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METHOD FOR CONSTRUCTING
COMPOSITE RESPONSE SURFACES BY
COMBINING NEURAL NETWORKS WITH
POLYNOMINAL INTERPOLATION OR
ESTIMATION TECHNIQUES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Pat. No.
6,606,612, filed Aug. 13, 1999 and entitled “Method For
Constructing Composite Response Surfaces By Combining
Neural Networks With Other Interpolation Or Estimation
Techniques,” which is incorporated by reference herein.

ORIGIN OF THE INVENTION

The invention described herein was made by employees
of the United States Government and may be manufactured
and used by or for the Government for governmental pur-
poses without the payment of any royalties thereon or
therefor.

TECHNICAL FIELD

The present invention is a method for constructing com-
posite response surfaces by combining neural networks with
polynomial interpolation or estimation techniques. These
composite response surfaces can be used in a variety of
applications. In particular, such surfaces are very useful in
aerodynamic design optimization which has several
attributes that render it a difficult problem to solve.

DESCRIPTION OF THE RELATED ART

The design of aerodynamic components of aircraft, such
as wings or engines, involves a process of obtaining the most
optimal component shape that can deliver the desired level
of component performance, subject to various constraints,
e.g., total weight or cost, that the component must satisfy.
Aerodynamic design can thus be formulated as an optimi-
zation problem that involves the minimization of an objec-
tive function over the design space, subject to constraints. A
variety of formal optimization methods have been developed
in the past and applied to aecrodynamic design. These include
inverse design methods, adjoint methods, sensitivity deriva-
tive-based methods, and traditional response surface meth-
odology (RSM).

Aerodynamic design data has traditionally been obtained
from a variety of sources. In the past, experiments and
simple analyses have provided the majority of data used in
design. More recently, the methods of Computational Fluid
Dynamics (CFD) have been used to generate a significant
portion of the design data. A hierarchy of approximations to
the governing partial differential equations (i.e., the Navier-
Stokes equations), ranging from the simple potential flow
equations to the Euler and Reynolds-averaged, Navier-
Stokes equations, have been used for this purpose.

Typically, the simpler and lower fidelity potential flow
solutions have been used in the initial stages of design
because they are relatively inexpensive to compute, and
because a large number of solutions are required at this
stage. Here the term “fidelity” is used to denote the extent to
which the system of equations faithfully represents the
physical characteristics of the flow. The higher fidelity Euler
and Navier-Stokes solutions are generally used in the final
stages of design because of the high cost of computing these
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solutions. It has been found that neural networks provide a
natural framework within which a succession of solutions of
increasing fidelity can be represented and subsequently
utilized for optimization and design thus reducing overall
design costs. The design data can come from a variety of
sources, including experiments and computations. Rules-of-
thumb that designers have evolved over a number of years
can also be incorporated within the optimization routines as
constraints. These facts are of considerable importance to
the aircraft industry which has accumulated enormous
amounts of experimental data and numerous design rules
over a number of decades.

Response surface methodology (RSM) represents a
framework for obtaining optimal designs using statistical
methods such as regression analysis and design of experi-
ments. Traditional RSM, as it has been used in practice,
employs low-order regression polynomials to model the
variation of the aerodynamic quantities, or some measure of
optimality, with respect to the design variables. This poly-
nomial model of the objective function in design space is
then searched to obtain the optimal design. Several such
polynomial models may have to be constructed to traverse
the region of design space that lies between the initial design
and the optimal design. However, modeling complex func-
tional behaviors using traditional RSM will necessitate the
use of high-order polynomials with their attendant problems.
On the other hand, neural networks are well suited to
modeling complex functions in multiple dimensions. Here,
the possibility of utilizing these positive attributes of neural
networks in the context of RSM methodology is explored.

Artificial neural networks have been widely used in
various fields including aeronautical engineering. Recent
aerodynamic applications include, for example, flow con-
trol, estimation of aerodynamic coefficients, compact func-
tional representations of aerodynamic data for rapid inter-
polation, grid generation, and aerodynamic design. Neural
networks have been used to both model unsteady flows and
to optimize aerodynamic performance parameters. Signifi-
cant cost savings have been realized in reducing wind tunnel
test times by using neural nets to interpolate between
measurements. Neural network applications in aeronautics
are not limited to aerodynamics, and include structural
analysis and design.

In order for neural networks to be used effectively in
aerodynamic (or other) design problems, it is imperative that
the design space be populated both adequately and effi-
ciently with simulation or experimental data. A sparse popu-
lation results in an inaccurate representation of the objective
function in design space while an inefficient use of aerody-
namic data in populating the design space could result in
excessive simulation costs. Conventional neural networks
are restricted to simple designs involving only a few design
parameters because a linear increase in the number of design
parameters often results in a geometric increase in the
number of datasets required to adequately represent the
design space.

Therefore, a need exists for adequately and efficiently
populating large-dimensional design spaces to achieve an
optimal design. More particularly, to be able to use existing
design or experimental data, or partial or unstructured sets of
data, to influence the design process.

SUMMARY OF THE INVENTION

These needs are met by the invention, which provides a
method and system for constructing composite response
surfaces that incorporates the advantages of both traditional




US 7,191,161 BI

3

response surface methodology (RSM) and neural networks.
The invention employs a unique strategy called parameter-
based partitioning of the design or modeling space. The term
“design space” refers to a multi-dimensional region that
encompasses all possible designs and is the region defined
by the coordinates and associated coordinate ranges of the
various design parameters and bounded by their individual
upper and lower limits. In the method, composite response
surfaces are constructed using parameter-based partitioning.
These composite response surfaces are based on both neural
networks and on other interpolation/estimation techniques.
A sequence of such response surfaces is used to traverse the
design space to identify an optimal solution, or to model a
process or a response of physical object. The composite
response surface thus has both the power of neural networks
and the economy of other estimation techniques, such as
low-degree polynomials (in terms of the number of simu-
lations needed and the network training requirements). The
invention handles design problems with many more param-
eters than would be possible using conventional neural
networks alone, and the invention permits a designer to
rapidly perform a variety of trade-off studies before arriving
at a final solution. It also allows the use of less-expensive,
low-fidelity simulations in the early stages of the design and
a smooth transition to higher fidelity simulations as the
search for the optimal design evolves thus significantly
reducing the computational costs incurred in simulation-
based design.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a graphical representation of a parabolic function
and the neural network approximations of this function.

FIG. 2 shows a geometrical diagram of a three-layer
neural network for use with the method of the present
invention.

FIG. 3 shows geometrical shapes for two- and three-
dimensional simplexes also for use with the method of the
present invention.

FIG. 4 shows a flowchart of a process for optimizing a
design using both neural networks and polynomials to
construct a composite response surface in accordance with
one preferred embodiment of the present invention.

FIG. 5 is a graphical presentation showing the progression
of design optimization for an airfoil in accordance with one
preferred embodiment of the present invention.

FIG. 6 shows a graph comparing the instantaneous pres-
sure contours in the reference and optimized designs of a gas
generator turbine.

FIG. 7 shows a graph comparing the instantaneous pres-
sure contours in the reference and optimized designs of a
transonic turbine.

FIGS. 8A/8B is a flow chart of a general process for
practicing the invention.

DESCRIPTION OF BEST MODES OF THE
INVENTION

In accordance with the invention, composite response
surfaces are constructed using a combination of neural
networks and other interpolation and estimation techniques
(low order polynomials, Fourier transforms, etc.). By way of
example and not of limitation, the composite response
surfaces described herein will be constructed using neural
networks and polynomials (as the choice of interpolation/
estimation technique). It should be appreciated that the
primary motivation for constructing a composite response
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surface based on neural networks and polynomials comes
from a careful examination of the relative strengths of these
two approaches in interpolating design data or in modeling.
Neural networks provide a very general framework for
estimation in multiple dimensions. FIG. 1 illustrates a
graphical representation 40 of a parabola 42 given by

y=2(~0.5)%, ¢y
and the neural network approximations to this function. The
network is shown trained with three training pairs 44 (Curve
A) and also with five training pairs 46 (Curve B). The
generalization ability obtained when only three training
pairs are used is inadequate for most purposes. It should be
noted that the training error in this first situation (Curve A)
was decreased by 25 orders of magnitude. A marked
improvement in generalization is seen with the use of five
training pairs 46.

The graphs 40 of FIG. 1 demonstrate that neural-network
based generalization can become unreliable when the
amount of available training data is very small. However, the
use of a single linear neuron with a preprocessor that
provides the input nodes with the bias, and the coefficient
values for x and also x would yield a perfect fit with just
three training pairs, in this situation. Note that such a single
linear neuron is, in essence, a polynomial fit. An advantage
of the polynomial fit provided by the single linear neuron is
that the polynomial requires a prescribed minimum number
of data points for a given number of polynomial terms, and,
this number increases in a polynomial fashion with the
number of dimensions. For example, if a quadratic fit was
used to represent the data, the number of data points required
to compute the coefficients of the polynomial would increase
quadratically with the number of dimensions. If the target
function can be locally approximated using low-order poly-
nomials, there is an advantage to using polynomial fits
instead of neural networks.

The present invention combines the strengths of neural
networks and other interpolation/estimation techniques, by
constructing composite response surfaces using parameter-
based partitioning. In parameter-based partitioning, the
functional dependence of the variables of interest with
respect to some of the design parameters is represented
using neural networks, and the functional dependence with
respect to the remaining parameters is represented using
other interpolation/estimation techniques, e.g., polynomial
regression methods. This approach is an extension of tradi-
tional response surface methods that are based on polyno-
mials alone. The use of neural networks in conjunction with
other methods results in a composite response surface that
models the functional behavior in design space or modeling
space. When first- or second-order polynomials are used, the
number of data sets required increases in a linear or qua-
dratic manner, respectively, with the number of parameters.

From the example and discussion below, the present
invention combines conventional polynomial approxima-
tions on L-dimensional simplexes with the flexibility that
neural networks (or Fourier series, for periodic functions)
provide. This provides a mathematical model whose com-
plexity can be adjusted on a dimensional basis to suit the
function being modeled, thus reducing the amount of data
required. The term “L-dimensional simplex” refers to a
spatial configuration of L dimensions determined by L+1
equispaced vertices, on a hyper-sphere of unit radius, in a
space of dimension equal to L, where any L vertices are
linearly independent. For example, a two-dimensional sim-
plex is an equilateral triangle that is circumscribed by a unit
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circle, and a three-dimensional simplex is a regular tetrahe-
dron, with vertices lying on a unit sphere.

The method for constructing composite response surfaces,
using the parameter-based partitioning technique, is best
described by an illustrative example in the context of a
particular application. The application considered here is
design optimization of an aerodynamic component because
of its inherent complexities and attributes that render it a
suitable candidate for this approach.

Although several methods can be used to represent the
functional behavior of the design data, neural networks are
particularly suitable for multidimensional interpolation
where the data are not structured. Since most design prob-
lems in aerodynamics involve a multitude of parameters and
datasets that often lack structure, neural networks provide a
level of flexibility not attainable with other methods. In fact,
partial datasets or even a single data point intermingled with
more complete datasets can be used to influence a design or
modeling process.

As noted in the preceding, in order for neural networks to
be used effectively in design, it is imperative that the design
or modeling space be populated both adequately and effi-
ciently with simulation or experimental data. The invention
disclosed here, namely the construction of composite
response surfaces using parameter-based partitioning,
directly addresses this problem. The number of datasets
required to populate the design space is greatly reduced, thus
allowing use of designs or models involving a larger number
of parameters than would be possible using neural networks
alone. Consider a simple design or model that involves three
parameters. Typically, 3°=27 simulations would be required
to populate this three-dimensional design space. Clearly, this
process results in inordinately large number of simulations
in high-dimensional design spaces. For example, the number
of simulations that would be required for a 100-parameter
design or modeling problem is 3%, or about 5x10*7. By
contrast, for a linear representation within a simplex, the
current approach would require between 100 and 200 simu-
lations.

In addition to drastically reducing the computational
requirements to obtain the simulation data, the method of the
present invention also has a dramatic impact on the neural
net training process. First, the reduction in the total amount
of simulation data greatly reduces the training requirements.
Second, the use of multiple estimation methods to represent
the data also reduces training times. This is because a part of
the complexity of representing the function is transferred
from the neural network to the polynomial approximation.

In the context of design optimization, the further the
optimal solution is from this initial design the larger the
region of design space that must be represented by the
composite response surface (“CRS”). An inordinately large
amount of data would normally be required to adequately
populate the design space. Here, a sequence of composite
response surfaces is used, where each CRS represents a
limited local region in the design space. This greatly reduces
the number of simulations required in the current approach.

ILLUSTRATIVE EXAMPLES

The following applications have been chosen to demon-
strate how the invention can be used to address various
applications. Although these applications are chosen from
aerodynamic design, the present invention is clearly not
limited to this application area alone.
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Composite Response Surfaces Construction for Aerody-
namic Design Optimization

By way of example, but not of limitation, consider design
of an aerodynamic component, where the data can be
generated for prescribed values of the design parameters.
Additionally, assume that variation of the aerodynamic data
of interest with respect to a first group of the design
parameters is not very complex; this may be because the
parameter variations are small or because the underlying
function is simple), and, hence, does not require the gener-
ality of a neural network-based estimation scheme. There-
fore, simple polynomials can be used to represent the
variation of the function with this first group of parameters,
and a neural network can be used for the remaining param-
eters.

The manner in which the present invention can be used in
a specific aerodynamic design problem is now described.
Two-dimensional airfoil design where the goal of the opti-
mization is to determine the airfoil shape that most closely
matches a given airfoil surface pressure distribution is
considered. FIG. 2 shows a three-layer neural network 50
(with two hidden layers, 52 and 60). The variation of
aerodynamic data along a surface of the airfoil is typically
far more complicated than the variation with small changes
in geometric parameter values. Hence, the neural network 50
is used to represent aerodynamic data variation in physical
space. The first node 54 in the input layer is a bias node
(input value of 1.0). A second set of nodes specifies the
physical location 56. In this particular two-dimensional
design environment, the physical location 56 is specified by
a single parameter, the axial location on the airfoil surface.
Given h (=s+c) geometric parameters that determine the
shape of the airfoil, assume that the variation of the first ¢
parameters or variables results in “complex™ variations in
the aerodynamic data (in this case, pressure) and the varia-
tion of the remaining s parameters or variables resuits in
fairly “simple” variations in the data that can be represented
by low-order polynomials. For example, a simple parameter
may be represented by one or more polynomials of order no
greater than a small positive integer M, (e.g., M =1, 2 or 3)
in that parameter. Optionally, complex parameters may be
represented by a polynomial having an order at least equal
to a positive integer M_, where M _>M,, or by a sum of
trigonometric or Fourier components. Alternatively, a com-
plex parameter is any parameter that cannot be represented
as a simple parameter.

The third set of input nodes 58 in FIG. 2 accepts the first
¢ geometric parameters. Pressure values corresponding to
axial locations and geometry parameters specified at the
input nodes are obtained at the output node 62.

The variation of the pressure with the remaining s vari-
ables is approximated using simple polynomials, such as
linear, quadratic and/or cubic. For a linear variation, the
points at which the data are determined are located at the
vertices of an s-dimensional simplex and are at unit distance
from the origin. In this case there are s+1 vertices and s+1
unknown coefficients to be determined. For a quadratic
variation, in addition to the vertices of the simplex, the
midpoints of all the edges are incladed as well. This results
in (s+1)(s4+2)/2 nodes and as many unknown polynomial
coefficients that must be determined. FIG. 3 shows the points
at which these data are required in two dimensions 64 (s=2)
and three dimensions 66 (s=3) for a quadratic fit. For a cubic
variation, additional values can be specified at four equally
spaced locations (including two vertices) on a line joinng
any two simplex vertices, and the number of nodes becomes
(s+1){(s+2)(s+3)/6.
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In the two-dimensional situation 64 shown in FIG. 3 the
pressure ¢ can be approximated as:

D=0 ATy as A @)

Given pressure values ¢, ¢, . . . , §g, specified at the
vertices 68 of the simplex, the coefficients a,, a,, . . . , a5 can
be obtained from the following system of equations:

1 ox oy 8 xan ¥ &

(8
é2,

ay

. 2 2
1 x y x 20 yijla

b,

as

. 2 2
1 X6 Y6 Y X6¥s Y

The generalization to higher-dimensional simplexes and
higher-order polynomials is developed as described in the
preceding, wherein at least a minimum number of pressure
values is required depending on the number of dimensions
and the order of the polynomial used. However, the number
of pressure values that is typically used is greater than this
minimum (greater than six values in the preceding example).
This helps reduce the effect of noise in the data on the
accuracy with which the response surface models the func-
tional relationship between a variable (e.g., aerodynamic
pressure) and the geometric parameters. The coefficients in
this case may estimated using a least squares or least pth
power approach (p>0).

The method of combining neural networks and traditional
polynomial fitting techniques of an embodiment of practic-
ing the present invention is as follows, where, by way of
example and not of limitation, the polynomial is assumed to
be linear.

First, separate the h geometric parameters into two cat-
egories, where the variation of a first group of parameters f;
(i=1, 2, . . ., s) results in fairly “simple” variations in the
pressure that can be represented by low-order polynomials
(order =M, where M; is a selected small positive integer,
such as 1, 2 or 3). The variation of a second group of the
remaining parameters g; (=1, 2, . . ., ¢) corresponds to
“complex” variations in the data (h=s+c).

Multidimensional polynomials are used to represent the
variation of aerodynamic data with respect to the simple
parameters f;, and neural networks are used to represent the
variation of the data with respect to the complex parameters
g

Second, construct a simplex in s-dimensional space (s+1
vertices) and obtain simulation data D, (k=1, 2, ... s+1) at
each of the vertices of the simplex by varying the parameters
g;. Assign one neural network N, for each vertex of the
simplex and train each neural network N, with the simula-
tion data D, generated for the corresponding vertex number
k. The input for each network includes the bias value, the
axial location along the airfoil and the complex geometric
parameters g,. Let R,(g;) represent the trained output of the
neural network, and let ¢ denote the variation of the physical
variable of interest (e.g., pressure) with the g; complex
parameters at the k th vertex of the simplex.

The surface pressure distribution corresponding to a set of
geometric parameter values is obtained through the follow-
ing two-step process.

First, obtain the pressure at each of the vertices of the
simplex using the corresponding neural networks. This is
easily done since the values assigned to the “complex”
geometric parameters are known; and
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Second, compute the estimates of the coefficients of a low
order (e.g., linear) polynomial, and use the prescribed values
of the simple geometric parameters to obtain an estimate for
the required pressure distribution. This is done by defining
shape functions P(f;) (k=1, 2, . . . , s+1) according to

s “

Po=d5+ ) dfi
=l
where the coefficients a,* (k=1, 2, . . ., s+1) are determined
from the conditions:
P.=1 at vertex k, (SA)
P=0 at vertex k¥(k*zk). (5B)

The shape functions P, are required to satisfy the condition

©

s+l
Z Pu(f) =1 (for all f; in or on the simplex).
k=1

The trained neural networks, together with the low order
polynomial fit, define a composite response surface (CRS),
which can be expressed as:

CRS{figj} = a

s+l

D P R 18 =1
k=1

8=l ,0

The preceding discussion provides a general formula and is
not restricted to linear polynomials. The shape functions P,
can be any higher-order polynomial. However, use of a
higher order polynomial will require specification of shape
functions at more than s+1 nodes.

The accuracy with which this composite response surface
represents the actual functional dependence of the aerody-
namic quantities on the design or modeling parameters is
determined by the accuracy of the original aerodynamic
data, by the number of simulations used to populate the
design space, by the neural network parameters, such as the
number of neurons in the hidden layers 52 and 60 of FIG. 2,
and by the orders of the polynomials used. The accuracy
with which the neural networks represent the training data is
estimated by a training error, TE, that is minimized to obtain
the network weights. For example, the training error may be
a weighted sum of squares (or pth powers) of differences,

®)

Amax ‘max

TE@;) = ) ), Wunl® = 9lP,

a=l i=1

where @, is a target pressure at a location n, ¢ is a
corresponding output pressure from the network, i, is the
total number of data points on the surface of the airfoil at
which the target pressures are prescribed, and n,,,, is the
number of simulations used to train this particular network.
Optionally, the number of neurons is increased successively
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until the training error is sufficiently small (e.g., no greater
than a selected threshold number e).

The accuracy with which the composite response surface
represents the objective function in design space can be
estimated by comparing the pressure distributions of the
computed validation data sets (which are different from the
training set) to the pressure distributions obtained using the
composite response surface for these validation cases. This
validation process is essential in establishing the adequacy
of the generalization capabilities of the response surface.
Typically, this is carried out at or adjacent to the centroid of
the simplex.

Process For Aerodynamic Design Optimization Using Com-
posite Response Surfaces

FIG. 4 illustrates steps for implementing a method
according to the present invention. An objective function in
step 90 is obtained from the design requirements. In step
100, an initial geometry or design point is specified. Ideally,
this initial geometry should be as close as possible to the
optimum. In aerodynamic design, several approaches, such
as inverse design procedures, meanline analyses, and
streamline curvature-based methods, can be used to obtain
this initial geometry. This initial geometry serves as the
centroid of the first simplex. In step 120, the design space is
populated in the vicinity of the initial geometry by con-
structing a simplex in design space around this centroid. The
geometry corresponding to each of the vertices (for a linear
variation) and interior nodes (for quadratic, cubic or higher
order polynomials) is obtained in step 140. The process then
generates grids for each geometry in step 160. At this stage
in the process, step 180, a fidelity level (e.g., maximum
inaccuracy) is chosen and solutions are generated for each
geometry. In steps 200 and 220, the neural networks are
trained and the polynomial coefficients that define variation
of a target quantity (e.g., pressure) within the simplex are
computed. The input nodes of the neural nets will typically
contain parameters that correspond to the physical location
on an aerodynamic component and those geometric param-
eters that give rise to “complex” behavior of the objective
function. At this point, step 240, the composite response
surface is defined.

The process continues to step 260, where a search of the
region of the design space represented by the composite
response surface is performed. Various methods can be used
to accomplish this constrained search. Geometrical and
other constraints and rules-of-thumb that designers or mod-
elers have developed can be incorporated within this search
procedure (for example, using a penalty function method).
In addition, constraints that limit the search procedure to the
volume of the simplex are also incorporated in the search. In
step 280, the system determines whether the local optimum
obtained in the previous step lies on or outside the bound-
aries of the simplex. If the design conditions have not been
met in step 300 so that the search procedure terminates at a
point on or outside the boundaries of the simplex, this point
is chosen as a centroid of a new simplex, in step 320, and the
process is repeated until the search terminates inside the
simplex. However, the process can be stopped at any time
when the design or model is deemed adequate, as shown in
step 340.

Additionally, several types of design refinements may be
necessary. A particular design may require many iterations
before an optimal solution is obtained. One reason for this
could be that the initial design is very different from the
target design. The need to minimize overall costs dictates
that one obtain a preliminary design or model based on
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low-fidelity, low-cost simulations (e.g., potential flow solu-
tions). The process shown in FIG. 4 is repeated using higher
fidelity simulations (e.g., Euler or Navier-Stokes solutions).
A second level of refinement may involve repeating the
process shown in FIG. 4 with a simplex of reduced size.
Finally, the geometry corresponding to the optimal design is
used to verify that the design performs as required by the
design specifications.

An optimal solution obtained by the preceding procedure
is a point in design space that meets all the initial design
requirements and constraints. However, after obtaining this
optimal solution, the user often wishes to modify the target
or the constraints to arrive at a better and improved design,
or to analyze a variety of what-if scenarios. Several hundred
such trade-off studies may be required before the final
solution is defined. These analyses can be performed very
efficiently by representing the functional dependence of the
aerodynamic quantities in the vicinity of the design obtained
in the process steps shown in FIG. 4, using the composite
response surface approximation and once again searching
this space with the new target designs and constraints
embedded in the search procedure. Clearly, this process can
only be used if the new targets are contained in the region
of design space where the generalization capabilities of the
response surface are adequate. It has been shown, using
aerodynamic design as an example, that the search proce-
dure requires two to three orders of magnitude less com-
puting time than is required for simulation and training the
network. This allows the designer to rapidly perform a
variety of trade-off studies that would naturally involve
changing the constraints to resolve design conflicts or
improve the design.

Design in a Steady Flow Environment: Metamorphosis of a
Generic Shape into an Optimal Airfoil

The present invention was used to reconstruct the shape of
a turbine airfoil, given a desired pressure distribution and
some relevant flow and geometry parameters. The shape of
the airfoil was not known a priori. Instead, the shape was
evolved from a simple curved section of nearly uniform
thickness. The evolved optimal airfoil shape closely
matched the shape of the original airfoil that was used to
obtain the pressure distribution. This illustrates a “blind”
test. FIG. § illustrates the evolution of a design according to
ablind test. The evolution of the shape of the airfoil is shown
on the left, while the corresponding pressure distributions
compared to the target pressure distribution are shown on the
right. Clearly, the surface pressures approach the target
pressure as the design progresses. The optimal airfoil shown
at the bottom has a pressure distribution that is very close to
the target pressure distribution.

Design in an Unsteady Flow Environment

Aerodynamic design efforts typically deal with steady
flows. However, there are many instances where unsteady
effects can have a significant impact on the overall perfor-
mance of the component. A design methodology according
to the invention provides a natural framework for including
unsteady effects in the design process, because of the general
manner in which the objective function can be defined.

As an illustration, the invention can be used in a specific
unsteady aerodynamic design problem, namely, transonic
high pressure (HP) aircraft engine turbine design. The flow
in HP turbines is complicated by the presence of shocks,
wakes, tip leakage, and other secondary flow effects. These
shocks, wakes, and vortical flows are ingested by down-
stream stages, resulting in complex interactions with one
another and with the flow in these stages. All of these effects
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are complicated further by the inherent unsteadiness of the
flow field that results from the relative motion of the rotor
and stator rows and gives rise to unsteady interactions both
within the HP turbine stages and between the HP turbine and
the adjacent low pressure (LP) turbine stages. These
unsteady effects result in poor aerodynamic performance,
unsteady blade stresses, fatigue, vibration and reduced blade
life.

The present design method can be used to improve the
unsteady aerodynamic performance of transonic turbines by
optimizing the shape of the stator and rotor airfoils. This is
accomplished by formulating an objective function that
minimizes the unsteady amplitudes on the stator vane (or
rotor blade), subject to a constraint that the tangential force
on the rotor airfoil (i.e., turbine work output) does not
decrease. The pressure amplitude is used as a measure of the
unsteadiness in the flow field and is defined as the range of
temporal pressure variation on the airfoil surface.

Where unsteady shocks are present in a turbine, the design
process can be used to weaken, or eliminate, the shocks. The
presence of unsteady shocks results in large unsteady pres-
sure amplitudes. Thus, the pressure amplitudes are directly
related to the shock strength. Hence, a reduction in the
unsteady amplitudes on the airfoils can have an additional
benefit of weakening or eliminating the shocks in the flow
field. This example also illustrates the use of high-fidelity
simulations, such as unsteady Navier-Stokes computations,
to include all the relevant physics of the problem and to steer
the optimization within the framework of the invention.

A first example deals with the application of this method
to the redesign of the first stage of a gas generator turbine
with the goal of improving its unsteady aerodynamic per-
formance. The turbine is a two-stage configuration with an
aggressive design characterized by high turning angles and
high specific work per stage. Although the turbine was
designed to operate in the high-subsonic regime, an
unsteady analysis showed very strong interaction effects,
including an unsteady moving shock in the axial gap region
between the stator and rotor rows. It is hypothesized that the
strength of this shock can be reduced by optimizing the
airfoil geometries, and the overall unsteady aerodynamic
performance of the turbine can thereby be improved. Since
the shock can only be discerned by an unsteady aerodynamic
analysis, a time-accurate Navier-Stokes solver is coupled to
the neural net-based optimizer and provides simulation
inputs to it. FIG. 6 compares the instantaneous pressures in
the reference and optimized designs of a gas generator
turbine. Clearly, the shocks, represented by curves A and B
on FIG. 6, present in the reference design (which appear as
clustered contours in the region between the stator and rotor
rows) have been eliminated in the optimized design. The
invention yields a modified design that is close to the
reference design and achieves the same work output, yet has
better unsteady aerodynamic performance because the flow
through the turbine is shock-free.

A second example deals with the application of the
invention to the redesign of a transonic turbine stage. The
design goal is to improve its unsteady aerodynamic perfor-
mance by weakening the shocks in the stage and thus
reducing their effect on turbine aerodynamics. The tangen-
tial force on the rotor is constrained so that it does not
decrease during the optimization process.

The application of this design method yielded a new
design with a slightly different geometry. FIG. 7 compares
the instantaneous pressure contours in the reference design
and optimized design for a transonic HP turbine and shows
that the unsteady stator trailing edge shock in the reference
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design has been weakened in the optimized design. This
leads to lower unsieady pressure amplitudes on the airfoil
surfaces and improves the aerodynamic performance. These
reductions in unsteady pressure amplitudes were obtained
without changing the tangential force on the stator and rotor
airfoils or the work output of the turbine. The uncooled stage
efficiency for the optimized design was nearly identical to
that for the reference design.

FIGS. 8A/8B illustrate a general procedure for practicing
the invention. In step 401, a set of h parameters (or vari-
ables) is provided that together determine an observed
variation of data for a target variable, where each parameter
corresponds to a coordinate in an h-dimensional parameter
space G. In step 403, the h parameters are decomposed into
a first set of s simple parameters f,, numbered i=1, . . ., s,
and a second set of complex parameters g, numbered
j=1 ..., c (as characterized in the preceding discussion),
where s+c=h and the ¢ parameters may be used to describe
the provided data using neural networks. In step 405, an
s-dimensional simplex having s+1 vertices, numbered
k=1, ..., s+], and centered at a selected point in the space
G, is provided. In step 407, a neural network is applied and
trained for each of the s+1 vertices, using selected simula-
tion data for the target variable, to generate a first sequence
of network functions R,(g;, . . . , g.). In step 409, a second
sequence of shape functions P, ({5, . . ., f,) is provided that
satisfy the conditions P (f}, . . . , f)).=1 a vertex number k,
Pufy, ..., £).=0 at any other vertex k*(zk) of the simplex,
and the sum of the shape functions P(f,, . . . , f) is
identically 1 for all coordinate points (f,, . . . , ) in step 411,
a composite response surface

s+l

CRS(fig} = ) Plhis ..

k=1

&)

s f) Re(ges oo s 8e)-

is formed.

Optionally, this model can be made more accurate using
the steps 413-421. In step 413, an objective function value
OBIJ,,, dependent upon at least one of the parameter values
fis .., £ g1, - - ., & is provided in G space, for the
composite response surface CRS{f;,g;} at each of n selected
locations associated with a target variable solution, where n
is a selected positive integer. In step 415, a training error
TE{g;} is computed as a non-negative weighted sum of
functions of differences F,(OBJ,—~OBI(f,g;)), where each
function F,, is monotonically increasing in a magnitude of its
function argument and has a value of 0 where the function
argument is 0. The training error TE{g;} may, for example,
be determined as in Eq. (8).

In step 417, the system determines if the training error
TE{g;} is greater than a selected positive threshold number
e. When the answer to the query in step 417 is “yes” (TE=Z¢),
the system provides at least one modified shape function
(e.g., a quadratic or cubic polynomial, in place of a linear
polynomial, or a polynomial with at least one modified
coefficient), in step 419, returns to step 411, and repeats step
411 to obtain a modified design. When the answer to the
query in step 417 is “no” (TE=e), the system accepts the
present composite response surface, in step 421.

It is important to note that, although the invention has
been described in the context of providing a composite
response surface to optimize a design, those skilled in the art
will appreciate that the mechanisms of the invention are
capable of being distributed as a program product in a
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variety of forms to any type of information handling system.
The invention applies equally regardless of the particular
type of signal bearing media utilized to actually carry out the
distribution. Examples of signal bearing media include,
without limitation, recordable type media such as floppy
disk or CD ROMs and transmission type media such as
analog or digital communications links.

The preceding application of the method to improving the
unsteady performance of aerodynamic components is only
an example of how this invention can be applied and should
not be construed as the only application of the invention. The
invention is capable of other and different embodiments, and
its several details are capable of modifications in various
obvious respects, all without departing from the invention.

What is claimed is:

1. A method for constructing a composite response sur-
face based on neural networks and selected functions, the
method comprising providing a computer that is pro-
grammed:

(1) to provide a set of h initial parameters that determine
variation of provided data for a target variable, where
each parameter corresponds to a coordinate in an
h-dimensional parameter space G;

(2) to decompose the h parameters into a first set of s
simple parameters f,, numbered i=1, . . ., 5, that may be
used to describe the provided data with polynomials of
total degree no greater than a selected number Mg, and
a second set of ¢ complex parameters g;, numbered
j=1, ..., c, that may be used to describe the provided
data using neural networks, and with s+c=h, where s, ¢
and M, are selected positive integers;

(3) to provide a simplex, having s+1 vertices, numbered
k=1, ..., s+1, and centered at a selected point in the
space G;

(4) to apply a neural network for each of the s+1 vertices,
and to train each of the s+1 neural networks, using
selected simulation data obtained by varying the
parameters g; to generate a first sequence of network
functions R,(g;, . . ., g.);

(5) to provide a second sequence of shape functions
Pufy, ..., f,) that satisfy the conditions P,(f,, . .., f)=1
at the vertex numbered k and P,(f;, . . . , f)=0 at any

vertex other than vertex number k, and 2P, (f}, . . .,
f)=1 for all values of f,, . . . , f; and

(6) to form a composite function CRS(f;, g;) defined by

s+l

CRS(figi} = ), Pelfis o+ ) Ralgn, - 80)-

k=1
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2. The method of claim 1, wherein said computer is
further programmed to select said set of complex parameters
to include at least one polynomial in said complex param-
eters g; having a selected degree M, satisfying M >M,.

3. The method of claim 1, wherein said computer is
further programmed to choose said integer M, from the
group of integers consisting of 1, 2 and 3.

4. The method of claim 1, wherein said computer is
further programmed to select said set of complex parameters
to include any of said h parameters that does not qualify as
a simple parameter.

5. The method of claim 1, wherein said computer is

further programmed:

(7) to provide an objective function OBJ(f.g;),, depen-
dent upon at least one of the parameter values f;, . . .,
fs, 815 - - - 5 &, for the composite function CRS{f,,g;}
at each of N selected locations in G space, numbered
n=1, ..., N, associated with the target variable, and to
provide a corresponding objective function value OBJ,,
for the target variable at each of the N selected loca-
tions, where n is a selected positive integer;

(8) to compute a training error value TE{g;} as a non-
negative weighted sum of functions of differences
F,(OBJ,~0BI({,.g,),), where each function F, is
monotonically increasing in a magnitude of the func-
tion argument and has a value 0 where the function
argument is 0;

(9) when the training error value TE{g;} is greater than a
selected threshold error value €, to provide at least one
of a modified set of shape functions P,(f,, . .., f.), and
returning to step (6); and

(10) when the training error TE{g;} is no greater than the
threshold error value €, to accept the present composite
response surface.

6. The method of claim 1, wherein said computer is
further programmed to apply said composite response sur-
face to optimization of a design of a physical object.

7. The method of claim 6, wherein said computer is
further programmed to choose said physical object to be a
shape for an aircraft component.

8. The method of claim 1, wherein said computer is
further programmed to apply said composite response sur-
face to modeling of a response to a process.

9. The method of claim 1, wherein said computer is
further programmed to apply said composite response sur-

w© face to modeling response of a physical object.
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