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On an Asymptotically Consistent Unsteady Interacting
Boundary Layer

R. E. Bartels
NASA Langley Research Center

Hampton, Virginia USA

Abstract

This paper develops the asymptotic matching of an unsteady compressible boundary
layer to an inviscid �ow. Of particular importance is the velocity injection or transpiration
boundary condition derived by this theory. It is found that in general the transpiration will
contain a slope of the displacement thickness and a time derivative of a density integral.
The conditions under which the second term may be neglected, and its consistency with
the established results of interacting boundary layer are discussed.

Introduction

A variety of viscous/inviscid interaction schemes have been developed for a steady or un-
steady boundary layer coupled with steady or unsteady inviscid �ow. For various reasons (e.g.
expediency, robustness, e¢ ciency), engineering codes have frequently combined unsteady invis-
cid and steady boundary layer �ow solvers. In such cases the coupling typically is treated as
quasi-steady. The attempt will be made here to show that under the correct circumstances
this approach is approximately valid. The larger question is the proper way to derive the invis-
cid velocity boundary condition imposed by an unsteady boundary layer. Heuristic treatments
appeal to the similarity between the displacement thickness slope derived from boundary layer
theory and the surface slope derived from thin airfoil theory. Based on this similarity, a time
derivative of the displacement thickness is sometimes added to the viscous/inviscid coupling.
This formulation has shown up from time to time, as for example a viscous-inviscid interaction
model for cascades, [1] or as a recent publication apparently illustrates.[2] In contrast to this
approach, the attempt will be made here to show that the method of matched asymptotic ex-
pansions applied to an unsteady interacting boundary layer (IBL) yields only a time derivative
due to the density variation through the boundary layer. This result was �rst presented by
LeBalleur, [3] and later by Bartels [4] [5] [6], and Epureanu [7].
The paper will derive the transpiration boundary condition for an unsteady compressible

laminar boundary layer. The same form will be shown to apply to an unsteady turbulent
boundary layer. The transpiration boundary condition will be derived for a surface with time
and spatially varying height using the Prandtl transposition. Reduced forms of the transpiration
condition will be shown in the limits of incompressibility and steady state, which are then shown
to merge with other well known interacting boundary layer results. Finally, its relation to the
IBL theory of boundary layer separation and other IBL methods will be discussed.
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Laminar boundary layer matching

A laminar two-dimensional boundary layer is composed of two regions, an inner viscous and
an outer inviscid but rotational region. The leading order boundary layer equations, matching
conditions and the resulting injection velocity will be derived using the method of matched
asymptotic expansions, developed for �uid dynamics by Van Dyke.[8]
The Navier-Stokes equations are non-dimensionalized with free stream density, velocity and

characteristic length l that is of O(1). The length scale on which the present interaction
is derived is x � O(1). The Reynolds number is de�ned such that Re = �u0l=�. The non-
dimensional inviscid �ow �eld density, x and y velocities, pressure and temperature are expanded
in the following way.

� � �1(x; y; t) + ��2(x; y; t) + � � � (1)

u � u1(x; y; t) + �u2(x; y; t) + � � � (2)

v � v1(x; y; t) + �v2(x; y; t) + � � � (3)

p � p1(x; y; t) + �p2(x; y; t) + � � � (4)

T � T1(x; y; t) + �T2(x; y; t) + � � �

The scale parameter � for a laminar boundary layer is Re�1=2. The vertical scale of the inviscid
�ow is y � O(1). The inviscid mass and momentum continuity equations at leading order are

�1t + (�1u1)x + (�1v1)y = 0 (5)

(�1u1)t + (�1u
2
1)x + (�1v1u1)y + p1x = 0 (6)

(�1v1)t + (�1u1v1)x + (�1v
2
1)y + p1y = 0 (7)

Athough the energy equation can be similarly expanded, it is not necessary for the present
purpose and will not be included. The boundary layer expansions have the following form

� � R1(x; Y; t) + �R2(x; Y; t) + � � � (8)

u � U1(x; Y; t) + �U2(x; Y; t) + � � � (9)

v � �V1(x; Y; t) + �
2V2(x; Y; t) + � � � (10)

p � p1(x; Y; t) + �p2(x; Y; t) + � � � (11)

T � �1(x; Y; t) + ��2(x; Y; t) + � � �

where the boundary layer scaled coordinate Y = y��1 is used. The leading order boundary
layer equations are

R1t + (R1U1)x + (R1V1)Y = 0 (12)

(R1U1)t + (R1U
2
1 )x + (R1V1U1)Y + p1x = (�U1Y )Y (13)

p1Y = 0 (14)

The method of matched asymptotic expansions requires that the Taylor series of the inviscid
�ow quantities as y ! 0 is matched with the boundary layer expansion as Y ! 1. [8] The
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Taylor series of the inviscid expansion is

� � �1(x; 0; t) + y�1y(x; 0; t) + ��2(x; 0; t) + � � �
� �1(x; 0; t) + �

�
Y �1y(x; 0; t) + �2(x; 0; t)

�
+ � � �

u � u1(x; 0; t) + yu1y(x; 0; t) + �u2(x; 0; t) + � � �
� u1(x; 0; t) + � (Y u1y(x; 0; t) + u2(x; 0; t)) + � � �

v � v1(x; 0; t) + yv1y(x; 0; t) + �v2(x; 0; t) + � � �
� v1(x; 0; t) + � (Y v1y(x; 0; t) + v2(x; 0; t)) + � � �

etc:::

Matching of each quantity at successive orders as y ! 0 with the corresponding boundary layer
quantities as Y !1 yields the matching at leading order

�1(x; 0; t) = R1(x; Y; t) (15)

u1(x; 0; t) = U1(x; Y; t) (16)

v1(x; 0; t) = 0 (17)

etc:::

and

�2(x; 0; t) + Y �1y(x; 0; t) = R2(x; Y; t) (18)

u2(x; 0; t) + Y u1y(x; 0; t) = U2(x; Y; t) (19)

v2(x; 0; t) + Y v1y(x; 0; t) = V1(x; Y; t) (20)

etc:::

Note that
R1Y ! 0 (21)

as Y ! 1 for density to remain �nite in the limit. In view of equations 15, 16 and 21, the
correspondence can be made between the continuity equations in the dual limits as y ! 0 and
Y !1 that

�R1V1Y = R1t + (R1U1)x in the Inner Limit (22)

= �1t + (�1u1)x = �(�1v1)y in the Outer Limit (23)

By making use of equations 15 and 17, equations 22 and 23 can be written

R1V1Y = �1v1y (24)

or �nally that
V1Y (x; Y; t) = v1y(x; 0; t) (25)

as Y !1. The expressions for velocity matching at leading order, equations 16 and 20 can be
written

u1(x; 0; t) = U1(x; Y; t) (26)

v2(x; 0; t) = V1(x; Y; t)� Y V1Y (x; Y; t) (27)
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This is identical to the leading order velocity matching for a boundary layer derived by Van
Dyke.[9] These two matching conditions are �nite in the limit Y !1 and provide, along with
expressions for density, pressure and temperature, the necessary inviscid/viscous matching for a
compressible unsteady boundary layer. The �rst of these states the widely recognized matching
of the x-component of the inviscid and viscous velocities at the boundary layer edge. The second
is the boundary layer contribution to the injection or transpiration velocity into the inviscid �ow.
The injection velocity can easily be rewritten into a more usable form. Integrating the boundary
layer continuity equation 12 yields the result

�1(x; 0; t)V1(x; Y; t) = R1(x; Y; t)V1(x; Y; t) = �
Z Y

0

(R1t + (R1U1)x)dbY (28)

in the limit as Y ! 1 . This integral is in�nite in the limit as Re ! 1. However, by using
the velocity matching of equation 27 combined with equations 5, 28 and 25, the �nite condition

v2(x; 0; t) = V1(x; Y; t)� Y V1Y (x; Y; t)

=
1

�1

�Z 1

0

((�1u1)x � (R1U1)x)dY +
Z 1

0

(�1t �R1t)dY
�

=
1

�1

�
@

@x

Z 1

0

(�1u1 �R1U1)dY +
@

@t

Z 1

0

(�1 �R1)dY
�

is obtained. Using the de�nition of displacement thickness ��

�� =

Z 1

0

(1� R1U1
�1u1

)dY

and de�ning the new term, density thickness �R

�R =

Z 1

0

(1� R1
�1
)dY

the resulting injection velocity of an unsteady compressible boundary layer into the inviscid �ow
is

v2(x; 0; t) =
1

�1

�
@(�1u1�

�)

@x
+
@(�1�R)

@t

�
(29)

This important result presents an asymptotically consistent treatment of the in�uence of an
unsteady boundary layer on the outer inviscid �ow. It is identical in form to the matching
derived by Le Balleur [3] and later by Bartels [4], [6], [5] and Epureanu. [7] It states that the
inviscid �ow sees an injection velocity due to the sum of the slope of the displacement thickness
and the time variation of the integral of density through the boundary layer.
Now several simpli�cations of this theory can be found. If the �ow is unsteady but incom-

pressible
@(�1�R)

@t
= 0

and the injection velocity can be written

v2(x; 0; t) =
@(u1�

�)

@x
(30)
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where the incompressible displacement thickness is

�� =

Z 1

0

(1� U1
u1
)dY : (31)

This is the widely used incompressible boundary layer velocity matching condition. If the
density variation through the boundary layer is small or the time scale of the variation is long
(e.g. low frequency or quasi-steady) such that

@(�1�R)

@t
� O(�)

the injection velocity can be written

v2(x; 0; t) �
1

�1

@(�1u1�
�)

@x
(32)

This is the widely used quasi-steady interaction. It is a reasonable approximation for many
subsonic and transonic adiabatic �ows. It is identical to the velocity condition for a steady
compressible subsonic or supersonic boundary layer used by Davis [10].

Turbulent boundary layer matching

In contrast to the two layer structure of a laminar boundary layer, a turbulent boundary
layer has three layers in the limit of large Reynolds number. Nevertheless, if the necessary
equations of turbulent theory are identical to the corresponding equations of laminar theory it
is possible to utilize the same matching conditions between the appropriate regions for laminar
and turbulent boundary layers. This will be shown here. The present formulation follows
that of Mellor. [11] (See also ref. [12])The turbulent boundary layer is expanded in the small
parameter � = ut=u0 where ut is friction velocity or turbulent velocity at some designated point
and u0 is a characteristic �ow velocity, e.g. free stream mean �ow velocity. The outer inviscid
region is similar in nature to the inviscid region of a laminar boundary layer. It is expanded in
a form identical to that of equations 1-4.

� � �1(x; y; t) + ��2(x; y; t) + � � � (33)

u � u1(x; y; t) + �u2(x; y; t) + � � � (34)

v � v1(x; y; t) + �v2(x; y; t) + � � � (35)

p � p1(x; y; t) + �p2(x; y; t) + � � � (36)

T � T1(x; y; t) + �T2(x; y; t) + � � � (37)

This expansion follows that of Mellor [11], except that temperature and density are also ex-
panded. The turbulent stress expanded in ref. [11] in the inviscid, defect and viscous regions
is not necessary for the present purpose. The �rst order inviscid equations are identical to
equations 5 - 7.

�1t + (�1u1)x + (�1v1)y = 0 (38)

(�1u1)t + (�1u
2
1)x + (�1v1u1)y + p1x = 0 (39)

(�1v1)t + (�1u1v1)x + (�1v
2
1)y + p1y = 0 (40)
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The term by term expansions in the defect region follows the form shown in equations 8-11.

� � R1(x; Y; t) + �R2(x; Y; t) + � � � (41)

u � U1(x; Y; t) + �U2(x; Y; t) + � � � (42)

v � �V1(x; Y; t) + �
2V2(x; Y; t) + � � � (43)

p � p1(x; Y; t) + �p2(x; Y; t) + � � � (44)

T � �1(x; Y; t) + ��2(x; Y; t) + � � � (45)

As with the inviscid expansion, this follows that of Mellor [11] with the addition of temperature
and density expansions. The coordinate normal to the wall is stretched according to Y = y��1.
The leading order equations in the defect layer are

R1t + (R1U1)x + (R1V1)Y = 0 (46)

(R1U1)t + (R1U
2
1 )x + (R1V1U1)Y + p1x = 0 (47)

p1Y = 0 (48)

The defect layer equations have a zero normal pressure gradient as do the laminar boundary
layer equations. The defect layer equations are inviscid at leading order and thus, in structure,
appear as a subset of the laminar equations. In contrast to the inviscid outer region, it contains
Reynolds stress terms at second order. The viscous layer at leading order also preserves zero
normal pressure gradient. This is the layer from which the log law for a turbulent boundary
layer is derived.

The matching of the inviscid and defect layers is the result of interest. At leading order it
can be written, following Mellor [11]

u1(x; 0; t) = U1(x; Y; t)

v1(x; 0; t) = 0

v2(x; 0; t) + Y v1y(x; 0; t) = V1(x; Y; t)

For a compressible �ow the matching of density, among other quantities, is also required. At
leading order

�1(x; 0; t) = R1(x; Y; t)

The matching conditions at leading order between the inviscid and defect layer for a turbulent
boundary layer are thus identical to those matching the inviscid with a laminar boundary layer.
Furthermore, since the mass continuity equations of the inviscid and defect layers for a turbu-
lent boundary layer (equations 38 and 46) are identical to those for a laminar boundary layer
(equations 5 and 12), the end result is that the injection velocity due to a turbulent boundary
layer will have a form identical to that for a laminar boundary layer.

Boundary layer over an airfoil and the transfer of the
transpiration boundary condition to the X-axis

This formulation follows that in Davis andWerle in which the baseline to which the boundary
layer equations are transfered is the x-axis. See [13] , [14] and [15] for details. The geometry
and coordinate systems used in the Prandtl transposition are shown in Figure 1.
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Figure 1: Geometry for Prandtl transposition

The Prandtl shift of the boundary layer to a boundary layer along the x-axis requires de�n-
ition of the normal coordinate

Y = bY + f(x; t)
along with the normal boundary layer velocity

V (x; bY ; t) = V1(x; Y; t)� fxU1(x; Y; t)� ft
The continuity, momentum and energy equations can be shown to have the same form when
transformed. The matching condition (equation 29) as Y !1 is written

v2(x; 0; t) = V1 � Y V1Y = V � bY VbY + u1fx + ft � fVbY
But since it can be shown that

V � bY VbY = 1

�1

�
@(�1u1�

�)

@x
+
@(�1�R)

@t

�
and

u1fx + ft � fVbY = 1

�1

�
@(�1u1f)

@x
+
@(�1f)

@t

�
as Y !1; the resulting transpiration boundary condition is

v2(x; 0; t) =
1

�1

�
@(�1u1(�

� + f))

@x
+
@(�1(�R + f))

@t

�
This is the transpiration condition for a surface with height f transformed using the Prandtl
transposition. For small time variation in the density and small spatial variation in �1u1 this
can be approximated as

v2(x; 0; t) =
1

�1

�
@(�1u1�

�)

@x
+
@(�1�R)

@t

�
+ u1fx + ft
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Consistency with unsteady interactive boundary layer
theory

It is useful to show that a proposed theory is consistent with other established results.
Comparisons with the results of steady boundary layer asymptotics have been made earlier in
this paper. Additional comparisons can be made with theories developed for unsteady boundary
layer interaction. The present paper predicts for �R = 0 that the unsteady laminar transpiration
velocity for a problem with x � O(1) is given by the slope of the displacement thickness only,
i.e.

v(x; 0; t) =
1

Re�1=2
@(u��)

@x
:

This is consistent with the unsteady laminar IBL on the short length scale of a separation. On
this scale an incompressible viscous lower deck interacts with the outer inviscid �ow through
the pressure-displacement relation

p(x; t) =
1

�

Z 1

�1

As(s; t)

x� s ds

for a subsonic incompressible or compressible free stream involving the slope of the unknown
displacement function A(x; t). [16] For a supersonic free stream the pressure-displacement rela-
tion is p = �Ax(x; t). [16], [17], [18]. This is also the interaction of an unsteady boundary layer
separation at the incipient development of Tollmien-Schlichting waves. [14] Peridier, Smith and
Walker apply this IBL theory to an x � O(1) problem of a laminar incompressible boundary
layer interacting with a vortex. [19], [20] To simplify somewhat the form, their equations 72-74
(ref. [20]) are rewritten here for a �at plate boundary layer in the absence of external excitation.
The interaction at leading order is

u(x; 0; t) = u1(x; 0; t) + � � � = 1 +
1

�Re�1=2

Z 1

�1

F (s; t)

x� s ds (49)

where the outer �ow injection is induced by the displacement slope, i.e.

F (x; t) =
@

@x
(u1(x; 0; t)�

�(x; t)) : (50)

The displacement slope F (x; t) is reproduced from ref. [20]. At the same time it and the
velocity-displacement relationship (equation 49) are directly obtainable from the results derived
in the present paper for a �at plate boundary layer in which �R = 0.
The present theory is in agreement with the viscous-inviscid overlay or "defect formulation"

of Le Balleur. [3] The velocity boundary condition to the inviscid �ow is derived for an unsteady
compressible �ow. In the notation of ref. [3] the transpiration velocity is w(x; 0; t), boundary
layer edge velocity and density are � and u. Using the inviscid and viscous continuity equations,
the result presented on page 24 of ref. [3] is

�w(x; 0; t) =
@

@t

Z 1

0

(�� �)dz + @

@x

Z 1

0

(�u� �u)dz

where the quantities with the overbar are due to the boundary layer. Epureanu [7] presents
the transpiration �ux Qbl

Qbl =
@(�e��)

@t
+
@(�eue�

�)

@x
:
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Other than notational di¤erences (�� = �R in the present notation), these expressions are equiv-
alent and identical to equation 29 of the present paper.

Concluding remarks

This paper attempts to clear up misconceptions regarding the proper approach to coupling
an unsteady boundary layer and inviscid �ow solver. The general form of the transpiration
velocity has been derived for laminar and turbulent boundary layers. Various simpli�cations of
the transpiration velocity are also derived. The most general form of transpiration as well as the
simpli�ed forms are all demonstrated to be consistent with the results of other well established
methods and are fully consistent with the asymptotic theory of unsteady incompressible and
compressible boundary layer separation.
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