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Introduction

Acoustic scattering of the noise generated by rotating blades is an area of research that

is not well developed. For example, a helicopter fuselage, a tiltrotor wing, or the duct

surrounding a fan, each may substantially modify the acoustic signal that arrives at an

arbitrary observer location. Such a modification would change both the magnitude and

directivity of the acoustic signal from what would be observed for an isolated rotor. The

significant effect of fuselage on the noise field generated by a rotating point source was

demonstrated by Atalla and Glegg1,2 using a ray-acoustics approach.

Tools exist for predicting fan noise scattering in turbofan engines, but only limited work

has been done on the acoustic scattering of rotor noise by short ducts (i.e., ducted tail rotors;

ducted propellers for compound rotorcraft; ducted fans in UAVs, etc.) The various numerical

approaches3–5 to solve the acoustic scattering problem use acoustic velocity on a scattering

surface as a boundary condition. For example, a rigid surface implies either the satisfaction

of the impenetrability condition on the surface or zero normal acoustic velocity relative to

the scattering surface. Most conventional acoustic codes compute acoustic pressure at an

observer, not the acoustic velocity, but the gradient of the acoustic pressure is connected

with the acoustic velocity through the linearized momentum equation. In other words, the

calculation of the acoustic pressure gradient on a scattering surface is required to fulfill the

boundary condition for the scattering problem. The calculation of the acoustic pressure

gradient is, therefore, a key aspect in solving the acoustic scattering problem.

A numerical evaluation of the pressure gradient, which requires evaluation of the spatial

derivative of acoustic pressure with respect to each direction, is the simplest way to cal-

culate the pressure gradient on the surface. Nevertheless, it is computationally expensive.

Therefore, it is not practical to calculate the pressure gradient numerically for a realistic

helicopter configuration, where the scattering computation may require the acoustic pres-

sure gradient at thousands or even tens of thousands of collocation points on the scattering

surface. It is important to develop computationally efficient analytic formulations for the

pressure gradient to enable routine acoustic scattering predictions.

Research Objective

Rotor noise is well described by Farassat’s formulation 1A, which is an integral repre-

sentation of the solution of the Ffowcs Williams-Hawkings (FW-H )equation.6 With this

formulation, the accurate prediction of rotor noise largely depends upon accurate blade mo-

tion and loading information provided as input. In this paper, analytic formulations for the

pressure gradient are derived starting with formulation 1A. Basing the new pressure gra-
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dient formulations on formulation 1A has several distinct advantages. First, no additional

input data is needed to predict the acoustic pressure gradient beyond what is already re-

quired to predict thickness and loading noise (or at most, numerical differentiation of the

input data). Second, the retarded time algorithms that will be used have been refined and

thoroughly tested in various numerical implementations of formulation 1A. Finally, by an-

alytically computing the acoustic pressure gradient, rather than using a purely numerical

approach, significant computation savings (in terms of run time and memory) and increased

robustness are expected. Furthermore, the computation of the acoustic pressure from the

isolated rotor can be computed concurrently with the acoustic pressure gradient.

The goal of this paper is to derive two acoustic pressure gradient formulations, and val-

idate them through a comparison with the finite difference approximation to the acoustic

pressure gradient. The formulations have been implemented in the rotor noise prediction

code, PSU-WOPWOP. This code will also be used to investigate the efficiency of the for-

mulations. It will be demonstrated that these new formulations yield accurate and efficient

predictions of the acoustic pressure gradient.

Acoustic Pressure Gradient Formulations

The acoustic pressure gradient formulation derivation starts with Farassat’s Formulation

1A;7,8 therefore a brief review of this formulation will be given. The PSU-WOPWOP rotor

noise prediction code9–11 is used in this work to predict the acoustic pressure of rotor noise,

as well as the gradient of the acoustic pressure on the scattering body.

Formulation 1A

Farassat’s Formulation 1A7,8 is an integral representation of the solution to the FW-H equation,

without the quadrupole source term. It is a retarded-time formulation, which may be written

as:

p′(x, t) = p′T (x, t) + p′L(x, t) (1)

where p′, p′T , and p′L denote the acoustic pressure, thickness component of acoustic pressure,

and the loading component of acoustic pressure, respectively. The thickness noise contribu-

tion p′T can be written:

4πp′T (x, t) =

∫

f=0

[
ρ0(U̇n + Uṅ)

r(1−Mr)2

]

ret

dS +

∫

f=0

[
ρ0Un(rṀr + c(Mr −M2))

r2(1−Mr)3

]

ret

dS (2)
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while the loading noise contribution p′L is written as:

4πp′L(x, t) =
1

c

∫

f=0

[
L̇r

r(1−Mr)2

]

ret

dS +

∫

f=0

[
Lr − LM

r2(1−Mr)2

]

ret

dS

+
1

c

∫

f=0


Lr

(
rṀr + c(Mr −M2)

)

r2(1−Mr)3




ret

dS

(3)

where (x, t) and (y, τ) are the observer and source space-time variables, respectively, r =

|x−y| and c is the speed of sound in the undisturbed medium. The blade surface is described

implicitly by the equation f(y, τ) = 0, where f(y, τ) is defined in such a way that ∇f = n̂,

which is the unit outward normal to the blade surface with components ni. The density

of the undisturbed medium is ρ0 and δ(f) is the Dirac delta function with support on the

blade surface f = 0. In equations (2) and (3) the subscripts imply the dot product the

vector with either the unit vector in the radiation direction r̂, outward normal vector n̂ to

the surface f = 0, or the surface Mach number M. The dot over a variable indicates source

time differentiation. The variables Ui and Li are defined:

Ui = [1− (ρ/ρ0)]vi + (ρui/ρ0) (4)

Li = Pijn̂j + ρui(un − vn) (5)

where ui are the components of the local flow velocity vector and vi are the components of

the local blade surface velocity vector.

Equations (4) and (5) are the form used for a permeable surface, which is useful if the flow

field around the rotor blades becomes transonic—as is the case for high-speed-impulsive noise.

Equations (1)–(3) omit the quadrupole term in the FW-H equation, so significant nonlinear

sources should be contained within a permeable surface. This enables the inclusion of the

contribution of those sources without carrying out a volume integration. For an impermeable

surface, i.e., the actual blade surface, Ui = vi and Li = Pijn̂j.

Formulation G1

Taking the gradient of equations (2) and (3) directly involves complicated algebraic manipu-

lations. It is easier to start with the partial differential equation form of the FW-H equation

and then use the free space Green’s function to derive the new integral formulation. Details

of this approach can be found in reference.12 In this paper, the formulation is revisited with

slightly different notation.

The acoustic pressure gradient can be found by taking the gradient of the FW-H thickness
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and loading noise terms (neglecting the quadrupole source). The gradient of equation (1) is:

∇p′ = ∇p′T +∇p′L (6)

The next step is to find the acoustic pressure gradient of the thickness and loading noise

sources. The governing equation for the thickness noise is:

¤2p′T =
∂

∂t
[ρoUnδ(f)] (7)

Using the free space Green’s function δ(g)/4πr, where g = τ − t + r/c, the thickness compo-

nent of pressure can be expressed as:

4πp′T (x, t) =
∂

∂t

t∫

−∞

∞∫

−∞

ρ0Un

r
δ(f)δ(g)dydτ (8)

Taking the gradient of equation (8) yields:

4π∇p′T (x, t) = ∇ ∂

∂t

t∫

−∞

∞∫

−∞

ρ0Un

r
δ(f)δ(g)dydτ

=
∂

∂t

t∫

−∞

∞∫

−∞

ρ0Unδ(f)∇x(
δ(g)

r
)dydτ

(9)

where the symbol ∇x stands for gradient operator with respect to the observer variable x.

The spatial gradient operator can replaced by a time derivative using the relation:

∇x(
δ(g)

r
) = −1

c

∂

∂t

(
r̂δ(g)

r

)
− r̂δ(g)

r2
(10)

Combining equations (9) and (10) yields:

4π∇p′T (x, t) = − ∂

∂t


1

c

∂

∂t

t∫

−∞

∞∫

−∞

r̂ρ0Un

r
δ(f)δ(g)dydτ +

t∫

−∞

∞∫

−∞

r̂ρ0Un

r2
δ(f)δ(g)dydτ


 (11)

Using generalized function theory and geometry 13–15 – and following the same steps Farassat

used in deriving Formulation 1A – the gradient of the thickness component of acoustic
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pressure is found to be:

4π∇p′T (x, t) = − ∂

∂t


1

c

∂

∂t

∫

f=0

[
r̂ρ0Un

r(1−Mr)

]

ret

dS +

∫

f=0

[
r̂ρ0Un

r2(1−Mr)

]

ret

dS




= −∂E1

∂t

(12)

By recalling that
∂

∂t
[. . .]

∣∣∣
x

=

[
1

1−Mr

∂

∂τ
[. . .]

∣∣∣
x

]

ret

(13)

and
∂r̂

∂τ
=

c

r
(Mrr̂−M) (14)

it can be easily shown that

E1 =
1

c

∫

f=0

[r̂ET ]retdS +

∫

f=0

[
(r̂−M)ρ0Un

r2(1−Mr)2

]

ret

dS (15)

where

ET =

[
ρ0(U̇n + Uṅ)

r(1−Mr)2

]

ret

+

[
ρ0Un(rṀr + c(Mr −M2)

r2(1−Mr)3

]

ret

(16)

is the combined thickness noise integrand in Formulation 1A; hence, it is already available in

the noise prediction code. Finally, the thickness component of the acoustic pressure gradient

can be written:

4π∇p′T (x, t) = − ∂

∂t





1

c

∫

f=0

[r̂ET ]ret dS +

∫

f=0

[
(r−M)ρ0Un

r2(1−Mr)2

]

ret

dS



 (17)

The observer time derivative of the two integrals will be determined numerically.

The derivation of the gradient of the loading noise component of acoustic pressure follows

the same procedure as used in the thickness noise noise component. The governing equation

for the loading noise is written as:

¤2p′L = −∇ · [Lδ(f)] (18)
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thus the loading component of acoustic pressure is:

4πp′L(x, t) = −∇ ·
t∫

−∞

∞∫

−∞

L

r
δ(f)δ(g)dydτ

= −
t∫

−∞

∞∫

−∞

δ(f)L · ∇x

(
δ(g)

r
dydτ

) (19)

Using equation (10) in the previous integral yields:

4πp′L(x, t) =
1

c

∂

∂t

t∫

−∞

∞∫

−∞

Lr

r
δ(f)δ(g)dydτ +

t∫

−∞

∞∫

−∞

Lr

r2
δ(f)δ(g)dydτ (20)

Then if the gradient of the loading component of acoustic pressure is taken, the result is:

4π∇p′L(x, t) =
1

c

∂

∂t

t∫

−∞

∞∫

−∞

δ(f)L ·∇x

(
r̂δ(g)

r

)
dydτ +

t∫

−∞

∞∫

−∞

δ(f)L ·∇x

(
r̂δ(g)

r2

)
dydτ (21)

Note that the observer and the source space-time variables are independent because none

of Dirac delta functions have been integrated. This approach makes it easy to interpret the

differentiation operators. Had we been working with the integrated results, we would be

dealing with heavy algebraic manipulations and the differentiation operators would require

careful interpretation.

Using following relations:

L · ∇x

(
r̂δ(g)

r

)
= L · ∇x

(
r̂

r

)
δ(g) +

Lr r̂

cr
δ′(g)

=
L− 2Lr r̂

r2
δ(g)− Lr r̂

cr

∂

∂t
δ(g)

(22)

L · ∇x

(
r̂δ(g)

r2

)
= L · ∇x

(
r̂

r2

)
δ(g) +

Lr r̂

cr2
δ′(g)

=
L− 3 Lr r̂

r3
δ(g)− Lr r̂

cr2

∂

∂t
δ(g)

(23)
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leads to:

4π∇p′L(x, t) =
1

c

∂

∂t

{
−1

c

∂

∂t

t∫

−∞

∞∫

−∞

Lr r̂

r
δ(f)δ(g)dydτ +

t∫

−∞

∞∫

−∞

(L− 3 Lr r̂)

r2
δ(f)δ(g)dydτ

}

+

t∫

−∞

∞∫

−∞

(L− 3 Lr r̂)

r3
δ(f)δ(g)dydτ

(24)

Again following the procedure used for formulation 1A, equation (24) can be rewritten as:

4π∇p′L(x, t) =
1

c

∂

∂t

{
−1

c

∫

f=0

[
1

1−Mr

∂

∂τ

(
Lr r̂

r(1−Mr)

)]

ret

dS +

∫

f=0

[
L− 3 Lr r̂

r2(1−Mr)

]

ret

dS

}

+

∫

f=0

[
L− 3 Lr r̂

r3(1−Mr)

]

ret

dS

(25)

Simplifying equation (25) gives the gradient of the loading noise component of acoustic

pressure:

4π∇p′L(x, t) =
1

c

∂

∂t

{
−

∫

f=0

[r̂EL]ret dS +

∫

f=0

[
L− Lrr̂

r2(1−Mr)

]

ret

dS

−
∫

f=0

[
Lrr̂− LrM

r2(1−Mr)2

]

ret

dS

}
+

∫

f=0

[
L− 3Lrr̂

r3(1−Mr)

]

ret

dS

(26)

where EL is the combined loading noise integrand in Formulation 1A:

EL =
1

c

[
L̇r

r(1−Mr)2

]

ret

+

[
Lr − LM

r2(1−Mr)2

]

ret

+
1

c

[
Lr (rṀr + c(Mr −M2))

r2(1−Mr)3

]

ret

(27)

Again, the observer time derivative in equation (26) needs to be taken numerically.

For convenience, equations (17) and (26) are together referred to as formulation G1. This

notation parallels that used by Farassat for the thickness and loading Formulation 1, which

had a observer time derivative outside of the integrals. Evaluation of the pressure gradient

can now be completed with substantially less computational effort than a direct numerical

evaluation of the pressure gradient. More details of the derivation of formulation G1 are

given by Farassat and Brentner.12

Equations (17) and (26) have been implemented in the PSU-WOPWOP noise prediction
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code to provide the acoustic pressure gradient at an arbitrary observer location. The main

challenge of this implementation is the calculation of observer time derivative, ∂/∂t, of the

integrals. Care must be taken to ensure that the observer position x remain fixed during

the calculation of these integrals. To simplify the algorithm description, the integrals which

much be differentiated, surrounded by the braces in equation (26), are represented by Q.

A second-order backward difference algorithm is used to compute the time derivative. The

general algorithm for the numerical calculation of ∂/∂t is as follows:

A. Pick τn – n indicates time step and τ represents the emission or retarded time.

B. Compute yi (τ
n) – each source point is moving, thus at time n, the position of the i

source point is needed. source point.

C. Save τn, yi (τ
n), velocity, acceleration, etc. for later use as the τn−1 and τn−2 values

once n has been incremented.

D. Compute x (tn) (based on yi (τ
n) and τn) – if the source location is fixed, x does not

change, and the arrival time t is found by t = τ + r/c; if the observer is moving, both

the observer position and arrival (observer) time must be determined.

E. Calculate Q (yi, τ
n;x (tn) , tnxn) ≡ Qn

n using velocity, acceleration etc. at τn

F. Compute tn−1
xn and tn−2

xn using τn−1 and τn−2 as follows:

i. tn−1
xn = τn−1 + |x (tn)− yi (τ

n−1)| /c
ii. tn−2

xn = τn−2 + |x (tn)− yi (τ
n−2)| /c

G. Calculate Q
(
yn−1

i , τn−1;x (tn) , tn−1
xn

) ≡ Qn−1
n and Q

(
yn−2

i , τn−2;x (tn) , tn−2
xn

) ≡ Qn−2
n

H. Calculate
∂Q

∂t
∼= Qn−2

n − (1 + α)2Qn−1
n + α(α + 2)Qn

n

α(1 + α)(tnn − tn−1
n )

where α =
tn−1
n − tn−2

n

tnn − tn−1
n

for a

non-uniform time step

I. Interpolate
∂Q

∂t
at t∗

where τ denotes source time, t observer time, yi source vector, xi observer vector, c speed

of sound, n time index and t∗ is the specified observer time of interest. It is apparent

that this procedure is significantly more complicated than computing the acoustic pressure.

Nevertheless, the additional computational effort will be shown to be significantly less than

a purely numerical differentiation of the acoustic pressure.
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Formulation G1A

The primary drawback of Formulation G1 is that numerical time differentiation of the inte-

grals is required. If the observer is stationary, then this requirement is not a problem because

the time history of the integrals can be easily differentiated numerically. If the observer is

moving with respect to the fluid, as in the case of a wind-tunnel test, the situation becomes

more complicated because the formulation requires the observer to be stationary during the

evaluation of the integrals. Predictions with a moving observer are possible by adjusting the

observer position at each time in the acoustic-pressure time history; however, three evalua-

tion of the integrals are needed to perform a second-order difference approximation to the

time derivatives at each observer time. These extra integral evaluations become unnecessary

if the time derivatives are taken inside the integrals analytically.

Although the process of taking the observer time derivatives inside the integrals and

converting them to source time derivatives is not difficult, it is quite tedious. The first step

is to apply equation (13) and then evaluate the source time derivatives that results. Some

of the key source time derivatives, which are the same as Farassat used in the derivation of

Formulation 1A, are expressed as follows:

∂r̂

∂τ
=

c

r
(Mrr̂−M) (28)

∂r

∂τ
= −cMr (29)

∂

∂τ

(
1

r

)
= − 1

r2

∂r

∂τ
=

cMr

r2
(30)

∂Mr

∂τ
=

c

r
(−M2 + M2

r ) + Ṁr (31)

Some new functions are introduced denoted by the following symbols:

W = rṀr + c(Mr −M2) (32)

Ẇ =
r2M̈r − 3crṀ ·M + c(rṀr + c(M2

r −M2))

r
(33)

U(m,n) =
1

rm(1−Mr)n
(34)

V (m,n) =
∂U(m,n)

∂τ
=

nrṀr + (n−m)cM2
r + mcMr − ncM2

rm+1(1−Mr)n+1
(35)

or

V (m,n) = nWU(m + 1, n + 1) + c(m− n)MrU(m + 1, n) (36)
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These relations will not be used in the process of taking the observer time derivatives inside

the integrals in Formulation G1.

Equations (17) and (26) are the starting point for the derivation of Formulation G1A.

They can be written in a short hand notation for convenience:

4π∇p′T (x, t) = I1 + I2 (37)

4π∇p′L(x, t) = I3 + I4 + I5 + I6 (38)

where each of individual integrals I1 – I6 are given below. In these descriptions, it is helpful

to define ρ0Un as Q, then

I1 = −1

c

∫

f=0

[
1

1−Mr

{
c(Mrr̂−M)

r

(
Q̇ U(1, 2) + QW U(2, 3)

)

+ r̂
{
Q̈ U(1, 2) + Q̇ (V (1, 2) + W U(2, 3))

+ Q (Ẇ U(2, 3) + W V (2, 3))
}}]

ret

dS

(39)

I2 =

∫

f=0

[
1

1−Mr

{ (
rṀ− cMrr̂ + cM

r

)
QU(2, 2)

− (r̂−M)(Q̇ U(2, 2) + QV (2, 2))

}]

ret

dS

(40)

I3 = − 1

c2

∫

f=0

1

1−Mr

[
∂r̂

∂τ

{
L̇rU(1, 2) + c(Lr − LM)U(2, 2) + LrWU(2, 3)

}

+ r̂
{
L̈rU(1, 2) + L̇ṙU(1, 2) + L̇rV (1, 2)

+ c(
∂Lr

∂τ
− L̇M − LṀ)U(2, 2) + c(Lr − LM)V (2, 2)

}

+
∂Lr

∂τ
WU(2, 3) + LrẆU(2, 3) + LrWV (2, 3)

]

ret

dS

(41)

I4 =
1

c

∫

f=0

1

1−Mr

[
(L̇− ∂Lr

∂τ
r̂− Lr

∂r̂

∂τ
)U(2, 1) + (L− Lrr̂)V (2, 1)

]

ret

dS (42)
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I5 = −1

c

∫

f=0

1

1−Mr

[
∂Lr

∂τ
(r̂−M)U(2, 2) + Lr(

∂r̂

∂τ
− Ṁ)U(2, 2)

+ Lr(r̂−M)V (2, 2)

]

ret

dS

(43)

I6 =

∫

f=0

[
L− 3Lrr̂

r3(1−Mr)

]

ret

dS (44)

where
∂Lr

∂τ
= L̇r + L · ∂r̂

∂τ
(45)

Recall that for an impermeable surface,

Q = ρ0vn (46)

L = Pijn̂j (47)

and for a permeable surface,

Q = ρ0vn + ρ(un − vn) (48)

L = Pijn̂j + ρui(un − vn) (49)

Also remember that a dot on the main variables does not imply differentiation of any of the

associated vectors implied by the subscripts. Subscripts other than i and j are a shorthand

for the inner product of the main quantity with the vector represented by the subscript. The

derivative of acceleration, which is called a jerk, and second derivative of normal unit vector

were evaluated numerically in this work.

Equations (37) and (38), together with the definitions of I1 – I6, will be referred to as

formulation G1A and are the main result of this paper. The designation G1A is intended

to parallel that of Farassat’s formulation 1A, in which the observer time derivative is taken

analytically inside the thickness and loading integrals. Formulation G1A does not require nu-

merical time differentiation of the integrals and, as a retarded-time formulation, is well suited

for subsonic source motion. Aside from the problem geometry, only the time-dependent in-

put values or at most, numerical differentiation of them are required. Furthermore, it will

be demonstrated with numerical examples that formulation G1A requires significantly less

operations and computer memory than formulation G1. This will be discussed in detail

later. The reduction of computational cost is important when the formulation is used for

the scattering problem.
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Results and Discussions

In this section, two representative calculations are performed to demonstrate the capabil-

ity of the new formulations and to provide some indication of the efficiency and robustness

of the formulations. The first case considers mode-scale UH-1H rotor with untwisted blades

operating in a non-lifting hover condition. This test enables simple and fast calculation for

both the pressure and pressure gradient. The other test case is for the HART-I model rotor

in a forward descent flight, which experiences blade-vortex-interaction (BVI) high frequency

loading on the blades (although the CFD solution does not fully capture the BVI). Measured

data is not available for the pressure gradient; therefore, the predicted pressure-gradient time

histories predicted by the analytical formulations will be compared with a purely numerical

approach. The finite difference predictions are performed by computing the acoustic pressure

at several points nearby the observer location and then using a second-order central finite

difference in each of the three spatial directions.

Test case 1 : UH-1H model rotor

A model scale rotor test, conducted by Boxwell16 et al. in 1978 and later repeated by

Purcell17 in 1988, was selected for the validation of the present theory and code. The rotor

was a one-seventh scale model of a UH-1H main rotor with straight, untwisted blades. The

model rotor utilized an NACA 0012 airfoil section. The rotor radius R was 1.045 m with a

chord of 7.62 cm. The model was run at several high-speed hover conditions with low thrust.

The high-speed hover condition is not of particular interest for the validation of the pressure

gradient; therefore, a tip Mach number of 0.6 was selected for the test case. For the hover

noise calculation, an Euler solution reported by Baeder et al.18 was used as input data. The

Euler calculation were performed on a C-H grid; only the lower half of the grid was used

in the CFD calculations by taking advantage of the symmetry of the problem. The Euler

calculations required approximately 80 min of CPU time on a Cray Y-MP. Details of the

Euler calculations can be found in references .18,19

Comparisons of the pressure gradient are made for an in-plane microphone located 3.09R

from the rotor hub for a stationary observer. Figure 1 shows the total acoustic pressure

and the pressure gradient with respect to x, y, and z directions, respectively. Pressure

gradient predicted by two analytical formulations are compared to that obtained by the

finite difference method, which is a purely numerical approach. The agreement between

analytic formulations and the finite difference method is excellent for all components of the

pressure gradient. A closer examination reveals that the analytical formulations provide

much smoother results as compared to the finite difference method.
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Figure 1. Acoustic pressure and the components of the acoustic pressure gradient for the UH-
1H model rotor operating in hover with Mtip = 0.6. (a) total acoustic pressure (b) ∂p′/∂x (c)
∂p′/∂y (d) ∂p′/∂z; finite difference method: —— ; formulation G1A: – – ¤ – – ; formulation
G1: – - –¦– - – .

Test Case 2: HART-I model rotor

The forward-flight capability of the new formulations and code was demonstrated for a four-

bladed rotor representative of the HART-I model-scale test. This case focuses on unsteady

blade loading and forward flight. The OVERFLOW CFD code was used to compute the

unsteady flow field around the rotor.20,21 A C-mesh topology was been used for the grid

with a total grid system of 2.4 million points in the near-body region and 15.0 million points

in the off-body region. The turbulence model used the shear stress transport (SST)22 k − ω
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Figure 2. Acoustic pressure for the HART-I rotor operating in a BVI flight condition.

by Menter. The rapid dissipation of blade-vortex strength makes the prediction of compu-

tational fluid dynamics(CFD) difficult. Although the CFD was not fully able to capture

the BVI loading on the blades—and hence the peaks of predicted noise were considerably

underpredicted as shown in the reference20,21—the comparison of the new analytical formu-

lations for pressure gradient with the finite difference method is still useful to demonstrate

the implementation in PSU-WOPWOP.

Like UH-1H examples, the result of the finite difference method was compared to that of

analytic formulations to validate the newly developed formulations. For this comparison, a

microphone located below the rotor plane at a downstream position on the retreating side

of the rotor. The observer is in motion with the rotor to simulate the wind-tunnel test.

Permeable acoustic data surfaces, which surround each of the four rotor blades, are used

for the noise and pressure gradient computations. Although the absolute magnitude of the

pressure gradient is unknown, confidence in both the derivation and implementation of the

new formulations is gained if all of the different methods agree reasonably well.

Figure 2-5 shows the total acoustic pressure and a comparison of the pressure gradient at
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Figure 3. x component of the acoustic pressure gradient (∂p′/∂x) for the HART-I rotor oper-
ating in a BVI flight condition.; finite difference method: —— ; formulation G1A: – – ¤ – –
; formulation G1: – - –¦– - – .

a moving observer for the HART-I rotor. The analytical formulations are in a good agreement

with the finite difference method. Upon closer inspection (not shown), the finite difference

contains a high frequency “jitter” that is thought to be of numerical origin. The analytical

formulations do not exhibit the same “jitter.” In some other cases with at moving observer

(not shown) it was found that the acoustic pressure gradient predicted by formulation G1

was sensitive to the method of computing the observer time and position. This has not been

studied extensively because Formulation G1A does not suffer in this regard, and requires

less computational effort.

Table 1 shows a comparison of computational time for Formulation 1A (as a reference),

Formulations G1A and G1, and the finite difference method. The finite difference method

required 7 times as much time as Formulation 1A but Formulation G1A only required 3 times

as much computation time as Formulation 1A. Formulation G1 required approximately 5

times much computation time as Formulation 1A or 60 percent more computation time than

Formulation G1A. This demonstrates the significant computational savings of both of the
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Figure 4. y component of the acoustic pressure gradient (∂p′/∂y) for the HART-I rotor oper-
ating in a BVI flight condition.; finite difference method: —— ; formulation G1A: – – ¤ – –
; formulation G1: – - –¦– - – .

analytical formulations and the superiority of Formulation G1A.

Formulation 1A Formulation G1A Formulation G1 Finite Difference Method

11.5 (s) 31.7 (s) 49.4 (s) 79.0 (s)

Table 1. Comparison of computational time for the HART rotor with permeable surface

Concluding Remarks

In this paper, two analytical formulations for the acoustic pressure gradient of rotor

noise were developed and validated by comparison with a purely numerical method for both

hovering and forward-flight conditions. The analytical formulations eliminated numerical

oscillations,which were present in the numerical method, and resulted in a very smooth

predictions. The fact that all three approaches gave essentially the same results – although
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Figure 5. z component of the acoustic pressure gradient (∂p′/∂z) for the HART-I rotor oper-
ating in a BVI flight condition.; finite difference method: —— ; formulation G1A: – – ¤ – –
; formulation G1: – - –¦– - – .

they are quite different in expression and implementation – gives confidence that both the

derivation and implementation have been performed correctly.

It was found that formulation G1, which evaluates the observer time differentiation of

the integrals, is a relatively simple formulation but is somewhat more difficult to implement

in PSU-WOPWOP due to the observer time differentiation of the acoustic integrals. Fur-

thermore, it was sensitive to the choice of numerical algorithm used to find the observer

time and location (in at least one case - not shown). In contrast, Formulation G1A, which

takes the time derivatives inside the integrals, is a somewhat more complicated formulation,

nevertheless, it yields improved computational efficiency and perhaps robustness by avoid-

ing the numerical time differentiation of the acoustic integrals. Numerical tests show that

Formulation G1A is the fastest and the most efficient algorithm for computing the acoustic

pressure gradient. This is important for use in computing the acoustic scattering, which

may require several thousand pressure gradient calculations at the collocation points on the

scattering body.
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