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Popular Summary 

Aerosols are tiny particles, other than water or ice, suspended in the atmosphere. Those tiny particles 

act as "seeds" for water vapor to condense to form clouds. Without aerosols in the atmosphere, it is 

almost impossible to have clouds. Aerosol amount is an important parameter for cloud study. For the 

same amount of water vapor, clouds formed in an environment with more aerosols (or "seeds") would 

have more droplets with smaller sizes compared to clouds in an environment with less aerosols. Scientists 

have shown that clouds with more but smaller droplets reflect more sunlight compared to clouds with 

fewer but larger droplet for the same amount of water. How aerosols can affect the reflectance of clouds 

is an important topic in climate research. 

To study how aerosol can affect the reflectance of cloud on global scale, satellite observation is 

obviously a good choice since one can have both cloud properties and aerosol amount in the clear region 

nearby. However, satellites do not directly observe aerosols. Scientist uses reflected sunlight to infer the 

aerosol amount in the field of view of instrument. In this process, the observed reflected sunlight is 

compared with pre-calculated (or modeled) values to determine the aerosol amount that produces the 

best match between the two. This is called aerosol retrieval process. 

In the operational aerosol retrieval process, clouds near clear regions are ignored. This may lead to a 

wrong interpretation of satellite observation. A simple example is the shadowed pixels in a satellite 

image. Since aerosols reflect sunlight, a lager reflected amount of sunlight observed from the satellite will 

be interpreted as more aerosols. For the same amount of aerosols, the shadowed pixels look darker than 

non-shadowed. Since the amount of reflected sunlight is used to infer aerosols, darker pixels would be 

interpreted as less aerosol amount if nearby clouds are ignored. Similarly, nearby clouds can scatter 

sunlight into nearby non-shadowed pixels making those pixels look brighter. Hence aerosol in those clear 

pixels would be mis-interpreted as having more aerosols. 

A radiative transfer model that takes into accounts the nearby cloud effects, or 3-dimensional (3D) 

effects, is used to compute the true reflected sunlight that a satellite should observe. We compared the 

true reflected sunlight with that computed without nearby clouds for two MODIS and ASTER collocated 

images in Brazil. We found the difference is significantly large. Based on these findings, we advise 

scientists to use caution when using the standard method to retrieve aerosols or aerosol products derived 

from this method. 

https://ntrs.nasa.gov/search.jsp?R=20070023463 2019-08-30T01:20:19+00:00Z
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ABSTRACT 

3D aerosol-cloud interaction is examined by analyzing two images containing 

cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. 

The first part focuses on identifying 3D cloud impacts on the reflectance of pixel 

selected for the MODIS aerosol retrieval based purely on observations. The second part 

of the research combines the observations with radiative transfer computations to 

identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud- 

induced enhancement depends on optical properties of nearby clouds as well as 

wavelength. The enhancement is too large to be ignored. Associated biased error in 1D 

aerosol optical thickness retrieval ranges from 50% to 140% depending on wavelength 

and optical properties of nearby clouds as well as aerosol optical thickness. We caution 

the community to be prudent when applying 1D approximations in computing solar 

radiation in dear regions adjacent to clouds or when using traditional retrieved aerosol 

optical thidcness in aerosol indirect effect research. 

16 Aerosols play a critical role in the process of cloud formation. A change in aerosol 

17 properties may lead to a change in microphysical and radiative properties of cloud, and 

18 indirectly influence the Earth's climate. Analyzing AEROENET ground-based network 

19 Holben (19981, recently Kaufman and Koren [2006] found that absorbing and non- 

20 absorbing aerosols affect cloud cover differently. While absorbing aerosols prevent 

21 clouds from forming, non-absorbing aerosols extend cloud life times and are assodated 

22 with enhanced cloud cover. This complements Twomey's [I9771 fundamental theory 

23 that ties an increase of anthropogenic aerosol to possible consequences to global climate 



- 24 change. An example of an application of this theory is the modification of cloud 

25 properties through a change in cloud condensation nuclei (CCN) in ship tracks 

26 observed from space [Platnick et al., 2000; Coakley et al., 19871. However assessing and 

27 quantifying the indirect effect of aerosol on cloud properties and climate in global scale 

28 still remains a great challenge. The radiative forcing of aerosol indirect effect on climate 

29 has been identified as the most uncertain among other radiative forcing factors 

30 [Intergovernmental Panel on Climate Change (IPCC), 20011. For example, the effect of 

31 aerosols on cloud albedo has a large range of uncertainties estimated as cooling 

32 between -2 and 0 W/rn2. The level of scientific understanding of aerosol indirect effect 

33 is categorized as "very low". Global observation of aerosol and doud properties from 

34 satellite is one way to advance our understanding of aerosol indirect effect on the 

35 Earth's climate, and to reduce its uncertainties. 

36 However, aerosol and cloud property data sets from satellite observation themselves 

37 are subject to large uncertainties. This is partly because doud and aerosol properties 

38 are derived from the satellite observed reflected solar radiation using assumptions 

39 about the Earth's surface, atmosphere, aerosols, and clouds. For operational purpose, 

40 the atmosphere, aerosols and douds are usually assumed to be horizontally 

41 homogeneous and plane-parallel, which is called the one-dimensional (ID) 

42 approximation or plane-parallel approximation (PPA). In this approximation, it is 

43 assumed that radiative properties of an individual pixel are independent of its 

44 neighbors. Many studies have shown that 3D cloud structure has a complicated impact 

45 on retrievals of cloud properties [e-g., Chambers et al., 1997; Varnai and Marshak, 2002; 

46 Iwabuchi and Hayasaka, 2002; Horviith and Davies, 2004; Marshak ef a1.,- 20061. In this 

47 study, we focus on how 3D cloud structure affect reflectance in the dear region near 

48 douds and what are the consequences of this enhanced reflectance on aerosol retrievals. 



- 49 Aerosol optical thickness (AOT) in the clear region near clouds is a key parameter in 

50 the study of aerosol indirect effect from remote sensing instruments. In this region the 

51 atrmphere experiences a big change in optical properties with optically thin aerosols 

52 surrounded by optically thick clouds. Since clouds, aerosols and molecules all scatter 

53 sunlight at wavelengths selected for aerosol retrievals, 3D aerosol-cloud radiative 

54 interactions have a large impact on clear region reflectance and thus on associated 

55 aerosol retrievals. As we demonstrate in this paper, the conventional ID retrieval can 

56 lead to large biased error in aerosol optical depth. Thus to understand 3D aerosol-cloud 

57 radiative interaction, to quantify its impact on aerosol retievals is important to reduce 

58 uncertainties in estimates of aerosol indirect effects on the Earth's climate using satellite 

59 observations. 

60 3D aerosol-cloud radiative interactions have received increasing attention in the past 

61 several years. Efforts were made to parameterize 3D cloud effects on reflectance in 

62 dear regions of Landsat ETM+ images [Wen et al., 2001; Nikolaeva et al., 20051. 3D 

63 radiative transfer models were used to compute 3D cloud effects near ideal clouds 

64 (infinitely long cuboidal bar doud, 3D cubic cloud, horizontally semi-infinite cloud) 

65 [Kobayashi et al., 2000; Cahalan et al., 2001; Nikolaeva et 0 1 ,  20051. Using MODIS lkm 

66 resolution doud optical depth product, and the brightness temperature at 11 microns to 

67 construct a realistic 3D cloud field, Wen et al. [2006] demonstrated that a 3D cloud has 

68 strong impact on the reflected dear sky solar radiation and thus on associated 1D 

69 aerosol retrieval. 

70 This work is an extension of our previous research. It includes 1) analysis of MODIS 

71 aerosol retrievals for possible 3D cloud effects; 2) computation of 3D cloud effects at 0.5 

72 krn resolution and examination of 3D cloud effects on pixels selected by MODIS aerosol 

73 retrieval algorithm; 3) study of 3D doud effects at a smaller resolution not resolved by 



- 74 MODIS. The study i s  conducted for two cumulus cloud fields in Brazil. These two 

75 drmd fields are distinctive in tenns of "large" and "small" aerosol loadings from 

76 MODIS retrievals to represent "polluted" and "pristine" scenes respectively. 

77 The data sets are described in section 2 followed by data analyses in section 3. Section 

78 4 presents 3D doud radative effeds computed in cloud fields. In the final section the 

79 results axe summarized and discussed. 

Two MODIS nadir viewed scenes from the Terra satellite in biomass burning regions 

of Brazil were acquired on January 25,2003 (scene 1) and August 9,2001 (scene 2). The 

size of both scenes is 80 km x 68 'h. These scenes entirely cover the collocated hgh- 

resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) images of size -60 k.m x 60 km [Yamaguchi eE al., 19981. Scene I, used earlier 

by Wen et al. [ZOO61 is centered on the equator at 53.78" we* with solar zenith angle of 

32" m d  solar azimuth angle of 129" from north. Scene 2, used earlier by Mafshak et al. 

[2006], is centered at 1'7.1" south and 42-16" west with solar zenith angle of 41", and solar 

azimuth angle of 38" from nor&, The two ASTER images are presented in Fig. 1 and 

heir characteristics described in Table I, 

The collection 4 of 1-Ism MODIS retrieved cloud optical depth fields [Platnick =& al., 

20031 of the two scenes are presented in Fig. 2. CIoud fractions in scene 1 and scene 2 

are 53% and 40% with average cloud optical depth about 12 and 8, respectively. The 

MODIS surface albedo EMoody et al., 20051 is used in this study. The surface in scene 1 

is darker and more homogeneously covered by vegetation as compared to scene 2. The 

average surface albedo and associated standard deviation for the' two visible bands at 

0.47 prn and 0.66 p, and the mid-IR band at 2.13 pm are presented in Table U. Scene 1 



98 appears to be "polluted" with MODIS retrieved average aerosol optical h c h e s s  of 0.37 

99 at 0.47 and 0.19 at 0.66 w. Aerosol loading in the "pristine" scene 2 is considerably 

100 smaller with average aerosol optical thickness of -0.09 and -0.07 at 0.47 p and 0.66 

101 pm, respectively. 

102 Similar to the study conducted by Wen et al. (20061, the cloud top height is estimated 

103 using the brightness temperature at 11 pm using MODIS band 31; the vertical extinction 

104 profile is obtained assuming a linear distribution of cloud liquid water. To be consistent 

105 with a resolution of 0.5 km used in the MODIS aerosol retrieval algorithm [Remer et al., 

106 20051, a 1 by 1 lan resolution pixel is split into four 0.5 by 0.5 km resolution pixels both 

107 for atmosphere products and the surface albedo to compute the 3D cloud effects on the 

108 reflected solar radiation at 0.47 pm and 0.66 prn of the MODIS band 3 and band 1, 

109 respectively. 

110 We further examine the 3D cloud effects at a smaller scale not resolved by MODIS. 

11 1 This is motivated by the fact that both cloud optical depth and MODIS retrieved aerosol 

112 optical thickness have large spatial variability (Figs. 2 and 3). It appears that cloud - 

113 optical depth and aerosol amount from MODIS are related. Two regions of scene 1 

114 indicated by upper and lower boxes in Fig. 2 are particularly interesting. The lower box 

115 has a clear region with relatively large aerosol amount from MODIS (AOT-0.4) 

116 surrounded by optically thick clouds with average optical depth of -14. In the upper 

117 box, the clear regions with relatively less aerosol loading from MODIS (AOT-0.3) are 

118 next to puffy cumulus with average optical depth of -7. In this work we retrieve cloud - 

119 optical depth using 15 m resolution ASTER band 2 (0.66 vm) reflectance, and estimate 

120 cloud top height using 90 m resolution ASTER brightness temperature at band 14 (11 

121 v). With the same aerosol properties as those for 0.5 krn resolution, we perform 



- 122 rao~anve c"1lly u~...-. -. , - m resolution to look into the 3D effects at a scale nor 

123 resolved by MODIS. 



-145 The selected pixels are not uniformly distributed in space. In order to quantify the 3D 

146 cloud effects, we need to examine the distributions of the selected pixels, their average 

147 reflectance and associated standard deviation, as a function of the distance to the 

148 nearest cloud. Figure 4 shows that the distance between the selected dear pixels and 

149 the nearest cloudy pixels ranges from 0.5 krn to 3.6 Ian with an average of 2 krn and 

150 standard deviation of 0.6 km. Cloud were designated by the standard MODIS cloud 

151 mask algorithm [Ackerman et al., 19981 and were Gsed to retrieve cloud microphysical 

152 properties in Collection 4 [Platnick et al., 20031 (Platnick, personal communication 2006). 

153 Note that these are separate cloud identification schemes than the one used internally 

154 by the MODIS aerosol algorithm [Remer et al, 2005; Martins et al., 20021. There is no 

155 reason why an aerosol retrieval pixel could not coincide with a pixel identified as cloud 

156 by the cloud algorithms. The distribution shows that no aerosol pixels overlap with a 

157 cloud-pixel and only three pixels are contiguous to clouds. With 6 pixels falling within 

158 1 km of a cloud and 3 pixels lying beyond 3 lan from cloud edges, about 90% of selected 

159 pixels are at a distance between 1 krn and 3 km from nearest cloud edges. Note that the 

160 distributions of the population of selected dear pixels at the two bands are similar even 
/ 

161 though the selected clear pixels for the two bands are not necessarily the same. 

162 For scene 1 (the "polluted image), the refledance from the selected pixels decreases 

163 as a function of the distance to the nearest cloud. The rate of decrease of reflectance as 

164 determined by the best linear fit is -0.0009/km for 0.47 pm and -0.0003/km for 0.66 pm. 

165 Since the surface is dark and homogeneous, it is very unlikely that the decrease in the 

166 reflectance is due to the variability in the surface reflective properties. Also, a detailed 

167 examination with high-resolution ASTER image (Sect. 5), shows no evidence for sub- 

168 pixel cloud contamination, in which the algorithm's cloud mask fails to identify a 



187 4. 3D CLOUD EFFECTS AT THE 0.5 KM RESOLUTION 

188 An I3RC (Intercomparison of 3D Radiation Codes) [Cahalan et al., 20051 certified 

189 Monte Carlo (MC) code for radiative transfer in a 3D cloudy atmosphere [Marshak and 

190 Davis, 20051 is used in this study. In contrast to Wen et ai. [2006] that computed the 

191 reflected solar radiation for scene 1 at the 1 km resolution, this section will discuss the 

192 radiation fields computed at the instrument resolution of 0.5 km for MODIS aerosol 



* 193 retrieval for both scene 1 and scene 2. We will further examine the details of the 3D 

194 cloud effects at 90 m resolution not resolved by MODIS in section 5. 

195 Similar to Wen et  al. [2006], the 1km MODIS cloud optical depth is used with cloud 

196 top height estimated from brightness temperature at 11 pm of MODIS band 31 on Terra 

197 for both scenes. Other cloud structure assumptions are the following. Cloud base is 

198 assumed to be constant at 1 km. Cloud liquid water vertical profile is assumed to be 

199 linear. Single scattering properties of clouds such as the phase function and single 

200 scattering albedo at two MODIS bands are computed assuming a gamma distribution of 

201 cloud droplet with effective radius of 10 pm and effective variance of 0.1 [Hansen, 

202 19711. 

203 Aerosol particles are assumed to have a lognormal size distribution with standard 

204 deviation of 0.6 and modal radius of 0.13 pm, and a single scattering albedo of 0.9. For 

205 scene 1, aerosol optical thickness is assumed to be 0.2 at 0.47 pm and 0.1 at 0.66 pm. For 

206 scene 2, aerosol optical thickness is assumed to be 0.07 at 0.47 ym and 0.05 at 0.66 pp. 

207 For simplicity, the aerosols are assumed to be uniformly distributed in two layers: in a 

208 boundary layer below 2 km and in a free troposphere above 2 km. Aerosol optical 

209 thickness in the free troposphere is assumed to be 0.01 with all the rest of the aerosols in 

210 the boundary layer. 

211 Surface albedo fields for from MODIS products [Moody et al,  20051 are used in both 

212 scenes. The 1 km resolution MODIS-derived cloud optical properties and surface 

213 albedo are split into 0.5 krn resolution pixels to compute the reflectance at the two 

214 bands for the MODIS aerosol retrievals. With the cloud optical depth field, aerosol and 

215 molecular properties, and boundary conditions adequately specified, the MC code 

216 computes reflectance r, over a cumulus cloud field. Without clouds, for the same 



-217 aerosol and molecular properties, and surface albedo, the MC code also computes 

218 reflectance rID. The 3~ cloud effect or the ehancement is defined as reflectance 

219 difference between the "truef' value r, and its ID counterpart rIp 



241 interaction leads to a reduction of reflectance over shadowed pixels as shown in the 

40% biased errors, respectively. 

It is interesting to examine the statistics of the enhancement for pixels selected by the 

MODIS aerosol algorithm (Figs. 7b, 7d). It is seen that that the average enhancement for- 

pixels selected by MODIS algorithm is significantly large with similar m a e h d e  of that 

for allover non-cloudy pixels with a few exceptions. The enhancement of the MODIS 

pixels resembles closely the enhancement to the pixels in the larger data set, dthough 



- 266 the enhancement of the MODIS pixels beyond the 2 km mark is slightly higher (-0.001 

267 to 0.002) than in the general data set, meaning that the selection process in thc MODIS 

268 algorithm does not shield the final product from artificial 3 0  enhancement. The 

269 enhancement for MODIS selected pixels has a decreasing trend with the nearest cloud 

270 distance for both wavelengths. The trends of the enhancement are very similar to those 

for reflectance at the twb wavelengths in section 3. 

For all non-cloudy pixels, there is a distinguishable difference in the distributions of 

the enhancement near doud edges between the two wavelengths. At 0.66 pm, starting 

at the nearest cloud distance of 0.5 km, just next to douds, the average enhancement 

increases from 0.002 and reaches a maximum of 0.006 at 1 km away from clouds then 

decreases with the distance from the doud edges (Fig. 7c). At 0.47 pm, the average 

enhancement almost monotonically decreases reaching an asymptotic value about 0.01 

at a distance about 3 lun away from clouds (Fig. 7a). Again this difference is primarily 

due to much stronger reduction over shadowed pixels at 0.66 q compared to that at 

0.47 pm. The variability in the enhancement measured by the standard deviation for 

0.66 pm is about twice as large as that for 0.47 pm in the cloud neighboring area (0.5km 



reported by Joseph and Cahalan [I9901 from the Landsat data and by Lane et  al. [2002] 

from the ground-based measurements. 

It is also interesting to note that in this study using 0.5 km resolution data, the cloud 

neighboring region, a 1 krn wide band contiguous to the cloud edges, is narrower than 

that from 1 ktn resolution data used in Wen et al. [2006]. The apparent wider cloud 

neighboring area at 1 km resolution irriage is primarily due to a coarse resolution used 

in that study. At a resolution coarser than the true shadow size, the entire pixel would 

be a shadowed pixel even if it were partly shadowed. Thus it is necessary to study 3D 

aerosol-cloud interaction in a finer scale. 

4.1 3D CLOUD EFFECTS FOR SCENE 2 

Figure 8 shows images of 3D cloud effects for the "pristine" scene 2. Aerosol optical 

thickness is assumed to be 0.07 at 0.47 pm and 0.05 at 0.66 pm, slightly less than that 

from MODIS retrieval at the two wavelengths. Similar to the "polluted" scene 1, clouds 

enhance the reflected 'solar radiation almost everywhere except for the shadowed pixels 

for both wavelengths. From cloud shadows, we can see that the Sun is shining from the 

northeast when Terra was passing over the scene at about 10:30 am in local time on 

305 August 9,2001 in the southern hemisphere. 

306 Clouds in scene 2 have a different pattern compared to scene 1. Clouds are mostly in 

307 the right part of the image with small scattered cumuli on the left. The enhancement in 

308 dear gaps on the right part of the image is evidently larger than that on the left part. 

309 The shadowing reduction and sunlit enhancement can be clearly identified. 

310 Similar to scene 1, 3D clouds have stronger impact on the average enhancement of 

311 reflectance with less variability (the range and standard deviation) at the shorter 

312 wavelength compared to the longer wavelength (Fig. 8). It is interesting to note that at 



313 0.66 pm the average enhancement (reduction!) for all non-cloudy pixels is negative (- 

- 314 0.003) with large standard deviation of 0.02. One can see that away from clouds, in the 

315 cloud free area on the left side of the image, 3D clouds-induced enhancement appears to 



337 maximum at a distance 1.5 km away from cloud edges, then decreases gradually to 

338 asymptotic value of -0.006 at 0.47 pm and -0.003 at 0.66 ym at a distance about 3 Ism 

339 away from cloud edges. The enhancement of 0.006 and 0.003 can be translated to 

340 overestimate of aerosol optical thickness of 0.06 and 0.03 if 3D aerosol-cloud radiative 

341 interaction is ignored. Compared to the true aerosol optical thickness of 0.07 at 0.47 pm 

and 0.05 at 0.66 pm, 1D approximation overestimates aerosol optical thickness by 86% 

and 60% at the two wavelengths, respectively. 
\ 

The disbibutions of the enhancement for pixels selected by MODIS aerosol retrieval 

algorithm are ilIustrated in Figs. 9b, 9d. With more samples for the selected pixels, the 

distributions of the average enhancement and variability for the subset resemble those 

of the larger population of all non-cloudy pixels (Figs. 9a, 9c). However, there is a 

distinctive difference between the distributions for MODIS selected pixels and their 

counterparts for overall non-cloudy pixels. The distribution of the enhancement for the 

selected pixels reaches asymptotic value at a distance about 2 krn away from cloud 

edges, rather than 3km for overall non-cloudy pixels. For the selected pixels, the 

352 asymptotic enhancement is 0.0075 and 0.0041 for wavelength at 0.47 pm and 0.66 pm 

353 respectively. Compared with the asymptotic enhancements of 0.006 and 0.0029 for the 

354 same wavelength, we found that the average enhancement for MODIS selected pixels is 

355 about 0.0015 and 0.0012 larger than that.for the overall non-cloudy pixels. Again, the 

356 pixel selection process in the MODIS aerosol algorithm does not eliminate significant 

357 enhancement of reflectance by 3D effects. 

358 The overall population of dear pixels decreases away from cloud edges at a slower 

rate compared to scene 1. At a distance 3 km away from cloud edges, where the 

enhancement reaches asymptotic values, there are still about 10% of clear pixels left. At 



3 6 1  a distance 3.5 km, the clear pixel population drops to 5%. At a distance beyond 4.6 Ism 

362 from cloud edges. only 1% of clear pixels are left. It is also interesting to note that even 

363 at a distance about 6-8 km away from clouds, the enhancement does not vanish. Thus 

364 under any arc urn stance^^ asymptotic enhancement of reflectance in clear repons of a 

365 cloudy atmosphere is very large, produang a biased aerosol reb-ievd from the ID 

366 approximation. 



-384 cumuli not identified in the MODIS cloud optical depth product are now resolved by 

385 ASTER. 

386 The same amount of aerosols for the scene 1 study and the same average surface 

387 albedo are used in computing 3D radiation fields for both sub-images for the pair of 

388 wavelengths. The results are presented in Fig. 11 for thin (upper panel) and thick 

389 (lower panel) cloud fields for the two wavelengths. Similar to the coarse resolution 

390 image, except for shadowed pixels at 0.66 pm, clouds enhance the reflectance almost 

391 everywhere in clear regions for both wavelengths. Small positive enhancement of 

392 reflectance over shadowed pixels at 0.47 pm is primarily due to very low surface albedo 

393 as explained earlier. 

394 Near cloud edges, the enhancement of shadowed and sunlit sides is not un i fody  

distributed. It is clear from those images that the impact due to 3D clouds does indeed 

depend on the resolution. Small clouds and their shadows are evidently unresolvable 
I 

bv MODIS with 0.5 krn resolution. Large variability of the enhancement near cloud 
-I 

edges in the MODIS resolution of 0.5 lan (see Figs. 6, 7) can be explained by the non- 

uniform variability at a smaller scale. 

The enhancement dearly depends on the optical depth of the nearby cloud field as 

well as wavelength. Similar to the coarse resolution, clouds have stronger impact with 

less variability (the range and standard deviation) on the average enhancement of 
. . 

403 reflectance at the shorter wavelength compared to the longer wavelength for the same 

404 cloud field (Fig. 11). It is interesting to note that at 0.66 pm the average enhancement is 

405 small (0.0018) with large standard deviation of 0.007 in the thin cloud field. It is seen 

406 that the average enhancement increases by 50% and 5 times from thin clouds to thick 

clouds for wavelengths 0.47 pm and 0.66 pm respectively. 



-408 Distributions of enhancement and associated clear populations are presented in Fig. 

409 12. It is evident that enhancement has large variability within the first 1 km from cloud 

410 edges, and reaches asymptotic values beyond lkrn. For the same reason as in the coarse 

411 resolution, the large variability near cloud edges is primarily due to the strong diffuse 

412 enhancing in front of sunlit side of clouds and less enhancement or even reduction of 

413 shadowing effects. The relatively brighter surface at 0.66 compared to that at 0.47 

414 p is the cause of larger variability even negative enhancement at the longer 

wavelength. (See the standard deviations in the cloud neighboring region in Fig. 12). 

416 Away from the extremes of 3D impacts in the cloud neighboring region, the 

417 asymptotic values can be used to estimate 3D cloud-induced enhancement. Again, the 

418 asymptotic values depend on wavelength as well as optical depth of nearby cloud 

419 fields. For the thin clouds, the asymptotic values of the enhancement are 0.012 and 

420 0.0046 for wavelengths 0.47 pm and 0.66 pm, respectively (Fig. 12a, 12b). For the thick 

421 cloud field, the asymptotic values of the enhancement are 0.019 and 0.014 for 0.47 pm 

422 and 0.66 pm respectively (Fig. 12c, 12d). Since the true aerosol optical thickness is 0.2 

423 and 0.1 for the two wavelengths, the 1D approximation will overestimate aerosol optical 

424 thickness by -0.12 for 0.47 pm and -0.05 for 0.66 pm in the thin cloud field, about 50% 

425 larger than the true values. In the thick cloud field, ignoring 3D aerosol-cloud radiative 

426 effects will lead to overestimates of aerosol optical thickness of about -0.2 for 0.47 pm 

427 and -0.14 for 0.66 pm. The systematic bias errors for thick clouds are -100% and -140% 

428 for the two wavelengths, respectively. 

429 6. SUMMARY AND DISCUSSIONS 

430 Two MODIS and ASTER collocated images of cumulus clouds are analyzed to study 

431 3D cloud-aerosol radiative interaction and its impad on aerosol retrievals. Our studies 



.432 show that 3D clouds enhance reflectance almost everywhere in dear pixels in cumulus 

433 fields except for shadowed pixels. The major factors that determine the magnitude of 

434 the enhancement are (1) the distance between the clear pixel and surrounding clouds - 

435 farther away from clouds the less the variability and the enhancement; (2) optical 

436 properties of surrounding clouds - the thicker the clouds, the larger the enhancement; 

437 (3) the wavelength considered - the shorter the wavelength, the larger the 

438 enhancement; (4) surface albedo - the larger the surface albedo, the larger the 

439 enhancement. 

440 By visually examining pixels selected for MODIS aerosol reMevals with collocated 

441 high-resolution ASTER images, we did not find evidence of cloud contamination for 

442 those selected pixels. This means none of those pixels selected for the aerosol retrieval 

443 coincided with a cloud as identified with the high resolution ASTER. We found that 

444 both the observed reflectance and 3D clouds-induced enhancement have a slightly 

445 decreasing wavelength dependent trend with the distance from the nearest cloud edge 

446 in scene 1. Since the surface is dark and homogeneous at the two wavelengths and there 

447 is no cloud contamination for those selected pixels, wavelength dependent decreasing 

448 trends are likely due to 3D cloud effects. 

449 Away from cloud edges where extreme situations'of the 3D radiative effects occur, the 

- .  450 asymptotic enhancement provides an estimate of 3D effects on both the radiation field 

451 and on aerosol retrievals from that field. For aerosol optical thickness of 0.2 at 0.47 prn 

452 in the "polluted" scene at 0.5 krn resolution, we found that the overestimation of aerosol 

453 optical thickness will be about +0.1 (absolute) or +50% (relative) using a ID retrieval, 

454 which is about the same as that in the thin cloud field in the 90 m study. This biased 

455 error almost doubles in the thick cloud field. At the longer wavelength of 0.66 pm, the 

19 



456 ID approximation leads to a less but still appreciably large systematic biased error 

457 (+40% in thin cloud field imd +l40% in thick cloud field) in aerosol optical thickness 



,480 Particularly, the detailed studies at 90 m provide the range of the 3D cloud-induced 

481 enhancement for thin and thiik clouds. The surface albedo differs from scene 1 to scene 

482 2. The surface of scene 1 is dark and homogeneous. The surface of scene 2 is brighter 

483 and more variable compared to scene 1. Aerosol loadings and surface properties are 

484 also different for the two images. We expect that the range of enhancement of aerosol 

485 optical thickness retrievals (50% to 140%) found in this study to apply in most situations 

486 of broken cumulus. 

487 Finally, we conclude that 3D aerosol-cloud radiative interaction enhances extensively 

488 the reflectance in clear regions around broken clouds. The 3D cloud-induced 

489 enhancement depends on optical properties of nearby clouds as well as wavelength. 

490 Radiative effects of 3D clouds are important in understanding of aerosol indirect effects 

491 on climate from satellite observations. Thus one should be cautious in applying the 1D 

492 approximation to compute dear sky solar radiation in cumulus fields or using aerosol 

493 products derived from the ID approximation in aerosol indirect effect research. 
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Table I. Information about the two scenes with solar zenith angle (SZA), solar azimuth 

angle (SAZ), doud cover, doud optical depth (COD) with the average followed by the 

standard deviation. 

Table 11. Average and associated standard deviation of surface albedo of visible and 

Scene 1 

Scene 2 

mid-IR bands for scene 1 and scene 2, estimated from Moody et al. [2005]. 

Date Acquired 

January 25,2003 

August 9,2001 

Scene 1 

Scene2 

Center (lat,lon) 

(O.N, 53.78W) 

(17.1S, 42.16 W) 

0.47pm 

a=O.Ol l ,  0=0.003 

a=0.039,0=0.009 

SZA 

32" 

41 " 

0.65pm 

a=0.025, 0=0.004 

a=0.079,0=0.018 

SAZ 

129" 

38 " 

2.13pm 

a=0.055, 0=0.006 

a=0.163,0=0.035 

Cloud cover 

53% 

40% 

COD 

2=12 0=10 

z=8, 0=8 



Figure 1. (a) ASTER image of scene 1 centered at (OONf 53.7g0W) acquired on January 25, 

2003; (b) of scene 2 centered at (17.1% 42.16OW) acquired on August 9, 2001. Two 

black boxes in (a) show the regions for detail analysis. The solar zenith angle is 32" 

and 41' for image (a) and (b) respectively. RGB=(2.1pm,0.86pm,O055~) for both 

images. 
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Figure 2. MODIS cloud optical depth fields for collocated ASTER images in Fig. 1 with 

(a) for scene 1; and (b) for scene 2. The average cloud optical depth and standard 

deviation are %(scene 1) -12 and o(scene 1) -10; %(scene 2) -8 and  scene 2) -8. The 

cloud cover is -53% and -40% for image (a) and (b) respectively. Two squares 

outlined in black in (a) show the regions for detail analysis. The small black points 

indicate the 500 m pixels from which the MODIS aerosol products were retrieved. 



Figure 3. MODIS retrieved aerosol optical thickness for scene 1 in Fig. 2 (a). Aerosol 

optical thickness of -0.4 near thick clouds (lower box in Fig. 2(a)) is evidently larger 

than optical thickness (-0.3) near thin clouds (upper box of Fig. 2(a)). 
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Figure 4. Averaged reflectance (circle, left scale) and standard deviation (vertical 

brackets, left scale) for pixels for aerosol rebieval for wavelength 0.47 pm (a), and 

0.66 pm (b) of scene 1. Vertical bars show the distribution of those selected pixels 

(right scale) as a function of the nearest cloud distance. The average of the nearest 

cloud distance is -2km with standard deviation of -0.6k.m. The slope of the best 

linear fit is about -O.O009/lan at 0.47 pm and -O.O003/km at 0.66 pm. The average 

surface albedo and standard deviation are a0.47, =0.011, 4.47p =0.003; a066w =0.025, 





Figure 6. (a) Enhancement of reflected solar radiation due to 3D effects for dear regions 

in the cumulus field for 0.47 pm, and (b) for 0.66 pm. The direction of incident solar 

radiation is towards the southeast with a solar azimuth angle of 129" defined from 

the north. Cloud pixels are masked as white. The averages and associated standard - - 
deviations of the enhancement are b 0 . 4 7 ,  =0.015 and ow, =0.005; and 
- 
b 0 . 6 6 ~  = 0.004 and o,,, = 0.008. The color bar on (a) and (b) are different. 
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Figure 7. Average enhancement (circles, left scale) and standard deviation (vertical 
brackets) for dear pixels as a function of the nearest cloud distance. Cumulative and 
sample distributions of clear pixels as a function of the nearest cloud distance (right 
scale) for scene 1. Results are (a) and (c) for all non-cloudy pixels at wavelengths 0.47 

and 0.66 p respectively. Results for MODIS selected pixels are presented in (b) 
and (d) respectively. The slope of the best linear fit for the MODIS pixels is about - 
0.0006/km and -0.0003/km for wavelengths 0.47 p and 0.66 respectively. 
Outliers with nearest cloud distance of 0.5 km and 0.7 km are excluded in 
computing the slope for 0.66 v. 



Figure 8. Enhancement of reflected solar radiation due to 3D effects for dear regions in 

a c~wnulus field for Scene 2 (a) for 0.47 pm, and (b) for 0.66 pm. The direction of 

incident solar radiation is from the northeast with solar azimuth angle of 38" from 

north. Pixels identified as clouds from the MODIS cloud algorithms are masked as 

white. The averages and associated standard deviations of the enhancement are 
- 
A r 0 . 4 7 ~  = 0.006 and oo.47, = 0.008; and G0.6.5~ = -0.003 and o,,, = 0.02, for (a) and 

(b), respectively. 
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Figure 9. Average enhancement (circles, left scale) and standard deviation (vertical 
brackets) for dear pixels as a function of the nearest cloud distance. Cumulative and 
sample distributions of clear pixels as a function of the nearest cloud distance (right 
scale) for scene 1. Results are (a) and (c) for all non-cloudy pixels at wavelengths 0.47 
p and 0.66 p respectively. Results for MODIS selected pixels are presented in (b) 
and (d) respectively. 



Figure 10. Cloud optical depth retrieved from an ASTER image collocated with Scene 1. 

Shown are two subsets of the image both at 90 m resolution designated in Fig 2a as 

the two boxes outlined in black (a) for upper box, and (b) for lower box of shown in 

Fig. 2a. The averages of cloud optical depth and standard deviations are %(thin 

clouds) -7 and o(thin clouds) -6; %(thick clouds) -14 and o(thick clouds) -8. The 

cloud cover is -51% and -59% for (a) and (b) respectively. 



Figure 11. Enhancement of reflected solar radiation due to 3D effects for clear regions in 

thin (upper panel) and thick cumulus (lower panel) for wavelengths at 0.47 pm (left) 

and 0.66 p (right) at 90 m resolution. Cloud pixels are masked as white. For the 

thin cloud field z0.47,  = 0.012 and 00,47, = 0.004; and = 0.0018 and 

oO.&, = 0.007. For the thick cloud field z0 .47 ,  = 0.019 and q,, = 0.006; and 
- 
A t - o . ~ ,  = 0.01 and o,,, = 0.009. The color bar stretch is different for each panel. 
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Figure 12. Similar to Fig. 7 but for detailed statistics of the enhancement of reflectance in 
the finer resolution images of Fig. 11. The upper panels show the enhanced 
reflectance as a function of cloud distance and cumulative distribution for the image 
with optically thin clouds. The lower panels show the same for the image with 
thicker clouds. The left panels are for 0.47 pm and the right for 0.66 pm. 




