STARDUST CURATION & SCIENCE AT JSC.

K. Nakamura-Messenger¹, M.E. Zolensky², R. Bastien¹, T.H. See¹, J.L. Warren¹, T.J. Bevill¹, N. Todd¹, L. Fletcher², F. Horz², C.C. Allen², A.J. Westphal³, C. Snead³, H.A. Ishii⁴ and D. Brownlee⁵ ¹ESCG, NASA Johnson Space Center, Houston, TX 77058 ² NASA Johnson Space Center, Houston, TX 77058 ³Univ. of California at Berkeley, Berkeley, CA 94720 ⁴Lawrence Livermore National Laboratory, Livermore, CA 94550 ⁵Univ. of Washington, Seattle, WA 98195 (keiko.nakamura-1@nasa.gov).

Introduction: Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and returned to Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. During the six month Preliminary Examination period an international consortium of 180 scientists investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions [1-7]. The Stardust samples are now available for research by the entire research community.

On-line Catalog available at <u>http://curator.jsc.nasa.gov/stardust/</u>

includes all curatorial information for a given particle, track, or tile, including allocation history, analytical summary, and photo documentation as well as the procedure for sample requests.

Photo Documentation:

Level 1 – provides a low resolution record of each individual aerogel cell in its most pristine, "as received" condition

Level 2 – high resolution, plan view mosaics of aerogel cells and Al mounting foils, recording their positions in a cell-specific reference frame

Level 3 –detailed documentation of individual aerogel tiles following extraction, portrays individual tracks from the side.

Level 4 – documentation of individual tracks extracted by either the keystone system [8] or ultrasonic microblades [9].

References:[1] Brownlee D. et al. (2006) *Science, 314*, 1711-1716. [2] Zolensky M.E. et al. (2006) *Science, 314*, 1735-39. [3] Horz F. et al. (2006) *Science, 314*, 1716-1719. [4] Keller L.P. et al. (2006) *Science, 314*, 1728-1731. [5] Flynn G.J. et al. (2006) *Science, 314*, 1731-1735. [6] Sandford S.A. et al. (2006) *Science, 314*, 1720-1724. [7] McKeegan K.D. et al. (2006) *Science, 314*, 1724-28. [8] Westphal A.J. et al. (2004) *Meteoritics & Planet. Sci., 39*, 1375-1386. [9] Ishii H.A. et al. (2005) *Meteoritics & Planet. Sci., 40*, 1741-1747.