
JTRS/SCA AND CUSTOM/SDR WAVEFORM COMPARISION
Daniel R. Oldham Ph.D.

Maximilian C. Scardelletti
NASA Glenn Research Center

Brookpark, OH 44135

ABSTRACT

This paper compares two waveform implementations
generating the same RF signal using the same SDR
development system. Both waveforms implement a
satellite modem using QPSK modulation at 1M BPS data
rates with one half rate convolutional encoding. Both
waveforms are partitioned the same across the general
purpose processor (GPP) and the field programmable
gate array (FPGA). Both waveforms implement the same
equivalent set of radio functions on the GPP and FPGA.
The GPP implements the majority of the radio functions
and the FPGA implements the final digital RF modulator
stage. One waveform is implemented directly on the SDR
development system and the second waveform is
implemented using the JTRS/SCA model. This paper
contrasts the amount of resources to implement both
waveforms and demonstrates the importance of
waveform partitioning across the SDR development
system.

INTRODUCTION

NASA requires space radios to meet communication
needs for future missions. NASA normally contracts
with radio vendors to build and supply space radios
based on mission requirements. While this method
works for NASA, there is also a high cost with each
radio development and the radio’s architecture
intellectual property is retained with the radio vendor.
NASA needs to accumulate space radio technology to
allow for reuse, lower cost and provide for reliable
operations in the development of future space based
radio systems.

NASA is considering Software Define Radios (SDR) as
a possible solution for future communication systems.
There are a number of SDR development systems
currently available for waveform development and
testing. The SDR development systems provide many
features to increase portability of waveforms by using
standard component interfaces, common operating
systems (OS) and common board support packages
(BSP). Waveforms can be developed directly on these
SDR development systems and some support the Joint
Tactical Radio System, Software Communication
Architecture (JTRS/SCA) [1]. The Joint Tactical Radio

System (JTRS) provides the Software Communication
Architecture (SCA) as a software specification on an
SDR development system.

This paper compares two waveform implementations
generating the same RF signal using the same SDR
development system. One waveform is implemented
directly on the SDR development system and the second
waveform is implemented using the JTRS/SCA model.
The waveforms are partitioned the same across the GPPs
and FPGAs devices. The majority of the waveform
implementation is on the GPPs with only the final digital
RF modulator stage implemented on the FPGA. Both
waveforms implement an equivalent set of radio
functions on the GPPs and use an equivalent FPGA bit
file. This paper contrasts the amount of resources to
implement both waveforms and demonstrates the
importance of waveform partitioning across the SDR
development system.
.

SDR DEVELOPMENT SYSTEM

The SDR development system for this waveform
implementation comparison is from Spectrum Signal
Processing and is the SDR-3000. [2] The SDR-3000
Transceiver is broken into two parts: the base band
processing and the channelizer subsystem. The base
band processing subsystem (PRO3500 module) has two
PPC7410 and one PPC405 processors running at 250
MHZ and 200 MHZ respectively. The channelizer is
broken into two parts: the input module (TM3150
module) and the IF processing engine (PRO3100
module). The input module has four ADCs and DACs
running at 80 MHZ. The IF processing engine has one
PPC405 processor running at 200 MHZ and four Xilinx
Virtex II FPGAs running at 100 MHZ. The two
PPC7410 processors have 128M bytes of RAM and the
two PPC405 processors have 64M bytes of RAM. The
SDR-3000 uses flexFabric interfaces for high speed data
transfers between the hardware nodes. There are external
digital interfaces on the PRO3100 module and Ethernet
and RS232 ports on both boards. For the SDR-3000 the
theoretical full duplex communication rate over each
link is defined at 320M BPS. Spectrum Signal
Processing provides a communication library
(quicComm) as a standard interface to the hardware
devices.

 - 1 -

https://ntrs.nasa.gov/search.jsp?R=20070022413 2019-08-30T01:21:28+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10537517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The SDR3000 architecture provides many possible
waveform implementation opportunities. The flexFabric
interfaces allow data routing between any of the
hardware devices. Spectrum Signal Processing provides
a board support package (BSP) and the processors use
VxWorks for the real time operating system (RTOS).
The two PPC7410s and four Xilinx FPGAs provide the
normal digital RF signal processing paths for the
SDR3000 development system. The PPC405 processors
provide external Ethernet connections and control paths
for the hardware devices. The SDR3000 development
system includes a PC host running Windows 2000 OS
with the Tornado cross compiler for VxWorks and
Xilinx ISE software for programming the FPGA devices.

WAVEFORM PARTITIONING

The JTRS/SCA model requires partitioning the majority
of the waveform onto the GPP to allow for software
implementations of waveforms. For this paper the QPSK
waveform data source, framing and encoding stages are
all implemented on the GPP (PPC7410) and only the
final modulator stage is implemented on the Xilinx
FPGA (Virtex II).

Figure 1 QPSK Waveform Partitioning

The QPSK waveform is broken into four parts: the data
source, framing, encoding and the modulator stages. The
data source stage switches input data streams between
idle, fixed, bit error rate sequences (PRBS), file or
socket based data. The framing stage is off or on using
HDLC framing. The encoding stage includes turning on
or off the scrambler, Differential Phase Shift Keying
(DPSK), ½ rate Convolutional encoding and the
modulator mapper functions. The modulator mapper
function provides vectors to the modulator stage. The
modulator stage is QPSK modulation using 2M BPS
symbol rate or a 1M BPS data rate. The output of the

modulator stage are digital RF vectors to feed the DAC
to create a 70 MHZ IF. The 70 MHZ IF is then available
to several fixed satellite modems to verify correct
waveform operations.

OPERATING ENVIROMENT

The minimum operating environment (OE) for the
SDR3000 development system is VxWorks RTOS and
Spectrum Signal Processing’s quicComm library. The
Custom/SDR waveform is implemented directly on the
minimum OE. The JTRS/SCA waveform OE requires
the addition of the Harris Core Framework and SCA
CORBA software. The Harris Core Framework and SCA
software both sit on top of the RTOS and BSP for each
processor. The footprint sizes for the files for Harris
Core Framework and SCA software are shown in the
tables below. The output file names are shown for only
the PRO3100 PPC405 processor and the configuration
files are the same for the other processors. All tables
show file sizes in bytes.

Table 1 Harris Core Framework Footprint Sizes

Harris Core Framework PRO3100 PPC405
dmtkCFBase.out 6,567,326

dmtkCosEventBase.out 935,688
dmtkCosNamingBase.out 510,390
dmtkDeviceManager.out 2,912,030

dmtkDevice.out 3,407,170
dmtkDomainProfile.out 3,211,660
dmtkEventServices.out 614,945

dmtkFileServices.out 901,411
dmtkLogServiceBase.out 1,832,400

dmtkUtility.out 1,401,437
Total bytes 22,294,457

Table 2 SCA Software Footprint Sizes

SCA software PRO3100 PPC405
sca_devicemanager.out 2,912,030

sca_fabric_access_manager.out 149,976
sca_fabric_channel.out 1,540,400

sca_fpga_dev.out 1,975,751
sca_load_sdks.out 5,925

sca_partnum2target.out 5,655
sca_ppc_dev.out 1,805,549

sca_sdr3000_dev.out 744,663
sca_sync_manager_dev.out 2,341,779

Total bytes 11,481,728

The footprint size for the OE for each of the processors
is defined in the tables below. The sizes of the files vary
slightly and depend on the configuration options selected
for each processor.

 2

Table 3 OE Footprint Sizes PRO3100 PPC405

Spectrum Signal SDR3000 PRO3100 PPC405
Dynamic RAM bytes 67,107,840

VxWorks OS 1,840,105
QuicComm Library 1,447,241

Sub Total RTOS 3,287,346
Percent RTOS to RAM 5%

SCA Software 11,481,728
Harris Core Framework 22,294,457

Sub Total SCA 33,776,185
Percent SCA OE to RAM 50%

Total RTOS+SCA 37,063,531

Table 4 OE Footprint Sizes PRO3500 PPC405

Spectrum Signal SDR3000 PRO3500 PPC405
Dynamic RAM bytes 67,107,840

VxWorks OS 1,877,699
QuicComm Library 1,292,759

Sub Total RTOS 3,170,458
Percent RTOS to RAM 5%

SCA Software 10,738,249
Harris Core Framework 22,294,457

Sub Total SCA 33,032,706
Percent SCA OE to RAM 49%

Total RTOS+SCA 36,203,164

Table 5 OE Footprint Sizes PRO3500 PPC7410-A

Spectrum Signal SDR3000 PRO3500 PPC7410-A
Dynamic RAM bytes 134,215,680

VxWorks OS 1,747,205
QuicComm Library 1,384,515

Sub Total RTOS 3,131,720
Percent RTOS to RAM 2%

SCA Software 7,363,541
Harris Core Framework 22,703,137

Sub Total SCA 30,066,678
Percent SCA OE to RAM 22%

Total RTOS+SCA 33,198,398

Table 6 OE Footprint Sizes PRO3500 PPC7410-B

Spectrum Signal SDR3000 PRO3500 PCC7410-B
Dynamic RAM bytes 134,215,680

VxWorks OS 1,747,205
QuicComm Library 1,384,515

Sub Total RTOS 3,131,720
Percent RTOS to RAM 2%

SCA Software 7,363,541
Harris Core Framework 22,703,137

Sub Total SCA 30,066,678
Percent SCA OE to RAM 22%

Total RTOS+SCA 33,198,398

The total OE footprint resources for all processors are
shown in the table below.

Table 7 Total OE Footprint Sizes for SDR3000

Spectrum Signal SDR3000 Total Bytes
Dynamic RAM 402,647,040

VxWorks OS 7,212,214
QuicComm Library 5,509,030

Sub Total RTOS 12,721,244
Percent RTOS to RAM 3%

SCA Software 36,947,059
Harris Core Framework 89,995,188

Sub Total SCA 126,942,247
Percent SCA OE to RAM 32%

Total RTOS+SCA 139,663,491

WAVEFORM RESOURCES

The JTRS/SCA waveform is broken into seven
executable images defined in the table below.

Table 8 JTRS/SCA QPSK Waveform Footprint Sizes

QPSK Waveform JTRS/SCA
strsAppController.out 1,675,772

strsCommon.out 794,404
strsDataGenerator.out 701,965

strsFilterUpConv.out 1,080,384
strsEncoder.out 772,947
strsFramer.out 701,233

strsModMapper.out 929,569
Total bytes 6,656,274

A number of XML files are used to configure the
software parameters for the JTRS/SCA waveform. The
XML files are defined in the table below.

Table 9 JTRS/SCA XML Waveform Footprint Sizes

QPSK Waveform JTRS/SCA
strs405QC.spd.xml 477

strs405TM13300.spd.xml 491
strs7410QC.spd.xml 483

strsAppController.prf.xml 11,902
strsAppController.scd.xml 1,178
strsAppController.spd.xml 1,672
strsCommon_405.spd.xml 484
strsCommon_604.spd.xml 484
strsDataGenerator.scd.xml 1,072
strsDataGenerator.spd.xml 1,445

strsEncoder.scd.xml 1,185
strsEncoder.spd.xml 1,423

strsFilterUpConv.scd.xml 1,211
strsFilterUpConv.spd.xml 1,415

strsFramer.scd.xml 1,185
strsFramer.spd.xml 1,418

strsModMapper.scd.xml 1,185
strsModMapper.spd.xml 1,433

 3

strsTelemetryWFT.sad.xml 13,113
strsWFTXFPGA.spd.xml 2,014

Total bytes 45,270

The Custom/SDR waveform uses one executable image
and is shown in the comparison table below. The
waveforms use the same FPGA bit file with one small
change to the JTRS/SCA version. The difference is to
handle a change in the data packet header when the
JTRS/SCA OE is loaded onto the SDR development
system. In this case the digital logic and the interfaces
are the same for both FPGA bit files.

Table 10 Comparison of Waveform Footprint Sizes

Waveform resources bytes JTRS/SCA Custom/SDR
Total Xilinx FPGA bit file 2,733,252 2,733,252
Total XML configuration 45,270 0

Total GPP executable size 6,656,274 509,380

OPERATIONS

Both QPSK waveforms are loaded onto the SDR
development system; started; stopped and unloaded. The
JTRS/SCA model requires loading the Harris Core
Framework and SCA software before the SCA
waveform is loaded. The table below compares the
JTRS/SCA to Custom/SDR implementations.

Table 11 Comparison of SCA to SDR Operations

Operation JTRS/SCA Custom/SDR
Start
Name
Service

Uses unique name
IDs for each object
in the system and
XML files for
configuration.

None, uses static
data tables for RF
equipment, fixed IP
addresses and
hardware resources.

Start
Device
Managers

Start SCA device
manager on each
processor.

Start SDR device
manager on each
processor.

Install
Waveform

Open Harris
Domain Manager
Monitor software
and use Application
Factory to install
waveform.

Waveform is built
into SDR software
and included with
SDR device
manager.

Start/Stop
Waveform

Use menu from
Application Factory
to start and stop the
waveform.

Use external
command interface
to start and stop the
waveform.

Unload
Waveform

Use Application
Factory to unload
waveform.

None, waveforms
are part of SDR
device manager
software.

MAXIMUM PERFORMANCE

The performance of the PPC7410 processor at 250 MHZ
is measured to determine the maximum possible data
rate. The maximum data rate depends on the size of the
transfer buffer between the PPC7410 and the FPGA. The
smallest transfer size is 8 bytes and is constrained by the
flexFabric interface. The largest transfer size is 16K
bytes and is constrained by the DMA on the SDR3000.
The metric is to measure the control loop data rate on the
processor for different size buffers with no output data to
the flexFabric interface. The results are shown in the
table below.

Table 12 Maximum PPC7410 Data Rates BPS

Buffer Size in Bytes Average Data Rate in BPS
8 24,031,568

16 15,782,160
32 21,733,088
64 27,407,744

128 31,108,096
256 33,878,528
512 35,005,440

1,024 36,057,088
2,048 36,147,200
4,096 36,638,720
8,192 36,298,752

16,384 36,470,784

On average, the performance of the PPC7410 at 250
MHZ for all buffer sizes is within the real time
requirements for the 1M BPS QPSK waveform data rate.
The maximum data rate for the FPGA is determined by
the maximum clock rate for the device. The FPGA is
clocked at 100 MHZ and therefore has about three times
the maximum performance of the PPC7410 processors.

CONCLUSION

Two equivalent waveform implementations have been
characterized using the Custom/SDR and the JTRS/SCA
models. The implementations use the same SDR
development system with the same hardware
partitioning, and generated the same RF signal. Both
waveform configurations use the same RTOS and BSP.
The average RTOS and BSP footprint is 3% of available
memory on the SDR development system. The
JTRS/SCA model uses CORBA and Harris Core
Framework on top of the RTOS and BSP. The average
JTRS/SCA operating environment footprint is 32% of
available memory. The JTRS/SCA OE footprint is about
ten times larger than the Custom/SDR RTOS
development footprint. The waveform application

 4

footprint for the custom/SDR model is 495K bytes and
the JTRS/SCA model is 6,500K bytes. JTRS/SCA
waveforms must conform to the specifications so the
majority of the waveform partitioning is onto the GPP.
The waveform application for the JTRS/SCA model is
about 12 times larger than the optimized custom/SDR
version. As a result, the waveform performance limit is
reached at 1M BPS on the GPP for the SDR
development system and achieving higher levels of
performance requires partitioning the waveform onto the
FPGA devices.

REFERENCES

[1] Military & Aerospace Electronics by John McHale,
December 2004.

 [2] Spectrum Signal Processing Product Specifications,
SDR-3000 Series Software Defined Radio Transceiver
Platform, 2006.

BIOGRAPHY

Dr. Daniel R. Oldham is a computer engineer at NASA
Glenn Research Center working in the Satellite
Networks and Architectures Branch. Dr. Oldham is also
an adjunct professor for Digital Logic Design at Case
Western Reserve University. Dr. Oldham received his
M.S. and Ph.D. degrees in Computer Engineering and
Science from Case Western Reserve University,
Cleveland, Ohio, in 1993 and 2001, respectively. Dr.
Oldham received his B.S. degree in Computer Science
and Engineering from the University of Toledo, Ohio, in
1984. From 1984 to 1998 he was a research and design
engineer for Rockwell Automation and developed a
number of real time control products (PLC-5, Control
Logix). From 1973 to 1979 he served as an electronic
technician, in the U.S. Navy Fleet Ballistic Missile
Submarine service.

 5

