglect the non-isentropic effects considering that fluid viscosity and heat conduction play a relatively 
insignificant role in noise generation.    The conservative form of Euler equations  
 

  0j
j

v
t x
ρ

ρ
∂ ∂

+ =
∂ ∂

,        (1a) 

  0i i j
j i

p
v v v

t x x
ρ ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
,       (1b)  

  ( ) 0t j t
j

h p v h
t x
ρ ρ

∂ ∂
− + =

∂ ∂
,       (1c) 

 
are linearized about a suitable background flow, and expressed as two set of equations that govern a non-radiating 
base flow and its residuals. The residual equations are the difference between the original Euler equations and the 
base-flow relations, and govern the small fluctuations that relate to the generation of sound.   
 
Assuming that the equation of state is governed by the ideal gas law  
 
  p Tρℜ= ,     (2) 
      
each flow variable is divided into its mean and fluctuating components as 
 
  , , ,i i ip p p v v v h h hρ ρ ρ′ ′ ′ ′= + = + = + = + .    (3) 
 
The over-bar is a time-averaged value, and tilde denotes a Favre-averaged (i.e., mass-averaged) quantity for all 
variables including the stagnation enthalpy 
 

  21

2
, 0,t t t t tvh h h h h h′ ′= + = + = .      (4a) 

 
The following expressions are concluded for the Favre-averaged stagnation enthalpy th  and fluctuations th′  
 

   2 2 2 21 1 1 1

2 2 2 2
,t t i ih h v v h h v v v v′ ′ ′ ′ ′ ′= + + = + − + .    (4b) 

 
The averaged static enthalpy satisfies the averaged ideal gas law 
 
  ,p Th c T p ρℜ= = ,        (4c) 
 
and upon subtracting (4c) from Eq. (2), the residual part of the ideal gas law becomes 
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  ( ), p
p

p h h h c T
c

ρ ρ
ℜ′ ′ ′ ′ ′= + = ,      (4d) 

where pc and cν  denote the specific gas constants (i.e., c cp v= γ ).  Equation (4d) shows that density and 
temperature fluctuations act in concert to generate pressure fluctuations.  This is also seen from the equation of state 
by taking its total differential 
 

  
dp dT d
p T

ρ
ρ

= + .        (4e) 

 
 If the gas were to expand slowly enough to make it possible for the temperature to remain constant, then dT 
would have to remain as zero, and according to (4e) pressure and density would have to relate as / /dp p dρ ρ= .  
However, the expansion and contraction of sound waves happen on rapid scale.  It is more appropriate to assume 
that the thermal energy has very little time to flow, and so the expansion occurs adiabatically. Additionally, when 
the viscous effects are small, sound generation should be regarded as an isentropic process, resulting in 
pressure/density relationship / ( / )dp p dγ ρ ρ= .  Therefore, in view of (4e), changes in pressure and temperature 
relate as / /( 1)( / )dp p dT Tγ γ= − .   
 
The analysis shows that density fluctuations may also be replaced with their equivalent in terms of velocity 
fluctuations from the continuity equation. With the aid of momentum and energy equations, the pressure fluctuations 
are subsequently expressed in terms of velocity and thermal fluctuations.  
 
The set of Euler’s equations are averaged using the above definitions.  The averaged equations, herein referred to as 
the base-flow equations are  
 
  0,oD ρ =          (5a) 

  ( ) ,o i i j
i j

p
D v v v

x x
ρ ρ

∂ ∂ ′ ′+ = −
∂ ∂

       (5b) 

  ( )o t j t
j

p
D h v h

t x
ρ ρ

∂ ∂ ′ ′− = −
∂ ∂

.       (5c) 

To obtain a self-contained system of equations for the base flow, energy equation (5c) is rearranged as 
 

  21 1
( )

2 2
( )o j t o j j

j

v
p

D h v h D v v
t x

ρ ρ ρ
∂ ∂ ′ ′ ′ ′− = − −
∂ ∂

⎛ ⎞+⎜ ⎟
⎝ ⎠

    (5d) 

 
The base flow is solved by modeling the stress terms on the RHS of (5b) and (5d) and using the ideal gas law 
( )1 h pργ γ=− .  In a RANS-type mean flow we require / 0p t∂ ∂ = .  Upon subtracting the above equations from 
the set of equations (1), the following relations (referred to as the residual equations) are found for the fluctuating 
variables 
 

  ' 0,j
o

j

m
D

x
ρ

∂
+ =
∂

        (6a) 

  
'

' ,( ) ( ) ij
o i o i j

i j j
i

ep
D m D v m

x x x
vρ

∂∂ ∂
+ + + =

∂ ∂ ∂
      (6b) 

  ( ) ( )o t t j t j t
j j

p
D h h v h v h

x t x
ρ ρ ρ ρ

′∂ ∂ ∂′ ′ ′ ′ ′+ + − =
∂ ∂ ∂

.     (6c) 
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We have used the following definitions 
   

( )o j
j

f
D f v f

t x
∂ ∂

≡ +
∂ ∂

        (7a) 

j jm vρ ′≡          (7b) 

( )ij i j i je v v v vρ ρ′ ′ ′ ′≡ − − .        (7c) 
          

The energy equation is now written in a different form that is more closely related to pressure fluctuations p′ . Using 
the ideal gas law (4d), the first term on the LHS of the energy equation (6c) is recognized as 
   

  21
( )

2
( )

1t t j j j jh h p m v v eγ
ρ ρ ρ

γ
′ ′ ′ ′+ = + +

−
− .     (7d) 

 
For later derivation of the convective wave equation, it is also more appropriate to express time derivative /p t′∂ ∂  

in (6c) in terms of the operator oD   

  i
o i

i i

vp p
D p p v

t x x
′ ′∂∂ ∂′ ′= − −

∂ ∂ ∂
.       (8) 

 
We substitute for / ip x′∂ ∂  from (6b) into (8), and subsequently place /p t′∂ ∂  from (8) into (6c) to obtain the 
following energy equation  
    

1

2

1
( ) (

1
)i jj j

o j i j o j j t j t
j j i i j

j j

ev v
D p m h p v m D v v v

x x x x x
e ρ ρ

γ

∂∂ ∂∂ ∂′ ′ ′ ′ ′ ′+ + + = − −
− ∂ ∂ ∂ ∂ ∂

−  (9a)    

where  

  21

2
t th v′ ′ ′≡ +          (9b) 

 
The energy equation (9a) may also be written in a slightly different form using a new variable oh′ that is related to 

the actual fluctuation in stagnation enthalpy th′  as 
 

  2 21 1

2 2
o t i ih h v h v v v′ ′ ′ ′ ′ ′≡ + = + −        (9c) 

 
Substituting (9c) into (9a), the energy equations becomes 
 
 

 
1

2

1
( ) (

1
)j j j

o j i j o j o j o
j j i i j

j j ij

v v v
D p m h p v m D v h v h

x x x x x
e e ρ ρ

γ

∂ ∂ ∂∂ ∂′ ′ ′ ′ ′ ′+ + + = + −
− ∂ ∂ ∂ ∂ ∂

−  (9d) 

Alternate definitions for the dependent variables are possible at the cost of re-defining the source.  For example, the 
first term on the RHS of the energy equation (9d) may be combined with the leading term on the LHS to define a 
new pressure variable [Ref. 11] as 2( 1) /e kkp p eγ′ ′= − −  
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1 1

( ) ( (
1 2

) )j j j
o j i j j o j o

j j i i j
e e ij kk ij

v v v
D p m h p v m v h v h

x x x x x
e eγ

ρ ρ
γ

δ
∂ ∂ ∂∂ − ∂′ ′ ′ ′ ′ ′+ + + = −

− ∂ ∂ ∂ ∂ ∂
− − .   (9e) 

 
With respect to the generalized pressure ep′ , the momentum equation (6b) becomes  
 

 
1

2
( ) ( ) ( )o i o i j

i j j

e
i ij kk ij

p
D m D v m e

x x x
v e γ

ρ δ
′∂ ∂ ∂ −′+ + + =
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− .    (9f) 

           
A.   Special Cases of the Acoustic Equation 

Consider the case when the mean flow is parallel and a function of the span-wise coordinates only 
 
 1 2 3 2 3( , ), ( , ), constantj jv U x x x x pδ ρ ρ= = = ,     (10) 
 
subsequently  

   
1

oD D U
t x

∂ ∂
= = +

∂ ∂
.         (11a) 

Using the ideal gas law, we have 
 

 2( )1 h p cρ ργ γ= =− .         (11b) 
 
And the base flow momentum equation (5b) shows that  
 

 0i j
j

v v
x

ρ
∂ ′ ′ =
∂

.          (12a) 

Then according to Eq. (4b) 
 

 2 2
2 3 2 3

1 1

2 2
( , ) ( , )t Uh h x x x x v′= + + .       (12b) 

 
And the base flow energy equation shows that 
 

 2

1

1

2
( ) 0j t

j

U v v h
x x

ρ ρ
∂ ∂′ ′ ′+ =
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.        (12c) 

 
Using the above results into the residual momentum and energy equations we conclude  
 

 1

' ,ij
i i j

i j j

ep U
Dm m

x x x
δ

∂∂ ∂
+ + =
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       (13) 

 2' ( ) ,j
j

Dp c m q
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         (14) 

where 

 2
1

1

2
( 1) ( ) ( ) ( )j t j

j j

q D v v U v v
x x

γ ρ ρ ρ
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⎜ ⎟
⎝ ⎠

 .     (15a) 

Source expression q may also be expressed in terms of oh′ as defined in (9c) 
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 2
1

1

2
( 1) ( ) ( ) ( )j o j

j j

U
q D v v h v v

x x
γ ρ ρ ρ

∂ ∂′ ′ ′ ′ ′≡ − − + +
∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (15b) 

 
 
Residual parts of the continuity (6a), momentum (13), and energy equation (14) are now rearranged to construct 
wave equations for either pressure or density. 
 
A form of Phillips’ equation is derived after eliminating factor jm  between momentum and energy equations by 
taking the convective derivative of the latter and subtracting that from the gradient of the former 
 

 2 2 2 2

1

'
' ( ) ( ) 2 .ij i

j j i j i

e mp U
D p c c c Dq

x x x x x x

∂ ∂∂ ∂ ∂ ∂
− = − + +
∂ ∂ ∂ ∂ ∂ ∂

     (16) 

 
Lilley’s second-order wave equation for acoustic pressure in a stationary mean flow [Refs. 10, 14] is deduced from 

Eq. (16) if we let 0U = , 2 2c c∞=  , and p p∞= (note that ot h′ ′= in a stationary mean flow)   
 

 
22 2 2 2 2

2 2 2 2

( )' ' 1 ( ' )
( )

2
i j

j j i j j

j ov hv vp p v
c t x x x x c t x t h

ρρ γ ρ

∞ ∞ ∞

′ ′′ ′∂∂ ∂ − ∂ ∂
− = − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
,    (17) 

 

where 2( 1)h cγ ∞ ∞− = . Since the sound speed was set equal to that measured at the far-field observer point, the 

mean density needs to be equal to the ambient density 2/p cρ ρ γ∞ ∞ ∞= =  as well.  Therefore the actual jet density 
does not have a place in the source.   
 

Similarly, Lighthill’s equation for density fluctuations in a quiescent medium ( 0,U = 2 2c c∞= , 

and p p∞= ) is written after eliminating 2 /j jm t x∂ ∂ ∂  between continuity and momentum Eqs (6a) and (13) 
  

 
2 2 2

2 2
2

( )i j ij
j j i j

c v v p c
t x x x x
ρ ρ

ρ ρ δ∞ ∞

′ ′∂ ∂ ∂ ′ ′ ′ ′− = + −
∂ ∂ ∂ ∂ ∂

⎡ ⎤⎣ ⎦ .     (18) 

 
Again ρ  should be set equal to the ambient density ρ∞ .  Notice that unlike the conventional acoustic analogy, the 
base-flow equation is already subtracted from Eq. (18), and the sources on the right hand side consist of fluctuating 
terms only.  The pressure/density difference that appears as a source in Lighthill’s equation is second-order in 
fluctuating variables, and may be written after eliminating /j jm x∂ ∂  between continuity and energy equations (6a) 
and (14).  A form of Lighthill’s acoustic analogy that accounts for the energy equation would be a third-order wave 
equation  
 
   

 
2 2 2

2 2
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1
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2i j k o ij
j j i j k
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t t x x x x t t x
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⎝ ⎠⎣ ⎦⎣ ⎦
.     (19) 
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A comparison of equations (17) and (19) clearly shows that pressure fluctuations may be viewed as a preferred 
parameter in writing the wave equation.   
 
 The source components in equation (17) when calculated on a proper surface (i.e., 0U ) may be used in 
conjunction with the Kirchhoff approach or Ffowcs-Wiliams/Hawkings (FWH) surface integral methods to calculate 
the far-field acoustic pressure.  The difference between the above source and the usual acoustic analogy (18) is that 
Eq. (17) requires time history of the velocity and the stagnation enthalpy on the surface.  
 
Rather than assuming a quiescent acoustic medium, it is more appropriate to include the mean flow effect by moving 
the linear component from the second source term on the right hand side of Phillips’ equation (16) to its operator 
side.  To realize this, form the axial gradient 1/ x∂ ∂  of the momentum equation (13), multiply that by / iU x∂ ∂ , and 
subtract the result from the convective derivative of Eq. (16) to obtain the third-order convective wave equation 
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Stress terms ije and q were defined in Eqs. (7c) and (15).  This result, also referred to as an inhomogeneous 
Pridmore-Brown equation, is expressed in a more transparent form as 
 
 Lp′ = Γ ,          (21) 
 
where source expression Γ  was defined as the RHS of Eq. (20) and the operator L is    
 

 
2

2 2 2

1

( ) 2
j j j j

U
L D D c c

x x x x x
∂ ∂ ∂ ∂

≡ − +
∂ ∂ ∂ ∂ ∂

.      (22) 

 
Equation (20) may also be derived directly by rearranging equation (3.5) of [Ref. 11] . 
 
A comparison of equations (20) and (17) shows that the presence of a mean flow not only refracts the sound after it 
was generated, but it also modifies the sources of sound as evidenced by the RHS of these two equations. 
 
 
B.   Discussion 
      The acoustic equations described above are all consistent in their description of the aerodynamic noise sources.   
With the exception of Phillips’ equation (16) which still holds a linear term on the right hand side, the subsequent 
wave equations (17), (19) and (20) are summarized as =Lq s , where the linear operator L acts on either pressure or 
density fluctuations, and the source s consists of components that are, at least, second-order in fluctuating variables.  
These equations were derived from the residual continuity, momentum and energy equations (6a, 13, 14); and as 
such their respective sources should be viewed as the difference between the more traditional analogies and their 
non-radiating base flow.    In conventional analogies, source consists of both linear and non-linear components 
[Refs. 15,16,17]. In the following, additional simplification is provided prior to an assessment of individual source 
elements. 
 
C.   Further Simplification of the Acoustic Equation 

The source expression in the convective wave equation (20) is further simplified once we insert the 
assumption of a locally parallel mean flow into the base-flow equations and conclude that Reynolds stress i jv vρ ′ ′ has 
a Favre-averaged value that is independent of the source location. While this simplifications leaves out the gradients 
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of i jv vρ ′ ′ from the source elements in Eq. (20), it is still realized that in a real spreading jet, base-flow momentum 
and energy equations are both inhomogeneous, which implies that the true sources are the difference between the 
fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes.  Subsequently we let    
 

 ( )i j

j j
i j

e
v v

x x
ρ

∂ ∂ ′ ′= −
∂ ∂

.         (23) 

 
In a RANS-based jet noise prediction, the base flow is usually the averaged mean flow.  The two-point statistics 
between various fluctuating variables are modeled and calculated from their respective variance combined with the 
time- and length-scales of the local turbulence.  Thus the density factor ρ  appearing in the numerator of each 
source component in Eq. (20) is replaced with its mean value ρ , which practically amounts to neglecting terms that 
are higher than second-order in fluctuating variables.    Dividing equation (20) by constant pγ  one finds 
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p

L
p

π π
γ

′
′ ′= Γ ≡          (24) 

where the equivalent sources of aerodynamic sound are 
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    (25)  

 
Three pairs of brackets in equation (25) designate three distinct sources.  The former terms in each bracket are 
identified as self, shear, and enthalpy sources respectively.  Self and shear source terms are second-order in 
fluctuating velocity, and are each complemented by a second term involving the mean flow enthalpy which is not 
zero even when the flow is isothermal, but is shown to be small relative to the former.  Source terms that consist of 
the mean density gradient are negligible in unheated jets, but could potentially become important as jets get hot.  
The second source component within the enthalpy noise group was originally part of the first source term in 
equation (20); and is now grouped with the heat-related sources.  A detailed comparison of the individual source 
terms of Eq. (25) is presented in the next section.  It turns out that the major difference between the unheated and 
heated jets is due to the fluctuations in stagnation enthalpy that appears in the third bracket above.  This term is first 
order in velocity fluctuations, and its spectral shape behaves as 4ω  in the low frequency limit, and its high-
frequency roll-off could be modeled to behave as 3ω− , similar to the self noise.   
 

III. Subsonic Flowfield Simulations 
 A total of eight subsonic cases within the Tanna matrix [Ref. 18] were considered for simulation of a 2-inch 
diameter jet using the total enthalpy variance model (Appendix A).   The nozzle exhaust conditions as defined by set 
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points within the Tanna matrix are summarized in Table I.  In past work, these cases were studied extensively [Ref. 
19] to better understand and predict turbulence quantities in the developing jet region, where most of the jet noise is 
produced.  Comparisons were made with available PIV data collected at the SHJAR facility [Refs. 4,20] at 
NASA/Glenn Research Center. Sample results that compares energy variance model with the total enthalpy variance 
model were presented in a previous study [Ref. 1]. 
 
 Simulations use an axisymmetric 316x171 computational grid, which includes the internal nozzle region 
well upstream of the exit plane.  The computational domain extends 100 jet exit radii in the streamwise direction and 
25 jet exit radii radially, sufficiently distant to minimize boundary condition placement impact on the shear layer 
entrainment path-lines.  Nozzle flow boundary conditions were prescribed uniformly as inflow stagnation conditions 
for pressure and temperature imposed well upstream of the nozzle exit.  Solution grid resolution sensitivity and 
convergence criteria were discussed in [Ref. 1].  The same reference also compares fluctuations in total and static 
temperatures and shows that the former parameter remains consistently small in unheated jets while the latter could 
grow to become significant with jet speed.  The predicted centerline decay of mean axial velocity and turbulent 
kinetic energy are plotted in Figure 1 as a function of Witze axial parameter wx  for subsonic jets [Ref. 21].  The 

length of the potential core collapses at / 1w jx r ≅  in agreement with the theory – and the peak TKE on the centerline 

is at / 1.5w jx r ≅ , and shows slight increase with jet temperature.  
 

 0.220.08 0.16 ( )j
W

j j

U
x x

c
ρ ρ
ρ ρ

−∞ ∞

∞

= −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

            (26) 

 
Contour plots in Figures 2 and 3 show the variance in total temperature for the first 15-diameters of the jet as a 
function of jet speed and temperature.  The peak temperature fluctuations increase with both speed and temperature.   
Similar calculations in unheated jets show that peak levels of 0.20x10-2 and 0.70x10-2 for cases sp03 and sp07 are 
relatively insignificant within the context of the heated jets.  

Table I.  Tanna Matrix Set Point Conditions 

S.P. NPR ,t jT T∞  jT T∞  a cM ∗  jM  

03 1.197 1.000 0.950 0.50 0.51 
23 1.103 1.810 1.760 0.50 0.37 
42 1.066 2.750 2.700 0.50 0.30 
07 1.861 1.000 0.840 0.90 0.98 
27 1.361 1.922 1.760 0.90 0.68 
46 1.225 2.861 2.700 0.90 0.54 
29 1.900 2.114 1.760 1.33 1.00 
49 1.692 3.138 2.700 1.48 0.90 

a c jM U c∗
∞=  
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 Figure 1.   Centerline velocity and turbulent kinetic energy vs. Witze axial parameter in subsonic jets.  
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Figure 3.   Variance in total temperature normalized  
with exit total temperature at static temperature ratio  
of  2.70 and jet acoustic Mach number of:  
0.50 (top); 0.90 (middle); and 1.48 (bottom). 

Figure 2.   Variance in total temperature normalized  
with exit total temperature at static temperature ratio 
of  1.76 and jet acoustic Mach number of:  
0.50 (top); 0.90 (middle); and 1.33 (bottom). 
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IV.   Acoustic Results 
 In the first step, the relative strength of various source terms in the governing wave equation (Eq. 24) will 
be compared at jet exit conditions shown in Table I.   This exercise helps to identify sources that are relatively more 
important in the noise generation process.  The remaining sources will be considered as small and neglected in the 
final calibration of the prediction methodology. 
 
A.   Source Strength Evaluation 
       Jet noise spectra from various source components are compared at 90o (see Eq. C5, Appendix C).  The source 
correlation coefficient Iηηηη  is replaced with 1111I  in an isotropic turbulence as described in Appendix B.  Both non-
compact (Eq. B9) and compact (Eq. B21) variations of the source are considered to in order to ensure that important 
noise components are not inadvertently overlooked as a result of the specifics of the modeling.    
 
Each row within the column matrix Eq. C5 represents, in an orderly fashion, a source element in Eq. 25.  The first 
and third source terms within the shear noise group are identically zero at 90oθ =  (i.e., rows 3 and 5 in Eq. C5); and 
the remaining five sources are integrated over the jet volume starting from its exit plane.  The turbulence length- and 
time-scales are calculated as 1.5/C κ ε=  and /o Cττ κ ε=  for all source elements.  Figure 4 shows the relative 
significance of each source component when a non-compact source model is used.  Comparisons point toward self2 
and shear2 as sources that are relatively small under all conditions, whereas enthalpy1 and enthalpy2 intensify with 
heat and become serious contenders to the self1 under heated conditions.  Between the two heat-related sources, the 
former scales with 4ω  at low frequency and dominates most of the spectrum – while the latter scales as 2ω and 
should be viewed a potential source only at the very early stage of the spectrum.   Component predictions shown in 
Figure 5 use a compact source model (Eq. B21).  A similar relative strength among sources is observed, although the 
spectra appear slightly less broad relative to their respective counterpart in Figure 4. 
 
 
B.   Spectral Predictions 

Numerical results are shown for eight subsonic set points described in Table I, and are compared with the 
lossless, narrow-band measurements of Ref. [4] at a distance of / 100jR D = .   In addition to the standard flow 
variables, which include the turbulent kinetic energy and time- and length-scales, this modified version of the flow 
solver permitted input of the local total temperature variance as predicted by the modified scalar variance model 
(Appendix A).  Computations use only two source components denoted as self1 and enthalpy1, as represented by the 
first and the sixth rows in Eq. C5 (Appendix C) 
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            (27) 
 

Outside the usual calibration constants C and Cτ  that determine the length- and time-scales, the final calibration is 
achieved by selecting a pair of constants A and B in Eq. (27), which practically amounts to using a linear 
combination of the two sources.  This is necessary due to the difference in scales between velocity and thermal 
fluctuations as well as possible cross-correlation between various sources.  Parameters A and B were determined by 
calibrating the 90o predictions across two set points SP07 and SP27 (Table I).    

 
Spectral results are shown in Figures 6, 7 and 8 for the unheated jets as well as jets at temperature ratio of 1.76 and 
2.70. Predictions exhibit a reasonably good agreement with data at angles not very close to the downstream jet axis.  
The near-axis results weaken gradually with increasing jet speed and/or its temperature.  The deteriorating quality of 
shallow-angles predictions is more likely attributed to the neglect of jet spread in the Green’s function calculations 
which also leads to a dismissal of the causal Green’s function.     Fine-tunings such as cross-correlation between 
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sources, or more elaborate statistical models with multiple length-scales and/or non-separable correlations are 
unlikely to correct the near-axis deficits observed in a parallel flow approximation.  The causal solution to the 
homogeneous parallel-flow equation (20) is known to become unbounded downstream, and is usually discarded as a 
viable Green’s function. A second bounded Green’s function is found only when the mean flow supports a small jet 
spread [Ref. 22].  In that case, a complete solution to the sound field is written as a convolution of the source 
elements discussed here with both components of the Green’s function. 
 
 

V. Summary 
       Identification of the true aerodynamic noise sources is an important aspect of the aeroacoustics research in 
order to help engine designers with their noise mitigation efforts.   Prediction of jet noise from empirical models is a 
quick and practical way of noise assessment, but is also limited to the bounds of the data-base.  The acoustic analogy 
derivation discussed in section II provides a coherent noise prediction framework that recognizes the sources as the 
difference between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes.  As shown through 
the component comparisons of section-IV, source elements identified as self1 and enthalpy1 in Eq. (25) emerge as 
the major contributing components to the sound field.  This study also highlights the benefits of providing the total 
temperature fluctuations as a formal input parameter for jet noise prediction from a RANS flowfield simulation.  
The current approach in extending a baseline scalar variance model to furnish this additional input in a generalized 
manner is exploratory but appears promising.  Needless to say, additional experimental measurements are required 
to verify the RANS model’s quantitative prediction for the temperature fluctuations across a range of propulsive hot 
jet conditions.  Statistical models proposed in the source modeling, although intended to capture the main features of 
various sources for their strength and spectral roll-off, also require validation.  It is hoped that further refinement of 
the modeling, in conjunction with the instability-related noise component, i.e., convolution of the causal Green’s 
function with the sources described here, could improve spectral predictions at angles close to the jet axis. 
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      Figure 4.    Effect of jet temperature on noise sources in Eq.  26.   
                Predictions are at 90o observer angle and use a non-compact source model (Eq. B9).  

f DJ / UJ

dB

10-2 10-1 100 101

self1
self2
shear2
enthalpy1
enthalpy2

sp03

10 dB

f DJ / UJ

dB

10-2 10-1 100 101

self1
self2
shear2
enthalpy1
enthalpy2

sp23

10dB

f DJ / UJ

dB

10-2 10-1 100 101

self1
self2
shear2
enthalpy1
enthalpy2

sp42

10 dB

f DJ / UJ

dB

10-2 10-1 100 101

self1
self2
shear2
enthalpy1
enthalpy2

sp29

10 dB

f DJ / UJ

dB

10-2 10-1 100 101

self1
self2
shear2
enthalpy1
enthalpy2

sp07

10 dB

f DJ / UJ

dB

10-2 10-1 100 101

self1
self2
shear2
enthalpy1
enthalpy2

sp27

10 dB

f DJ / UJ

dB

10-2 10-1 100 101

self1
self2
shear2
enthalpy1
enthalpy2

sp46

10 dB

f DJ / UJ

dB

10-2 10-1 100 101

self1
self2
shear2
enthalpy1
enthalpy2

sp49

10 dB



NASA/CR—2007-214924 15

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Figure 5.    Effect of jet temperature on noise sources in Eq.  26.                                
              Predictions are at 90o observer angle and use a compact source model (Eq. B21).  
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Figure 6.   Predicted spectra vs. data at set points  Figure 7.    Predicted spectra vs. data at set points SP23, 
                   SP03 and SP07 at indicated inlet angles.                                SP27 and SP29 at indicated inlet angles. 
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    Figure 8.    Predicted spectra vs. data at set points SP42, SP46 and SP49 at indicated inlet angles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10
Lo

g
(U

J
D

-1 J
p2

/P
r2

),
dB

2 1 0 145
50
55
60
65
70
75
80
85
90
95

100
105
110

90o

f DJ / UJ

10
Lo

g
(U

J
D

-1 J
p2

/P
r2

),
dB

10-2 10-1 100 10145
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120

120o

f DJ / UJ
10

Lo
g

(U
J
D

-1 J
p2

/P
r2

),
dB

10-2 10-1 100 101
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130

150o



NASA/CR—2007-214924 18

Appendix A – Enthalpy Variance and Dissipation Rate Model 
The high-Reynolds-number form of the equations governing the transport of the total enthalpy variance and its 
dissipation rate is based in concept on the work of Nagano and Kim [13] for generalized turbulent thermal 
diffusivity 

2
t

t t
t tk

j jkt

kD k P
Dt x x

αρ α ρε
σ

⎡ ⎤⎛ ⎞
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∂ ∂

. (A2) 

 
Here, k and ε  denote the turbulent kinetic energy (TKE) and dissipation rate obtained from a companion two-
equation turbulence model, the operator /D Dt is defined in a similar fashion as oD  in Eq. (7a), α and tα are the 
molecular and eddy diffusivities for heat, and Pk is the production term used in the TKE equation.  Values utilized 
for the modeling constants in the variance dissipation rate equation are based on results described in [Refs.1,12] and 
are listed in Table . 
 

Table A1.  Enthalpy Variance Dissipation Rate Coefficient Constants 

Cd1 Cd2 Cd3 Cd4 σkt σεt 

2.0 0.72 2.2 0.8 1.5 1.5 
 
Physical interpretation of the quantity kt tracked within the CFD simulation is based on selection of the flow variable 
gradient used for the turbulent variance production term 

tkP  For example, Nagano and Kim originally solved 
directly for the static temperature variance.  Recent numerical studies modeling helium jets and afterburning rockets 
plumes indicate improved model generalization using an internal energy variance approach.  Further extension of 
the framework to model the total enthalpy variance was found necessary to improve jet noise prediction. 
 
Two modeling approaches were studied for use in hot jet noise prediction [Ref.1].  The first utilized the internal 
energy variance as described in [Ref.12]. The second modeled the total enthalpy variance, with appropriate variable 
substitution for the variance dissipation rate equation.  The production term utilized in the total enthalpy variance 
model is  

                      2
t

t t

j j
tk

h h
x x

P α ∂ ∂
∂ ∂

= ,   (A3) 

where e is the specific internal energy and ht is the specific total enthalpy.  For a calorically and thermally perfect 
gas, the specific heat constants are invariant with temperature, and so the temperature variance can be expressed as f 
 
   ( )2

t t t p t tk h h c T T′ ′ ′ ′= = ,                                                          (A4) 

 
and pc is the specific gas constant.  When extending the variance model to predict thermal eddy diffusivity, an 
expression for the thermal turbulent time scale is needed.  Based on results from past work, the following expression 
was used: 

                      2 ,max ,t
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= 0.09Cμ =  (A5) 

The thermal eddy diffusivity, applied to the turbulent diffusion term in the mean energy equation and the variance 
production term, is written for model closure as  
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 t tC kλα ρ τ= .  (A6) 
 
As recommended by Chidambaram et al. [23], value of 0.14Cλ =  was used.  The local turbulent Prandtl number is 
then defined as the ratio of the eddy viscosity to the thermal eddy diffusivity 
 
        Prt t tμ α= .             (A7) 
 
Appendix B – Source Model 
The far-field sound spiral density per unit volume of turbulence at y  is  
 

 
22 .( , , ) ( , , ) ( , , ) i ikp x y G x y q y e e d dωτ ξ

ξ

ω ω ξ τ τ ξ
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−
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= ∫ ∫             (B1) 

where q denotes a two-point space-time correlation between fluctuating variables at source points A and B separated 
by space ξ  and time τ , and G is the relevant Green’s function [Ref. 24].  For simplicity, we consider the 
turbulence as isotropic as described by Batchelor [Ref. 25], and describe a two-point space-time correlation of the 
velocity components (notation iu  is now used in place of iv′  as a fluctuating velocity component.) 
 

 2 1 1
( ) ( ) [( ') ']

2 2
i j

i A j B iju u u f f f
ξ ξ

ξ δ
ξ

= + − ,       

                   (B2) 

 2 2 2 2
1 2 3'( , ) ,

f
f ξ τ ξ ξ ξ ξ

ξ
∂

≡ = + +
∂

. 

 
Consider a fourth-order time-delayed space-time correlation per unit volume of turbulence at y  
 
 ( , , )ijk i j kR y u u u uξ τ ′ ′≡  .               (B3) 
             
The spectral density associated with the axial component of the above tensor is the four-dimensional wave-number 
frequency spectrum function 
  

 .
1111 1111( , ) ( , , ) .

ss i ikI y R y e e d dω τ ξ

ξ τ

ω ξ τ τ ξ−= ∫ ∫                 (B4) 

The above integral was written in a frame moving with source convection velocity cU , and sω is the source frequency 
in that frame and is related to the observer frequency through the Doppler factor.  If turbulence correlation coefficients are 
quasi normal, then the axial component of the above tensor becomes 2

1 1 1 1 1 12( )u u u u u u′ ′ ′=  and subsequently 
 

 2 2 2 .1 1
1111 1
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ss i ikI y u f f f e e d dω τ ξ
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ω ξ τ ξ
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−= + −∫ ∫ .            (B5) 

              
  
Similarly, consider the two point space time correlation for the enthalpy/velocity source term 
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 .( , ) ( , , )
ss i ik

ij ijy y e e d dω τ ξ

ξ τ

ω ξ τ τ ξ−Ξ ≡ ℑ∫ ∫ .             (B7) 

As suggested by measurements [Ref. 26], we assume that exponential functions govern spatial as well as temporal 
decay of velocity correlations  

 ( , ) exp( / ), ( ) exp( / )o of h
πξ

ξ τ τ τ τ τ τ= − − = − .            (B8)  

Following Proudman [Ref. 27] the correlation components are considered in the direction of the observer, i.e., the 
axial component of separation vector aligns with the direction of the wave number k (i.e., 1.k kξ ξ= ) .   
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+∫ ,             (B9) 

 
where the non-compactness factor 1N  will be defined subsequently.  Using Millionshtchikov’s hypothesis [Ref. 25] 

and noting that the autocorrelation of ( )i ou h′  is zero in isotropic turbulence, 
  
 ( ) ( ) ( ) ( ) ( ) ( )i A j B i A j B A Bo o o ou h u h u u h h′ ′ ′ ′=  .           (B10) 
 
Now if the space/time correlation governing the enthalpy fluctuations is represented as 
 

 2( ) ( ) ( ) ( , )A Bo o oh h h g ξ τ′ ′ ′= ,             (B11) 
 
then from Eqs. B6, B7, and B10 we find 
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Experimental measurements show that both heated and unheated jets exhibit similar high-frequency decay.   Ideally 
it is desirable for the correlation coefficients B4 and B7 to provide similar asymptotic behavior.  In the absence of 
any experimental data, as a first approximation we assume that enthalpy correlation function ( , )g ξ τ  decays in a 
similar fashion as ( , )f ξ τ .  From Eq. (B12) it is shown that  
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The non-compactness factors  
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decay as 5χ − and 4χ −  respectively as χ → ∞ . 
 
The spectral shape function due to either self or enthalpy source components is obtained from 
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 4( ) ( ) ( )F H N
c
ω

ω ω ω
∞

= ,             (B15) 

which shows a low-frequency roll-off 4( )F ω ω∝ as 0ω → . The high-frequency decay is either 3( )F ω ω−∝ or 
2ω−  depending upon factor 1N  or 2N  (see Eq. B14).  The spectral density from above two sources relate as 
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Ξ =              (B16) 

The ratio 2 1( ) / ( )N k N k  remains as 1.0 for most of the spectral range and somewhat beyond the peak, with the 
exception of the tail-end of the spectrum (Figure B1).  In evaluating the relative source strength, this difference has 
been neglected and the correct high-frequency behavior has been selected as 
  

 
2

11 111122
1

5 1
8

oh I
hu

′
Ξ ≅ .              (B17) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure B1.   Non-compactness factor for self and enthalpy source terms (Eq. B14);  
           solid line, 1N ; dashed-line 2N . 

 
In the following discussion, it is shown that alternative function forms are available that are compatible with the 
exponential functions, and provide similar high-frequency decay for both sources discussed above.  
 
 
Alternative Source Modeling  
A less complicated way of describing the statistical properties of turbulence assumes a compact eddy approximation 
in the limit of zero wave-number (i.e., 0k → ),  in which case the non-compactness factors defined in Eq. B14 
become identically equal to 1.0.   If the correlations were expressed as separable, the spectral density would strongly 
depend on the temporal function of the correlation for its high-frequency roll-off, and very weakly on its spatial 
form, as the spatial Fourier transform converts into volume integration.  Subsequently, similar spectral 
characteristics would be expected for both sources. 
 
For example, one may consider a temporal function such as (see Figure B2) 
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where time t is replaced with its absolute value when it is negative, and Kν  denotes a modified Bessel function.  

This function is void of a cusp at its origin and its Fourier transform scales as 2 1νω− − at high frequency 
 

 1
2

1
2

2 20

( )
( )

1( ) 2 ( , , ) cos( ) 2
(1 / )

H h t a t dt
a a ν

ν
ν

πω ν ω
ω

∞

+

Γ +

Γ
= =

+∫  .        (B19) 

 
The spectral shape function 4( ) ( )F Hω ω ω= which would be similar for both correlations B5 and B12, is now 
modeled by selecting parameterν .  With 3ν =  it is shown that 
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 Figure B2.  Function ( , , )h t aν as defined in Eq. (B18);  dashed line ( 3, 6aν = = ); solid line exp( 2 )t− . 
 
  
 
 
When 11/ 4ν = , the high-frequency roll-off follows 5 / 2( )F ω ω−→ , and source correlation coefficients of interest 
become  
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Appendix C – Source Green’s Function Convolution 
A stationary point source with frequency ω  and location x s  (superscript s denotes a source location) is considered 
in defining the Green’s Function (GF)  

 
 2( ) ( )i t i t sL e c e x xω ω δ− −
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where ( , , )m sf r k θ is solved numerically as a solution to second-order compressible Rayleigh operator [Ref. 24], 

corresponding to mode number m, wave number /k cω ∞= (to avoid confusion, notation κ  will be used to denotes 
TKE in this appendix), and observer angleθ   
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The relevant GF associated with a moving singularity with source frequencyω s  and convection velocity ˆ
ciU  is  
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where ( )/s sM U r c∞=  and  /c cM U c∞=  are the local acoustic Mach number and convection Mach number 
respectively. We make the simplifying assumption that the source components on interest are uncorrelated.  As 
usual, the spatial derivatives are moved from source to the Green’s function. For example 
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Some level of simplification is achieved when we consider components of turbulence fluctuations in the direction of 
the observer θ  as suggested by Proudman [Ref. 27]. As an example the first source elements within the self and 

enthalpy category (see Eq. 27) are designated as 
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 where η  is the component of the 

spatial separation of the correlation in the direction of the observer (see Figure).  
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The required spatial derivatives of the Green’s function are       
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where cosik θ= −,1G G  and the radial derivative r,G  applies to the function ( , , )mf r k θ .   
The following simplifications are introduced into the radial derivatives using the high-frequency solution to the GF 
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A more accurate representation of function Q should account for mode number  
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Since the zeroth mode usually makes the major contribution to the GF, the last term on the RHS was neglected in 
approximating the derivatives of the GF.   Subsequently, the following expression are derived for the far-field 
spectral density per unit volume ring-source at y   
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               (C5) 
 
Each of the seven components shown in the above column matrix represents the contribution to the sound field from 
a source of Eq. (27) in a similar order.  The source correlation coefficient Iηηηη  is the same as 1111I  in either non-

compact (B9) or compact-eddy (B21) representation, and 2
11.5uκ = is the turbulent kinetic energy.  The turbulence 

length- and time-scales are calculated the usual way from the turbulent kinetic energy and its dissipation rate as 
1.5/C κ ε=  and /o Cττ κ ε= . 
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