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ABSTRACT 
 
This paper compares two waveform implementations 
generating the same RF signal using the same SDR 
development system. Both waveforms implement a 
satellite modem using QPSK modulation at 1M BPS data 
rates with one half rate convolutional encoding. Both 
waveforms are partitioned the same across the general 
purpose processor (GPP) and the field programmable 
gate array (FPGA). Both waveforms implement the same 
equivalent set of radio functions on the GPP and FPGA. 
The GPP implements the majority of the radio functions 
and the FPGA implements the final digital RF modulator 
stage. One waveform is implemented directly on the SDR 
development system and the second waveform is 
implemented using the JTRS/SCA model. This paper 
contrasts the amount of resources to implement both 
waveforms and demonstrates the importance of 
waveform partitioning across the SDR development 
system. 
 

INTRODUCTION 
 
NASA requires space radios to meet communication 
needs for future missions. NASA normally contracts 
with radio vendors to build and supply space radios 
based on mission requirements. While this method 
works for NASA, there is also a high cost with each 
radio development and the radio’s architecture 
intellectual property is retained with the radio vendor. 
NASA needs to accumulate space radio technology to 
allow for reuse, lower cost and provide for reliable 
operations in the development of future space based 
radio systems. 
 
NASA is considering Software Define Radios (SDR) as 
a possible solution for future communication systems. 
There are a number of SDR development systems 
currently available for waveform development and 
testing. The SDR development systems provide many 
features to increase portability of waveforms by using 
standard component interfaces, common operating 
systems (OS) and common board support packages 
(BSP). Waveforms can be developed directly on these 
SDR development systems and some support the Joint 
Tactical Radio System, Software Communication 
Architecture (JTRS/SCA) [1]. The Joint Tactical Radio 

System (JTRS) provides the Software Communication 
Architecture (SCA) as a software specification on an 
SDR development system.  
 
This paper compares two waveform implementations 
generating the same RF signal using the same SDR 
development system. One waveform is implemented 
directly on the SDR development system and the second 
waveform is implemented using the JTRS/SCA model. 
The waveforms are partitioned the same across the GPPs 
and FPGAs devices. The majority of the waveform 
implementation is on the GPPs with only the final digital 
RF modulator stage implemented on the FPGA. Both 
waveforms implement an equivalent set of radio 
functions on the GPPs and use an equivalent FPGA bit 
file. This paper contrasts the amount of resources to 
implement both waveforms and demonstrates the 
importance of waveform partitioning across the SDR 
development system. 
.  

SDR DEVELOPMENT SYSTEM 
 
The SDR development system for this waveform 
implementation comparison is from Spectrum Signal 
Processing and is the SDR-3000. [2] The SDR-3000 
Transceiver is broken into two parts: the base band 
processing and the channelizer subsystem. The base 
band processing subsystem (PRO3500 module) has two 
PPC7410 and one PPC405 processors running at 250 
MHZ and 200 MHZ respectively. The channelizer is 
broken into two parts: the input module (TM3150 
module) and the IF processing engine (PRO3100 
module). The input module has four ADCs and DACs 
running at 80 MHZ. The IF processing engine has one 
PPC405 processor running at 200 MHZ and four Xilinx 
Virtex II FPGAs running at 100 MHZ. The two 
PPC7410 processors have 128M bytes of RAM and the 
two PPC405 processors have 64M bytes of RAM. The 
SDR-3000 uses flexFabric interfaces for high speed data 
transfers between the hardware nodes. There are external 
digital interfaces on the PRO3100 module and Ethernet 
and RS232 ports on both boards. For the SDR-3000 the 
theoretical full duplex communication rate over each 
link is defined at 320M BPS. Spectrum Signal 
Processing provides a communication library 
(quicComm) as a standard interface to the hardware 
devices. 
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The SDR3000 architecture provides many possible 
waveform implementation opportunities. The flexFabric 
interfaces allow data routing between any of the 
hardware devices. Spectrum Signal Processing provides 
a board support package (BSP) and the processors use 
VxWorks for the real time operating system (RTOS). 
The two PPC7410s and four Xilinx FPGAs provide the 
normal digital RF signal processing paths for the 
SDR3000 development system. The PPC405 processors 
provide external Ethernet connections and control paths 
for the hardware devices. The SDR3000 development 
system includes a PC host running Windows 2000 OS 
with the Tornado cross compiler for VxWorks and 
Xilinx ISE software for programming the FPGA devices. 
 

WAVEFORM PARTITIONING 
 

The JTRS/SCA model requires partitioning the majority 
of the waveform onto the GPP to allow for software 
implementations of waveforms. For this paper the QPSK 
waveform data source, framing and encoding stages are 
all implemented on the GPP (PPC7410) and only the 
final modulator stage is implemented on the Xilinx 
FPGA (Virtex II).  

 
Figure 1 QPSK Waveform Partitioning 

 
The QPSK waveform is broken into four parts: the data 
source, framing, encoding and the modulator stages. The 
data source stage switches input data streams between 
idle, fixed, bit error rate sequences (PRBS), file or 
socket based data. The framing stage is off or on using 
HDLC framing. The encoding stage includes turning on 
or off the scrambler, Differential Phase Shift Keying 
(DPSK), ½ rate Convolutional encoding and the 
modulator mapper functions. The modulator mapper 
function provides vectors to the modulator stage. The 
modulator stage is QPSK modulation using 2M BPS 
symbol rate or a 1M BPS data rate. The output of the 

modulator stage are digital RF vectors to feed the DAC 
to create a 70 MHZ IF. The 70 MHZ IF is then available 
to several fixed satellite modems to verify correct 
waveform operations. 
 

OPERATING ENVIROMENT 
 

The minimum operating environment (OE) for the 
SDR3000 development system is VxWorks RTOS and 
Spectrum Signal Processing’s quicComm library. The 
Custom/SDR waveform is implemented directly on the 
minimum OE. The JTRS/SCA waveform OE requires 
the addition of the Harris Core Framework and SCA 
CORBA software. The Harris Core Framework and SCA 
software both sit on top of the RTOS and BSP for each 
processor. The footprint sizes for the files for Harris 
Core Framework and SCA software are shown in the 
tables below. The output file names are shown for only 
the PRO3100 PPC405 processor and the configuration 
files are the same for the other processors. All tables 
show file sizes in bytes.  

Table 1 Harris Core Framework Footprint Sizes 

Harris Core Framework PRO3100 PPC405
dmtkCFBase.out 6,567,326

dmtkCosEventBase.out 935,688
dmtkCosNamingBase.out 510,390
dmtkDeviceManager.out 2,912,030

dmtkDevice.out 3,407,170
dmtkDomainProfile.out 3,211,660
dmtkEventServices.out 614,945

dmtkFileServices.out 901,411
dmtkLogServiceBase.out 1,832,400

dmtkUtility.out 1,401,437
Total bytes 22,294,457

 

Table 2 SCA Software Footprint Sizes 

SCA software PRO3100 PPC405
sca_devicemanager.out 2,912,030

sca_fabric_access_manager.out 149,976
sca_fabric_channel.out 1,540,400

sca_fpga_dev.out 1,975,751
sca_load_sdks.out 5,925

sca_partnum2target.out 5,655
sca_ppc_dev.out 1,805,549

sca_sdr3000_dev.out 744,663
sca_sync_manager_dev.out 2,341,779

Total bytes 11,481,728
 
The footprint size for the OE for each of the processors 
is defined in the tables below. The sizes of the files vary 
slightly and depend on the configuration options selected 
for each processor.  
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Table 3 OE Footprint Sizes PRO3100 PPC405 

Spectrum Signal SDR3000 PRO3100 PPC405
Dynamic RAM bytes 67,107,840

VxWorks OS 1,840,105
QuicComm Library 1,447,241

Sub Total RTOS 3,287,346
Percent RTOS to RAM 5%

SCA Software 11,481,728
Harris Core Framework 22,294,457

Sub Total SCA 33,776,185
Percent SCA OE to RAM 50%

Total RTOS+SCA 37,063,531
 

Table 4 OE Footprint Sizes PRO3500 PPC405 

Spectrum Signal SDR3000 PRO3500 PPC405
Dynamic RAM bytes 67,107,840

VxWorks OS 1,877,699
QuicComm Library 1,292,759

Sub Total RTOS 3,170,458
Percent RTOS to RAM 5%

SCA Software 10,738,249
Harris Core Framework 22,294,457

Sub Total SCA 33,032,706
Percent SCA OE to RAM 49%

Total RTOS+SCA 36,203,164
 

Table 5 OE Footprint Sizes PRO3500 PPC7410-A 

Spectrum Signal SDR3000 PRO3500 PPC7410-A
Dynamic RAM bytes 134,215,680

VxWorks OS 1,747,205
QuicComm Library 1,384,515

Sub Total RTOS 3,131,720
Percent RTOS to RAM 2%

SCA Software 7,363,541
Harris Core Framework 22,703,137

Sub Total SCA 30,066,678
Percent SCA OE to RAM 22%

Total RTOS+SCA 33,198,398
 

Table 6 OE Footprint Sizes PRO3500 PPC7410-B 

Spectrum Signal SDR3000 PRO3500 PCC7410-B
Dynamic RAM bytes 134,215,680

VxWorks OS 1,747,205
QuicComm Library 1,384,515

Sub Total RTOS 3,131,720
Percent RTOS to RAM 2%

SCA Software 7,363,541
Harris Core Framework 22,703,137

Sub Total SCA 30,066,678
Percent SCA OE to RAM 22%

Total RTOS+SCA 33,198,398
 

The total OE footprint resources for all processors are 
shown in the table below. 

Table 7 Total OE Footprint Sizes for SDR3000 

Spectrum Signal SDR3000 Total Bytes
Dynamic RAM 402,647,040

VxWorks OS 7,212,214
QuicComm Library 5,509,030

Sub Total RTOS 12,721,244
Percent RTOS to RAM 3%

SCA Software 36,947,059
Harris Core Framework 89,995,188

Sub Total SCA 126,942,247
Percent SCA OE to RAM 32%

Total RTOS+SCA 139,663,491
 

WAVEFORM RESOURCES 
 

The JTRS/SCA waveform is broken into seven 
executable images defined in the table below.  

Table 8 JTRS/SCA QPSK Waveform Footprint Sizes 

QPSK Waveform JTRS/SCA
strsAppController.out 1,675,772

strsCommon.out 794,404
strsDataGenerator.out 701,965

strsFilterUpConv.out 1,080,384
strsEncoder.out 772,947
strsFramer.out 701,233

strsModMapper.out 929,569
Total bytes 6,656,274

 
A number of XML files are used to configure the 
software parameters for the JTRS/SCA waveform. The 
XML files are defined in the table below. 

Table 9 JTRS/SCA XML Waveform Footprint Sizes 

QPSK Waveform JTRS/SCA
strs405QC.spd.xml 477

strs405TM13300.spd.xml 491
strs7410QC.spd.xml 483

strsAppController.prf.xml 11,902
strsAppController.scd.xml 1,178
strsAppController.spd.xml 1,672
strsCommon_405.spd.xml 484
strsCommon_604.spd.xml 484
strsDataGenerator.scd.xml 1,072
strsDataGenerator.spd.xml 1,445

strsEncoder.scd.xml 1,185
strsEncoder.spd.xml 1,423

strsFilterUpConv.scd.xml 1,211
strsFilterUpConv.spd.xml 1,415

strsFramer.scd.xml 1,185
strsFramer.spd.xml 1,418

strsModMapper.scd.xml 1,185
strsModMapper.spd.xml 1,433
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strsTelemetryWFT.sad.xml 13,113
strsWFTXFPGA.spd.xml 2,014

Total bytes 45,270
 

The Custom/SDR waveform uses one executable image 
and is shown in the comparison table below. The 
waveforms use the same FPGA bit file with one small 
change to the JTRS/SCA version. The difference is to 
handle a change in the data packet header when the 
JTRS/SCA OE is loaded onto the SDR development 
system. In this case the digital logic and the interfaces 
are the same for both FPGA bit files. 

Table 10 Comparison of Waveform Footprint Sizes 

Waveform resources bytes JTRS/SCA Custom/SDR
Total Xilinx FPGA bit file 2,733,252 2,733,252
Total XML configuration 45,270 0

Total GPP executable size 6,656,274 509,380
 

OPERATIONS 
 

Both QPSK waveforms are loaded onto the SDR 
development system; started; stopped and unloaded. The 
JTRS/SCA model requires loading the Harris Core 
Framework and SCA software before the SCA 
waveform is loaded. The table below compares the 
JTRS/SCA to Custom/SDR implementations. 

Table 11 Comparison of SCA to SDR Operations 

Operation JTRS/SCA Custom/SDR 
Start 
Name 
Service 

Uses unique name 
IDs for each object 
in the system and 
XML files for 
configuration. 

None, uses static 
data tables for RF 
equipment, fixed IP 
addresses and 
hardware resources. 

Start 
Device 
Managers 

Start SCA device 
manager on each 
processor. 

Start SDR device 
manager on each 
processor. 

Install 
Waveform 

Open Harris 
Domain Manager 
Monitor software 
and use Application 
Factory to install 
waveform. 

Waveform is built 
into SDR software 
and included with 
SDR device 
manager. 

Start/Stop 
Waveform 

Use menu from 
Application Factory 
to start and stop the 
waveform. 

Use external 
command interface 
to start and stop the 
waveform. 

Unload 
Waveform 

Use Application 
Factory to unload 
waveform. 

None, waveforms 
are part of SDR 
device manager 
software. 

 
 

MAXIMUM PERFORMANCE 
 

The performance of the PPC7410 processor at 250 MHZ 
is measured to determine the maximum possible data 
rate. The maximum data rate depends on the size of the 
transfer buffer between the PPC7410 and the FPGA. The 
smallest transfer size is 8 bytes and is constrained by the 
flexFabric interface. The largest transfer size is 16K 
bytes and is constrained by the DMA on the SDR3000. 
The metric is to measure the control loop data rate on the 
processor for different size buffers with no output data to 
the flexFabric interface. The results are shown in the 
table below. 

Table 12 Maximum PPC7410 Data Rates BPS 

Buffer Size in Bytes Average Data Rate in BPS 
8 24,031,568

16 15,782,160
32 21,733,088
64 27,407,744

128 31,108,096
256 33,878,528
512 35,005,440

1,024 36,057,088
2,048 36,147,200
4,096 36,638,720
8,192 36,298,752

16,384 36,470,784
 

On average, the performance of the PPC7410 at 250 
MHZ for all buffer sizes is within the real time 
requirements for the 1M BPS QPSK waveform data rate. 
The maximum data rate for the FPGA is determined by 
the maximum clock rate for the device. The FPGA is 
clocked at 100 MHZ and therefore has about three times 
the maximum performance of the PPC7410 processors. 

 
CONCLUSION 

 
Two equivalent waveform implementations have been 
characterized using the Custom/SDR and the JTRS/SCA 
models. The implementations use the same SDR 
development system with the same hardware 
partitioning, and generated the same RF signal. Both 
waveform configurations use the same RTOS and BSP. 
The average RTOS and BSP footprint is 3% of available 
memory on the SDR development system. The 
JTRS/SCA model uses CORBA and Harris Core 
Framework on top of the RTOS and BSP. The average 
JTRS/SCA operating environment footprint is 32% of 
available memory. The JTRS/SCA OE footprint is about 
ten times larger than the Custom/SDR RTOS 
development footprint. The waveform application 
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footprint for the custom/SDR model is 495K bytes and 
the JTRS/SCA model is 6,500K bytes. JTRS/SCA 
waveforms must conform to the specifications so the 
majority of the waveform partitioning is onto the GPP.  
The waveform application for the JTRS/SCA model is 
about 12 times larger than the optimized custom/SDR 
version. As a result, the waveform performance limit is 
reached at 1M BPS on the GPP for the SDR 
development system and achieving higher levels of 
performance requires partitioning the waveform onto the 
FPGA devices. 
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