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TECHNICAL MEMORANDUM

PROGRAMMABLE THERMOSTAT MODULE UPGRADE
FOR THE MULTIPURPOSE LOGISTICS MODULE

1.  BACKGROUND

The multipurpose logistics module (MPLM) is a pressurized module used for transporting 
international standard payload racks (ISPR), consumable supplies, and various other logistical items 
to and from the International Space Station (ISS) (fig. 1). The 21-ft-long by 15-ft-diameter aluminum 
canister can transport up to 20,000 lb of payload in a pressure and temperature controlled environment. 
The environment inside the MPLM is maintained by pressure relief valves (both positive and negative), 
external multilayer insulation (MLI) blankets, and a shell heater system located on the structural skin. 
The internal temperature and pressure of the module are controlled via the heaters to ensure the 
following: (1) prevention of condensation inside the MPLM (60 °F maximum dewpoint, (2) prevention 
of actuation of either the positive pressure relief assembly (PPRA) or the negative pressure relief 
valve (NPRV), (3) maintenance of the MPLM internal cabin air temperature between 50 to 113 °F,  
and (4) maintenance of the MPLM cabin air pressure in the range of 13.9 to 15.2 psia.

From an operational perspective, an MPLM mission has three distinct phases. Phase 1 occurs 
from launch through hatch opening on the ISS. Phase 2 occurs while the hatch is open to the ISS,  
and phase 3 is the time period between hatch closure on ISS through landing. Phase 3 is typically the 
only period when the 28 V heaters are operated. During this portion of the mission, the MPLM cabin 
air environment must be maintained between the positive and negative pressure relief valve actuation 
pressures (PPRA and NPRVs) and above the local dewpoint temperature.

Figure 1.  Illustration of MPLM stowed in the Space Shuttle payload bay.
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The initial MPLM shell heater system design utilized 3200 Series Elmwood thermostats  
to provide temperature control. Unfortunately, the thermostat set points were so high (81 to 95 °F set 
point range) that the MPLM PPRAs would actuate during a nominal mission timeline. The risk of 
actuating PPRAs during on-orbit operations could jeopardize MPLM mission objectives if a valve 
failure were to occur. This scenario would result in the loss of valuable make-up consumables from 
either the ISS or Space Shuttle. Furthermore, the higher set points required additional Shuttle cryogenic 
resources to operate the fuel cell power supply used to drive the MPLM shell heaters. 

To compensate for the high set points, the MPLM shell heaters were operated manually. Heater 
switches, located in the Shuttle’s aft flight deck, were cycled on/off by the flight crew. Preflight thermal 
analyses were used to define approximate heater duty cycles, while real-time telemetry was used  
to “fine-tune” the heater on/off times to meet mission objectives. This effort required real-time Mission 
Operations Directorate (MOD) support to coordinate crew activities in order to perform these tasks. 
Another drawback of manual heater operations lies in the fact that the MPLM shell heaters could only 
be operated while the crew was awake. Extended heater cycles during crew sleep periods could raise 
the internal MPLM air pressures above the PPRV pressure limits. These constraints proved to be both 
cumbersome and inefficient for real-time flight operations.

In October 2000 the MPLM Project Office presented a proposal to the ISS Program Office  
for developing solid state programmable thermostats that would replace the bimetallic disk-style 
devices. These solid state thermostats offered several advantages including tighter temperature control, 
selectable set points, and closed-loop feedback control capability. These features, in turn, would result  
in greater operational flexibility during future ISS missions.

This Technical Memorandum (TM) discusses the programmable thermostat module (PTM) 
project development cycle and first time use of these state-of-the-art thermostats. 
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2.  MULTIPURPOSE LOGISTICS MODULE PROGRAMMABLE 
THERMOSTAT SYSTEM

The MPLM has two sets of heaters and thermostats, one operating on 28 V power and one 
operating on 120 V power. The 28 V string is powered from the Space Shuttle’s fuel cell power supply 
and is used while the MPLM is in the Shuttle’s payload bay. The 120 V string is powered by the ISS and 
is used when the MPLM is attached to the ISS. The 28 V heater system consists of 22 thermostatically 
controlled heater circuits and 66 individual Kapton (a DuPont product) resistive element heater pads. 
Only the 28 V thermostats were replaced with the new PTMs.

Figure 2 illustrates the new PTM and its coupled sensor, an external resistive temperature 
device (RTD). The PTM module design consists of a secured printed wiring board assembly mounted  
in an aluminum housing. The aluminum housing is affixed to a mounting bracket with four setscrews. 
The carrier bracket, in turn, is secured to the MPLM pressure shell with a high strength epoxy adhesive. 
This installation design allows for easy replacement of failed units. Real-time temperature monitoring  
is accomplished with the RTDs.

Fuse

Existing
Thermostat
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Shell

Heaters

Removed Wiring

RTD Sensor
Shell

Programmable
Thermostat

Module

Communications
Connector

Module-To-Carrier
Mounting Screws

Epoxy

Carrier

28 V RTN

28 V

Thermal Pad

Figure 2.  Programmable thermostat hardware.



�

In the upgraded 28 V heater network, 20 PTM/RTD assemblies and a data recorder module 
(DRM) replaced the bimetallic disk-type thermostats. The DRM records various PTM flight parameters 
(temperature, on/off status, and other associated health monitoring parameters). Two circuits were left 
unchanged in the new configuration as a result of design constraints. 

Each PTM/DRM module contains two interfaces. One is an electrical interface, while the other  
is the communications link for command and data handling (C&DH). The electrical interfaces consist  
of the 28 V power supply/return and RTD wiring, while the C&DH interface is achieved through a 
RS-485 communications cable and 21-pin micro “D” metal shell connectors. The DRM interfaces are 
identical to the PTMs with the exception of the RTD pigtail leads.

The PTM electrical installation was accomplished by clipping the leads at the bimetallic terminal 
interfaces and splicing into the main 28 V harness power supply/return lines. The RTDs were mounted 
no more than 36 in (and no closer than 6 in) from the PTMs near the existing bimetallic thermostats. 
Mounting distances were optimized through thermal analysis utilizing the systems improved numerical 
differencing analyzer (SINDA). The maximum distance is driven by the controllability of the heater 
zones while the minimum distance is chosen to avoid thermal contamination of the sensor by the 
controller.

Key design features of the PTM system include:

•	 Size: 2.25 in × 1.75 in × 0.5 in
•	 Weight: < 75 g (w/o carrier); < 100 g (w/carrier)
•	 C&DH: RS-485 serial communication protocol
•	 Software: graphical users interface (GUI) developed for programming and monitoring
•	 Input Power: +9 to +28 Vdc
•	 External RTD temperature sensor
•	 External heater: up to 5 A at +28 Vdc
•	 Programmable temperature set points and span. Set point/span resolution: 0.1 °C
•	 DRM available in the same housing for recording status and temperature data for up to 32 PTM units
	 connected on a single RS-485 bus.

Figure 3 is the electrical block diagram of the new MPLM 28 V PTM heater network. The 
RS-485 communication cable provides the C&DH link for the 20 PTMs and DRM. A ground support 
equipment (GSE) computer is used to upload PTM control parameters (set points, error span, and data 
acquisition rates) during pre-mission ground processing operations at Kennedy Space Center (KSC). 
Post-mission data retrieval is also performed with the GSE computer. No C&DH capability is available 
during real-time mission operations.
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Figure 3.  MPLM PTM electrical block diagram.
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3.  HARDWARE DEVELOPMENT

The MPLM project office at NASA Marshall Space Flight Center (MSFC) was responsible 
for managing all of the design, development, testing, and verification (DDT&V) activities of the PTM 
project. DDT&V activities, including environmental flight qualification and acceptance testing, were 
performed using the available infrastructure and engineering support personnel at MSFC.1 The PTM 
circuit boards were outsourced to a local electronics vendor for manufacturing. However, the final 
electronics box-level assembly operations, including potting and wire staking, were completed at MSFC.

The Boeing/Huntsville division was responsible for providing the RS-485 communication 
cable design drawings, while the Boeing/KSC division completed the manufacture, test certification, 
and installation of the flight cable. MSFC relied upon the Advanced Logistics Technology Engineering 
Center (ALTEC) (the Italian Space Agency MPLM-sustaining engineering partner) to provide detailed 
installation drawings of the PTM mounting design and RS-485 cable routing layout to KSC.

3.1  Radiation Susceptibility Tests

A key decision made early in the project design phase involved using industrial grade electronic, 
electrical, and electromagnetic (EEE) parts in the circuit board design in lieu of more expensive 
radiation hardened parts. The technical risk was judged to be acceptable, as the on-orbit thermal 
environment is consistent with industrial grade parts qualifications. Furthermore, the PTMs are located 
in a benign radiation environment underneath external MLI blankets and micrometeoroid shielding.

To demonstrate the functional capability of these parts in a space environment, a series of 
radiation tests was performed on prototype units. Two thermostats and a data recorder were subjected 
to “proton” or “heavy ion” testing at the Indiana University Cyclotron Facility for single event 
effects (SEE). These units were subjected to an equivalent amount of radiation that would be expected  
in 10 years of continuous operation on the ISS.

The test results demonstrated that the data recorder and thermostat units exceeded the on-
orbit mean time between failure (MTBF) design requirement of 365 days (equivalent to the MPLM 
25 mission life design requirement) without error or incident.2 The MTBF design limit for the DRMs 
was determined to be 447.5 days. The PTMs exhibited no effects from the radiation testing. The DRM 
MTBF limit was due to data memory effects. However, the DRM design contains redundant memory 
banks to compensate for this. The ISS EEE Parts Board approved a design waiver upon the successful 
completion of these radiation tests. 

3.2  Bond Strength Tests

Two bonding tests were performed to assess the bonding material and installation procedure  
of the PTM/DRM carrier brackets to the MPLM pressure shell. The installation procedure was based  
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on a microtransaxial accelerometer unit (TAU) strain gauge bonding process developed at KSC.  
RTV-566 epoxy adhesive was the bonding agent used for the PTM carrier bracket mounting design.

A single PTM was mounted on a Space Shuttle solid rocket booster (SRB) test fixture to perform 
vibration development testing of the PTM carrier bracket mounting concept.3 The SRB test fixture was 
chosen for the development testing because its radius of curvature is approximately equal to that of the 
MPLM structural shell.

Prior to performing the bond/vibration tests, a static load test was performed (in shear plane) 
on the bonded PTM. The PTM remained affixed to the SRB test fixture and successfully met the 70-lbf 
strength requirement called out in the MicroTAU procedure.

A second bond test was performed to determine the ultimate tensile strength of the RTV-566 
adhesive bond. The “pull to failure” ultimate strength of the RTV-566 adhesive was measured to be 
1,116 lbf in the shear plane.

The results obtained from these development tests validated the PTM RTV-566 mounting 
installation concept.
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4.  HARDWARE QUALIFICATION AND ACCEPTANCE

All PTM qualification and acceptance testing was performed at MSFC’s environmental test 
facilities. This included electrical emissions induced/conductance (EMI/EMC), random vibration/
structural, and thermal cycle flight testing. Figure 4 shows the test fixture that was developed for the 
PTM flight qualification/acceptance testing.4

Figure 4.  MPLM PTM environmental test fixture.

Flight certification testing utilized a lot qualification/acceptance test approach. A special test 
fixture was designed to accommodate 25 PTM/DRM units during a single test flow sequence. All 
testing was performed in accordance with the standards and guidelines established by the ISS program 
in SSP 41172, “Qualification and Acceptance Environmental Test Requirements.”5 EMI/EMC test 
standards are defined in NSTS-21000-IDD-ISS, “International Space Station Interface Definition Design 
Documents.”6

Each PTM and DRM was acceptance tested to ensure workmanship only at the electronic box 
assembly level; no component testing was performed at the circuit board assembly level. Instead, quality 
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surveillance was maintained at the vendor’s facility through visual workmanship and inspection audits 
at all levels during the printed circuit board manufacturing process. These audits were performed prior 
to component testing of the potted electronic module assemblies. A total of 100 PTM assemblies and 
6 DRM units were manufactured in this development effort.

Figures 5 and 6 are flowcharts representing the environmental test flow paths performed during 
this hardware development campaign. Ten PTMs and a single DRM were tested during the flight 
qualification phase, while four separate hardware acceptance test flows were completed on the remaining 
PTM/DRM units. The first three acceptance test lots consisted of 23 PTMs and 1 DRM, while the final 
acceptance flow consisted of 24 PTM and 2 DRMs.

Burn-in
Initial

Functional
EMI/EMC

2.2
Intermediate
Functional

Thermal
Vacuum

2.4

Intermediate
Functional

Random
Vibration 

2.3

Final
Functional

2.6

Figure 5.  PTM flight qualification test flowchart.
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Figure 6.  PTM flight acceptance test flowchart.
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Table 1 lists the component test matrix for all of the PTM/DRM hardware tested. This matrix 
cross-references to which qualification or acceptance tests each PTM or DRM unit was subjected. 
Module-level electronic burn-in tests were performed on all of the units prior to the environmental 
testing. For the EMI/EMC qualification tests, only those PTM and DRM units that were manufactured 
first were subjected to EMI/EMC tests prior to the start of the flight qualification testing.

Table 1.  MPLM programmable thermostat component test matrix.

Component Burn-In

Qualification Acceptance

EMI/EMC Vibration Thermal Vibration Thermal

Thermostat   
X
X
X

  
X

 

  
X
X
 

  
X
X
 

  

X

  

X

1
2 – 10

11 – 100

Data Recorder  
X
X

 
X
 

 
X
 

 
X
 

 

X

 

X
1

2 – 6

The vibration levels and thermal cycles for the qualification tests were set in order for the 
hardware to qualify for 25 flights, which is the design mission life of each MPLM.7,8 Table 2 lists  
the qualification and acceptance vibration levels, while table 3 lists the qualification and acceptance 
thermal cycling temperature ranges. These levels are defined in the PTM and DRM end item 
specification documents. It should be noted that all testing performed during flight qualification  
and acceptance was successful with no hardware failures noted.

Table 2.  Qualification and acceptance vibration levels.

Frequency (Hz) Qualification1 Level Acceptance2 Level

20 0.04 g2/Hz 0.01 g2/Hz

20 to 65 +7.6 dB/Octave +7.6 dB/Octave

65 to 180 0.8 g2/Hz 0.2 g2/Hz

180 to 360 –7.0 dB/Octave –7.0 dB/Octave

360 0.16 g2/Hz 0.04 g2/Hz

360 to 1,400 –2.6 dB/Octave –2.6 dB/Octave

1,400 0.05 g2/Hz 0.0125 g2/Hz

1,400 to 2,000 –4.9 dB/Octave –4.9 dB/Octave

2,000 0.028 g2/Hz 0.007 g2/Hz

Composite 16.8 grm 8.4 grm

1  Qualification duration = 810 s in each of three mutually perpendicular axes.
2  Acceptance duration = 60 s in each of three mutually perpendicular axes.
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Table 3.  Thermal cycle ranges.

Low 
Temperature

High
Temperature

Number
of Cycles

Qualification

Acceptance

–24 °F

–4 °F

+156 °F

+136 °F

24

8
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5.  STS-121 MULTIPURPOSE LOGISTICS MODULE SHELL HEATER OPERATIONS 

The STS-121/ULF1.1 ISS mission was launched on July 4, 2006. This was the first flight of the 
fully automated MPLM 28 V shell heater system. During the six previous MPLM missions, the shell 
heaters were manually cycled to maintain temperature/pressure (T/P) control within power requirements 
defined in the ISS mission integration plan (MIP). Beginning with this mission, however, the automated 
PTM system posed new challenges for conducting the MPLM heater operations due to the fact that  
the PTMs cannot be reprogrammed from the ground during flight operations.

In order to meet operational requirements with the PTM heater system, a new flight rule had to 
be developed for the STS-121 mission. This rule defined the range of acceptable cabin air T/P conditions 
prior to the MPLM hatch closure. The desired ISS cabin air properties are functions of the final MPLM 
cabin air temperature and the NPRV/PPRA crack pressures. 

The ISS closeout conditions were derived in the following manner:

	 T P
T
P1 1

2

2
=







	 (1)

where: 
T1 = ISS closeout air temperature
T2 = MPLM final air temperature
P1 = ISS closeout air pressure
P2 = NPRV/PPRV minimum crack pressure

T1 values represent ISS closeout air temperatures that are calculated over a range of P1 closeout 
pressure conditions. T2 is the MPLM cabin air temperature at deorbit and is represented by the steady-
state MPLM shell temperature (PTM heater set point). P2 pressures are the minimum as-tested crack 
pressures of the NPRV and PPRA valves flown during this mission.

Adjusting T2 values upward or downward by the temperature control span simulated the PTM 
temperature control errors. A temperature control span of 0.4 °F was selected for this mission to ensure 
that a tight control range about the desired set point would be maintained at all times. For the NPRV 
limit line calculations, T2 values were adjusted downward. For the PPRA limits, these values were 
adjusted upward.

T1 temperatures were plotted against P1 closeout pressures. The resultant T/P curves define the 
NPRV and PPRA crack pressure limits at MPLM hatch closure. Any ISS cabin air T/P combination that 
lies between these limit lines and above the ISS local dewpoint will satisfy pressure and condensation 
requirements for the MPLM hardware. 
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ISS closeout conditions for six discreet PTM set point cases were analyzed for this mission. 
The optimum mission set point was selected from the corresponding closeout chart which completely 
bounded ISS cabin air T/P conditions between the NPRV/PPRA crack pressure envelope. 

Figure 7 is the MPLM/ISS closeout flight rule that was developed for the STS-121 mission.  
This flight rule is based on a 78 °F PTM heater set point. The corresponding heater control range is 77.6 
to 78.4 °F (25.2 to 25.6 °C). 
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Figure 7.  STS-121 MPLM/ISS closeout conditions (78 °F set point, ± 0.4 °F control band).

Finally, a thermal analysis was performed to determine whether the PTM mission set point 
would meet the STS-121 MIP power budget requirements.9 The MPLM heater power assessment was 
completed by ALTEC using the SINDA thermal analysis software program. The SINDA model assumed 
nominal Shuttle bay-to-Earth orbital heating rates and an ISS closeout air temperature of 72 °F for the 
initial conditions in the analysis. 

The ALTEC analysis predicted 28 kWh of heater power used during nominal time lined end  
of mission (EOM) heater operations with an additional 8 kWh used during mission extension days.  
The STS-121 MIP allocated 30.5 kWh of heater power for nominal operations (at 278 h mission elapsed 
time (MET)) and 16 kWh power for the additional contingency orbit days. The ALTEC model results 
met the STS-121 MIP requirements and were presented to Johnson Space Center (JSC) STS-121 
Joint Operations Panel (JOP) for formal flight approval.10 Figures 8 and 9 are the heater power levels 
predicted by the ALTEC SINDA model. 
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6.  STS-121 PROGRAMMABLE THERMAL MODULE DATA ANALYSIS

The STS-121 flight was the first time that MPLM shell temperatures were recorded during 
ISS flight operations. The data obtained from the DRM indicated that the PTM system performed 
exceptionally well. The MPLM shell heaters operated for 61 hours, beginning shortly after the MPLM 
was returned to the Shuttle payload bay and ending ≈1 h prior to deorbit operations.

Post-mission data analysis indicated that all 20 PTMs functioned as designed and maintained 
the MPLM shell temperatures within the expected temperature control band. The flight day 12 (FD12) 
telemetry data obtained during the MPLM environment check indicated that some of the individual 
heater circuits had begun to cycle off. This was verified by current readings recorded on the heater 
circuit screen displays.

Figures 10 and 11 are plots of the shell heater energy and power profiles, respectively. Figure 10 
shows the total heater energy calculated from the recorded heater on/off duty cycles. A total of 23 kWh 
of energy was used during the STS-121 mission, slightly less than ALTEC’s predicted model value. 
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Figure 11 shows the heater power profile. The shell heaters were running at 100 percent duty 
cycle during the first six hours of heater operations.

The lower than expected energy usage is attributed to off-nominal flight attitudes flown during 
the last two mission days, as the Shuttle was oriented a in portside, sun-facing trajectory (–Y direction) 
during portions of FDs 12 and 13. These unplanned flight trajectories were driven by problems 
associated with the Shuttle’s auxiliary power unit (APU) fuel system. Figure 12 is an isometric view  
of the MPLM external configuration, while figure 13 references the coordinate system of the MPLM 
in the Shuttle’s payload bay.  The Shuttle’s –Y axis points to the portside of the MPLM. This direction 
points outward from the flexible releasable grapple fixture (FRGF) located below the support bracket for 
the fluid payload disconnect assembly (PDA) shown in figure 12. The Shuttle’s –X axis points outward 
from the forward end cone.
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The thermal effects arising from the Shuttle –Y port attitudes are illustrated in some of the 
individual PTM temperature profile plots below. These influences are especially dramatic in figures 14 
and 15. Figure 14 shows the MPLM grapple fixture temperatures (FRGFs in fig.12). These fixtures  
are almost 180° apart, with the grapple (GRAP) –Y PTM facing the sun. This PTM circuit remains  
off during the port maneuvers, while the GRAP +Y PTM cycles continuously, because this location  
is shaded. These effects are also illustrated in the aft cylinder and common berthing mechanism (CBM) 
temperature profiles as well (figs. 14 and 15).
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Finally, figure 16 illustrates the tight control response of the PTM system. The grapple fixture on/
off status is overlaid with the temperature data. These PTMs cycle within the desired temperature control 
range of 25.2 to 25.6 °C. 
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7.  FUTURE APPLICATIONS

	 The results obtained from the first flight of the PTM shell heater system are very encouraging. 
Although the PTMs were developed specifically for the MPLM 28 V shell heater control system, the 
design is flexible and can be tailored to meet future customer needs. Below are just some of the cus-
tomer-defined parameters that these designs can accommodate:

•  Mounting configurations
•  External temperature sensor RTD, thermal couple, thermistor, other temperature sensing devices
•  Heater current
•  Supply voltage
•  Range of temperature measurement and control.

	 Following is a list of three disclosures of inventions (patents) that have been filed for these tech-
nologies:

•	 MFS-32000-1 “Miniature Housing with Standard Addressable Interface for Smart Sensors 
	 and Drive Electronics.”
•	 MFS-32209-1 “Programmable Data Logger/Master Controller with Multiple Sensor/Device 
	 Interface.”
•	 MFS-31815 “Distributed Solid State Programmable Thermostat/Power Controller.”
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