
NASA/TM–2007–214882

Orbiter Entry Aeroheating Working

Group viscous CFD boundary layer

transition trailblazer solutions

William A. Wood, David W. Erickson, and Francis A. Greene

Langley Research Center, Hampton, Virginia

June 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10537737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a
key part in helping NASA maintain this
important role.

The NASA STI Program Office is operated
by Langley Research Center, the lead center
for NASA’s scientific and technical
information. The NASA STI Program Office
provides access to the NASA STI Database,
the largest collection of aeronautical and
space science STI in the world. The Program
Office is also NASA’s institutional
mechanism for disseminating the results of
its research and development activities.
These results are published by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the
STI Program Office’s diverse offerings
include creating custom thesauri, building
customized databases, organizing and
publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621–0134

• Phone the NASA STI Help Desk at (301)
621–0390

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076–1320



NASA/TM–2007–214882

Orbiter Entry Aeroheating Working

Group viscous CFD boundary layer

transition trailblazer solutions

William A. Wood, David W. Erickson, and Francis A. Greene

Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

June 2007



The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076–1320 Springfield, VA 22161–2171
(301) 621–0390 (703) 605–6000



Abstract

Boundary layer transition correlations for the Shuttle Orbiter have been previously
developed utilizing a two-layer boundary layer prediction technique. The particular
two-layer technique that was used is limited to Mach numbers less than 20. To allow
assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to
the predict boundary layer properties. This report addresses if the existing Orbiter
entry aeroheating viscous CFD solutions, which were originally intended to be used
for heat transfer rate predictions, adequately resolve boundary layer edge properties
and if the existing two-layer results could be leveraged to reduce the number of
needed CFD solutions. The boundary layer edge parameters from viscous CFD
solutions are extracted along the wind side centerline of the Space Shuttle Orbiter
at reentry conditions, and are compared with results from the two-layer boundary
layer prediction technique. The differences between the viscous CFD and two-layer
prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind
tunnel conditions, and there is not a straightforward scaling between the viscous
CFD and two-layer values. Therefore: it is not possible to leverage the existing
two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD
data set; but viscous CFD solutions at the current grid resolution are sufficient to
produce a boundary layer data set suitable for applying edge-based boundary layer
transition correlations.

Nomenclature

Symbols

H total enthalpy, BTU/slug
L reference length; 1280 in. full-scale, 9.6 in. wind tunnel model scale
M Mach number
Re Reynolds number
Reθ Veθ/νe

V fluid speed, fps
δ boundary layer thickness, in.
µ viscosity, slug/ft-s
ν kinematic viscosity, µ/ρ, ft2/s
ρ density, slug/ft3

θ momentum thickness, in.

Subscripts

e boundary layer edge
inv inviscid layer
∞ free stream

Acronyms

CFD computational fluid dynamics
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ISSHVFW International Space Station heavy vehicle forward weight
RTF return-to-flight
STS space transportation system

Introduction

This report is a formal product delivery from Langley Research Center to the Space
Shuttle program in support of the return-to-flight (RTF) effort, as specified in a
sub-task agreement, number RTF-08, between Langley and Johnson Space Center.
The scope of the work is set by the sub-task agreement.

The technology addressed is the numerical prediction of boundary layer edge
properties in the flow about the Shuttle Orbiter at reentry and hypersonic wind
tunnel conditions. The engineering context is the development and application of
boundary layer transition predictions for the Orbiter during reentry, in particular
for the prediction of forced, or bypass, transition due to an off-nominal Orbiter wind
side surface.

Previously, a data set of boundary layer properties used to correlate boundary
layer transition behavior for the Orbiter at both wind tunnel and flight conditions
had been created using a two-layer technique [2]. The two-layer technique uses com-
putational fluid dynamics (CFD) to predict an inviscid flow field and then utilizes
an approximate engineering tool to account for the effect of viscosity, producing
the boundary layer estimates. Boundary layer transition correlations [1] have been
created for the Orbiter program recently using this wind tunnel data set in conjunc-
tion with wind tunnel experiments, and the correlations are applied as part of the
Shuttle mission operations.

There is a shortcoming in the current transition prediction tool that moti-
vates the present study: the existing two-layer technique does not account for
non-equilibrium chemistry. Chemical non-equilibrium effects are important in the
Orbiter reentry flow field at Mach numbers greater than 15–18 [8], but boundary
layer transition predictions are desired up to Mach 21–23.

The viscous CFD codes used by the Orbiter Entry Aeroheating Team model
chemical non-equilibrium and are suitable for simulating all Mach number Orbiter
flow fields within the continuum regime, up to about Mach 25, and thus could alle-
viate the shortcoming. This report investigates the feasibility of using the viscous
CFD solvers instead of the two-layer engineering approach to define the Orbiter
boundary layer properties from which new boundary layer transition correlations
may be developed. While not investigated in the present study, viscous CFD flow
field simulations also provide boundary layer profile data, which the two-layer tech-
nique does not. Having boundary layer profile data may allow the development of
transition correlations that are not possible in the two-layer context. The moniker
trailblazer is used to reflect the feasibility nature of this study, in contrast to sub-
sequent work to develop the full flight database.

The viscous CFD codes used for the present study have been shown [4] to match
measured boundary layer thickness for an Orbiter model at wind tunnel conditions
with an 11% standard deviation. For this trailblazer report, 11% is used as an

2



acceptance criteria.

If the existing two-layer results could be scaled or otherwise mapped to match
viscous CFD results, then conversion to viscous CFD correlations would only require
new high-Mach-number flight solutions. Otherwise, a full viscous CFD data set
would have to be generated at both flight and wind tunnel conditions. The primary
task of this report is to spot check the two-layer and viscous CFD boundary layer
properties for equivalence or a simple scaling relationship. Two ancillary questions
addressed in the report are the adequacy of grid resolution in the viscous CFD
solutions and the consistency between Laura and Dplr results.

CFD codes

The two-layer boundary layer prediction technique used the Langley Approximate
Three-Dimensional Convective Heating engineering code (Latch [3]) to provide
the boundary layer properties. Latch requires a background inviscid CFD solu-
tion within which to operate. The inviscid flow fields for the two-layer technique
are provided by the Langley Aerothermodynamic Upwind Relaxation Algorithm
(Laura [5, 6]). Laura is a nominally second-order accurate upwind finite-volume
flow solver with a five-species, single-temperature air model.

Laura is also used as a viscous flow solver, along with the Data-Parallel Line
Relaxation code (Dplr [7]), to compute boundary layers integral to the flow field
simulations. Both Laura and Dplr are used with a five-species, single-temperature
air model, a partially catalytic surface with reaction-cured glass properties, and a
radiative equilibrium surface temperature with an emissivity of 0.89. Both Laura

and Dplr have been accepted by the Orbiter Configuration Control Board for the
simulation of smooth-body laminar Orbiter entry flow fields [4].

Boundary layer edge definition

The boundary layer edge is determined from the CFD solutions using the Blayer

[4, 9] post-processing software. Within Blayer, the boundary layer edge is defined
as the distance above the surface where H = 0.995Hinv . In general, Hinv = H∞,
but the Blayer detection logic is designed to accommodate locations within the
CFD solutions where total enthalpy is not exactly conserved through the bow shock
due to numerical dissipation effects.

Grid convergence

Grid convergence of the predicted transition parameter was investigated by refining
the CFD volume grids in the direction traversing from the Orbiter surface to the
free stream. The primary boundary layer transition parameter utilized by RTF can

be expressed as
(

Reθ

Me

)

·

(

1

δ

)

. The symbols have conventional meaning: δ is boundary

layer thickness, Me is boundary layer edge Mach number, and Reθ is Reynolds
number based on momentum thickness.
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Figure 1. Grid convergence of
(

Reθ

Me

)

·

(

1

δ

)

at Mach 12. Fine grid (M 97) has 97

points, versus 65 for coarse (M 65), in the body-normal direction.

The grid convergence of the transition parameter
(

Reθ

Me

)

·

(

1

δ

)

along the Orbiter

wind side centerline is shown in Figure 1 at Mach 12 flight conditions and in Figure 2
at Mach 18 flight conditions. The Mach 12 case corresponds to a point on the
ISSHVFW [4] trajectory. The Mach 18 case is at the same free stream conditions as
an STS-107 trajectory point but is at 45 degrees angle of attack. All solutions are
viscous Laura solutions. The legend designation ‘M65’ indicates solutions with 65
points in the body-normal direction, shown as dashed lines in the figures.The fine
grids, ‘M97’, have 50% more cells, for 97 points in the body-normal direction. The
largest differences between the solutions are 2% at Mach 12 and 4% at Mach 18.

Flight boundary layers

Consistency comparisons of predicted boundary layer properties from Laura, Dplr,
and Latch were performed for one point on the ISSHVFW trajectory (Mach 6,
Figures 3–5) and two points on the STS-107 trajectory (Mach 18, Figures 6–8; and
Mach 20, Figures 9–11). The comparisons seek to identify similarities or trends be-
tween the viscous-CFD and two-layer results for boundary layer thickness, Reθ/Me,
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Figure 2. Grid convergence of
(

Reθ

Me

)

·

(

1

δ

)

at Mach 18. Fine grid (M 97) has 97

points, versus 65 for coarse (M 65), in the body-normal direction.

and
(

Reθ

Me

)

·

(

1

δ

)

. All the comparisons depict wind-side centerline data extractions

from the full vehicle solutions.

Boundary layer thickness results for the Orbiter wind side centerline are shown
in Figure 3, at Mach 6, Figure 6, at Mach 18, and Figure 9, at Mach 20 flight
conditions. For flight cases, the Latch boundary layer thickness is determined
from the momentum thickness based upon a shape factor [10] related to the wall-
to-total enthalpy ratio. At Mach 6 the largest difference between the Laura and
Latch solutions is 19%. At Mach 18 the agreement is better, with a maximum
difference of 8%. The Laura and Dplr solutions differ by less than 5% for both
Mach 18 and Mach 20.

Figures 4, 7, and 10 show the corresponding Reθ/Me results. There is consid-
erable disagreement for Laura and Latch results for both Mach 6 and Mach 18:
17% maximum difference for Mach 6 and larger differences along nearly the entire
profile for Mach 18. The agreement between Laura and Dplr results is better,
with only 8% maximum differences at Mach 18 and 11% at Mach 20.

The results for
(

Reθ

Me

)

·

(

1

δ

)

at Mach 6, Mach 18, and Mach 20 are presented

in Figures 5, 8, and 11, respectively. For Mach 6 the discrepancies in boundary
layer thickness and Reθ/Me for Laura and Latch counteract one another so that
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Figure 3. Laura-Latch centerline boundary layer thickness, Mach 6 flight.
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Figure 4. Laura-Latch Reθ/Me, Mach 6 flight wind side centerline.
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Figure 6. Laura, Dplr, and Latch centerline boundary layer thickness, Mach 18
flight.
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Figure 7. Laura, Dplr, and Latch centerline Reθ/Me, Mach 18 flight.
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Figure 9. Laura-Dplr centerline boundary layer thickness, Mach 20 flight.
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Figure 10. Laura-Dplr Reθ/Me, Mach 20 flight wind side centerline.

9



0 500 1000 1500
x [in]

0

20

40

60

80

100

120

R
e θ/δ

M
e [

in
-1

]

LAURA-M65 Point 4 α = 42.01
DPLR-M65 Point 4 α = 42.01

Figure 11. Laura-Dplr

(

Reθ

Me

)

·

(

1

δ

)

, Mach 20 flight wind side centerline.

(

Reθ

Me

)

·

(

1

δ

)

is in close agreement. At Mach 18, however, the results do not agree

nearly as well. A simple relation between the Latch and Laura boundary layer
properties is not apparent for these flight conditions. Laura and Dplr results agree
much better at Mach 18 with maximum differences of only 6%. The agreement at
Mach 20 has maximum differences of 11%.

The results shown here were drawn from the viscous CFD flight data set. In the
current viscous flight data set, solutions were produced using Laura for M ≤ 20
and are a mixture of Laura and Dplr results for higher Mach numbers.

Wind tunnel boundary layers

The boundary layer transition correlations are applied using the flight predicted
boundary layer properties. The correlations are developed using boundary layer
property predictions at wind tunnel conditions corresponding to wind tunnel bound-
ary layer trip experiments. Laura and Latch boundary layer thicknesses, Fig-
ure 12, and Reθ/Me, Figure 13, on the wind side centerline are compared for con-
sistency on a 0.75%-scale Orbiter model at Mach 6 wind tunnel conditions. For
wind tunnel simulations, the Latch code relates the boundary layer thickness to
the momentum thickness using a constant shape factor, equal to 7.5.

Comparing Mach-6 results in Figures 12 (tunnel) and 14 (flight—repetition of
Figure 3 for convenience) the agreement in boundary layer thickness is different for
the tunnel than at flight. Both prediction methods agree on the nose cap at both
tunnel and flight, up to the 500 inch station in Figure 3 and up to 20% of the body
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Figure 12. Laura-Latch boundary layer thickness comparison, Mach 6 wind tunnel
wind side centerline.

x/L

R
e θ/

M
e

0 0.25 0.5 0.75 1
0

50

100

150

200

LAURA
LATCH

Figure 13. Laura-Latch Reθ/Me comparison, Mach 6 wind tunnel wind side
centerline.
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Figure 14. Laura-Latch centerline boundary layer thickness, Mach 6 flight.
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Figure 15. Laura-Latch Reθ/Me, Mach 6 flight wind side centerline.
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length in Figure 12. But the Laura boundary layer distribution down the remainder
of the centerline is similar between the tunnel and flight conditions. In contrast,
the Latch flight boundary layer thickness grows more slowly with running length
at flight than at tunnel conditions. As a result, the Laura and Latch boundary
layer thicknesses agree at tunnel conditions but have as much as 19% differences at
flight. Thus a boundary layer transition correlation developed from the wind tunnel
boundary layer thickness data would produce different transition onset predictions
when applied at flight conditions, depending upon whether the Latch or the Laura

flight data sets were used.

The same trends apply to Reθ/Me as for the boundary layer thickness, shown
along the wind side centerline in Figures 13 (tunnel) and 15 (flight—repetition of
Figure 4 for convenience). The Laura and Latch results are in agreement over
the fore 80% of the vehicle at tunnel conditions. At flight, the Laura and Latch

results are in agreement on the nose cap, but the Latch results rise more slowly
with running length than the Laura data, with a maximum 17% difference. Again,
a boundary layer transition correlation developed from the wind tunnel Reθ/Me

computed data could produce different transition onset predictions when applied at
flight conditions using either the Latch or the Laura flight data sets.

Concluding remarks

Orbiter boundary layer properties from viscous CFD solutions were compared along
the wind side centerline against results from a two-layer boundary layer prediction
tool. The two-layer tool couples inviscid CFD with an approximate boundary layer
solver.

As verification of the viscous CFD results, grid convergence of the boundary

layer transition parameter
(

Reθ

Me

)

·

(

1

δ

)

was checked and observed to be within 5%

relative to a 50% increase, from 64 to 96 cells, in grid resolution from the surface to
the far field boundary. Also, results from two different viscous CFD codes, Laura

and Dplr, were compared at flight Mach 18 and 20 conditions. Agreement between
the codes for boundary layer edge properties is on the order of 10%.

The relationship between the viscous CFD and two-layer results is not consis-
tent between Mach 6 wind tunnel and Mach 6 flight simulations. Similarly, the
relationship between the viscous CFD and two-layer results is not consistent be-
tween Mach 6 and Mach 18 flight conditions. The differences between the viscous
CFD and two-layer results are as much as 30%. A straightforward mapping or scal-
ing of the approximate boundary layer prediction methodology to the viscous CFD
results is not readily apparent.

The viscous CFD solutions are recommended to be suitable for the development
of boundary layer transition correlations. But it does not appear that the exist-
ing two-layer boundary layer results can be leveraged in the development of the
necessary tunnel and flight data sets, due to the inconsistency in boundary layer
prediction trends between the two-layer and viscous CFD data.
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