
 

American Institute of Aeronautics and Astronautics 

 

1 

Buckling and Failure of Compression-loaded Composite 
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Results from a numerical and experimental study that illustrate the effects of laminate 

orthotropy on the buckling and failure response of compression-loaded composite 

cylindrical shells with a cutout are presented.  The effects of orthotropy on the overall 

response of compression-loaded shells is described.  In general, preliminary numerical 

results appear to accurately predict the buckling and failure characteristics of the shell 

considered herein.  In particular, some of the shells exhibit stable post-local-buckling 

behavior accompanied by interlaminar material failures near the free edges of the cutout.   

In contrast another shell with a different laminate stacking sequence appears to exhibit 

catastrophic interlaminar material failure at the onset of local buckling near the cutout and 

this behavior correlates well with corresponding experimental results.  

I. � Introduction 

 Thin-walled shell structures are a fundamental component found in aircraft, spacecraft, and launch vehicles. In 

many applications, these structural components contain cutouts or openings that serve as doors, windows, or access 

ports, or are used to reduce weight. Often, some type of reinforcement is used around a cutout to eliminate local 

deformations and stress concentrations that can cause local buckling or premature material failures. Thus, it is 

important to understand how a cutout affects the baseline performance of a shell structure without a cutout, how 

loads are redistributed around the cutout, and how the shell can be tailored to enhance performance and reduce 

weight. In addition, it is important to understand performance enhancements that can be obtained by using 

lightweight fiber-reinforced composite materials. Furthermore, these structures usually experience compression 

loads during vehicle operation and, as a result, their buckling response and material failure characteristics must be 

understood and accurately predicted in order to develop efficient, safe designs. 

 Many numerical and experimental studies of the buckling behavior of cylindrical shells have been conducted 

since the early 1900s. It took nearly 100 years to reach the point where robust, high-fidelity analysis tools and 

measurement technologies were available that could be used to conduct test-analysis correlations that include the 

effects of initial geometric, material, and manufacturing imperfections and the effects of load introduction and 

support conditions. Two noteworthy studies conducted at the NASA Langley Research Center that document these 

advanced capabilities are given in Refs. 1 and 2.  It is worth pointing out that these two studies show that differences 

as small as 5% between corresponding analytical and experimental results can be obtained for buckling and 

postbuckling of compression-loaded, laminated-composite, circular cylindrical shells. This small difference is on the 

same order as the error that inherently exists in the use of nominal material properties. Thus, technology and 

physical insight now exists that can be used to develop greatly improved buckling design criteria, such as that 

presented in Ref. 3. An important part of such an effort would, of course, need to include the effects of cutouts and 

material failures on the structural performance. 

 In contrast to the body of work that exists for complete cylindrical shells and curved panels, studies that address 

the effects of a cutout on the buckling performance of cylindrical shells didn’t appear until 1968.
4
  Since 1968, only 

about 20 studies have appeared that address the effects of unreinforced cutouts that focus on the buckling behavior 

of compression-loaded isotropic and laminated-composite circular cylindrical shells and curved panels.
5-25

    Some 

of  the general lessons learned from these studies are as follows. The presence of a cutout in an isotropic circular 

cylindrical shell can cause a localized response to occur near the cutout when the shell is loaded.  This localized 

response typically consists of large out-of-plane deformations, large magnitude stress concentrations, and rapidly 

varying stress gradients near the cutout.  In a compression-loaded circular cylindrical shell, the cutout may cause a 

local buckling response to occur in the shell, near the cutout, at applied loads lower than the general instability load 
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of the corresponding shell without a cutout.  For some cases, this localized buckling is followed by a stable 

postbuckling response near the cutout, which is indicated by the fact that additional load can be applied to the shell 

before it exhibits overall collapse.  However, other cases have shown that a local response in the shell can occur that 

causes a disturbance with enough kinetic energy to cause overall collapse to occur immediately after the local 

buckling occurs. Starnes
6, 11

 suggested that the buckling of compression-loaded isotropic shells with a cutout is 

governed by the nondimensional geometric parameter ã = a
2
/Rt, where a is the characteristic hole dimension and R 

and t are the shell radius and thickness, respectively. In addition, Starnes identified approximate ranges of the ã  

parameter that corresponded to the various behavioral trends described above.   

For shallow, isotropic curved panels with a circular cutout and subjected to compression loads, it has been found 

that cutout size greatly affects the nonlinear behavior. For example, it has been shown that curved panels with 

relatively small cutouts exhibit a linear prebuckling state followed by an unstable global buckling response and 

those with somewhat larger cutouts exhibit a nonlinear prebuckling state followed by an unstable global buckling 

response. As the cutout size gets even larger, the panels exhibit a monotonically increasing load–end-shortening 

response. These results suggest that traditional linear bifurcation buckling analyses may misrepresent the physics of 

the response for a certain range of cutout sizes because of significant nonlinear behavior and should not be used for 

design. 

 Numerical and experimental studies of the response of compression-loaded, laminated-composite, circular 

cylindrical shells with unreinforced rectangular cutouts indicate similar response characteristics to those exhibited 

by corresponding isotropic shells.  In addition, results have shown that localized regions of biaxial inplane 

compression stresses form in the shell near the cutout and that these regions of biaxial stresses couple with out-of-

plane deformations of the shell wall, causing an unstable local buckling response to occur near the cutout. 

Hilburger
19, 20

 has shown that the buckling of compression-loaded anisotropic shells with a cutout is governed by a 

stiffness-weighted nondimensional geometric parameter, similar to that proposed by Starnes, and a stiffness-

weighted cutout aspect ratio. In addition, the initial local buckling and postbuckling response near the cutout are 

characterized by large-magnitude deformations and stresses that cause material failure.  Furthermore, laminate 

orthotropy and initial shell imperfections have been shown to have a significant effect on the nonlinear response and 

buckling behavior of a laminated-composite, circular cylindrical shell with a cutout.  

For shallow, laminated-composite, curved panels with a central circular cutout and subjected to compression loads 

indicate similar trends to those exhibited by the corresponding isotropic shells.  However, whether the panel exhibits 

an unstable snap-through-type buckling response or a monotonically increasing load-end-shortening response, 

depends significantly on the panel orthotropy and anisotropy.  Furthermore, numerical and experimental studies 

have identified cases where panels exhibited large-magnitude out-of-plane prebuckling deformations and buckling 

loads that exceeded the classical linear bifurcation buckling load.  This behavior was contrary to previously known 

behavioral characteristics of compression-loaded shallow curved panels.  It was determined that these response 

characteristics were caused by circumferential edge restraint on the loaded boundaries of the panels and indicated a 

high degree of boundary condition sensitivity.  

 Review of the literature cited herein indicates that the buckling response of a compression-loaded cylindrical 

shell with a cutout is becoming better understood. In addition, studies have been conducted that address numerical 

simulation of progressive failure in compression-loaded, laminated-composite, curved panels with a central circular 

cutout.
29, 30 

 However, validation results for predicting delamination type failures in postbuckled laminated 

composites are somewhat limited and additional validation is required for thin-walled buckling critical laminated 

composite shells. Therefore, the objective of the present study is to present numerical and experimental results that 

will illustrate typical buckling and failure response characteristics and trends for a compression-loaded, thin-walled, 

laminated-composite, circular cylindrical shell with a square cutout and several laminate stacking sequences.  This 

shell configuration represents a generic example of a typical aerospace shell structure with a cutout subjected to a 

destabilizing load.  To accomplish this objective, selected experimental and numerical results that illustrate the 

effects of laminate orthotropy on the buckling and failure response of compression-loaded shells with cutouts are 

presented.  Results obtained from an advanced high-fidelity nonlinear analysis procedure that includes the effects of 

intralaminar and interlaminar is used in the study and offers the opportunity to provide insight into the effects of 

laminate orthotropy on the buckling and failure response of compression-loaded shell structures.   In addition, 

preliminary results from a new, coupled nonlinear transient dynamic global collapse and progressive failure analysis 

method is presented.  The results include load-shortening response curves, out-of-plane displacement response 

curves and displacement contours, and descriptions of the observed shell buckling and failure responses. 
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II. Test Specimens, Imperfection Measurements, and Tests 

A. Test Specimens 

 Results from three test specimens that were fabricated and tested in a previous investigation are presented and 

are referred to herein as specimens C1-C3.  The specimens were fabricated from 12-in-wide, 0.005-in.-thick 

AS4/3502 unidirectional graphite-epoxy tape material.  The nominal unidirectional lamina properties of a typical 

0.005-in.-thick ply with a fiber volume fraction of 0.62 are as follows: longitudinal modulus E1 = 18.5 Msi, 

transverse modulus E2 = 1.64 Msi, in-plane shear modulus G12 = 0.87 Msi, and major Poisson’s ratio !12 = 0.30.  

The material was laid up by hand on a 15.75-in.-diameter mandrel and vacuum bagged and cured in an autoclave to 

form shells with different 8-ply shell-wall laminates.  These laminates include an axially stiff [m45/02]s laminate, a 

quasi-isotropic [m45/0/90]s laminate, and a circumferentially stiff [m45/902]s laminate (a 0
o
 lamina ply and a 90

 o
 

lamina ply correspond to plies with fibers aligned along the length of the cylinder and around its circumference, 

respectively).  A 1.0-in by 1.0-in square cutout with 0.05-in-radius reentrant corners was machined in each cylinder 

at the shells mid-length.  The specimens had a nominal length L equal to 16.0 in., a nominal radius R equal to 8.0 in, 

and a nominal shell-wall thickness tnom equal to 0.04 in.  Both ends of the specimens were potted in an aluminum-

filled epoxy resin to ensure that the ends of the specimen did not fail prematurely during the test.  The potting 

material extended approximately 1.0 inch along the length of the specimens at each end, resulting in a test section 

that is approximately 14.0-in. long.  The ends of the specimens were machined flat and parallel to a tolerance of 

±0.001 inches to facilitate uniform load introduction during the tests.   A typical cylinder specimen with a centrally 

located square cutout is shown in Fig. 1. 

 

B. Test Apparatus and Instrumentation 

 The specimens were instrumented with electrical-resistance strain gages.  In particular, sixteen back-to-back 

pairs of uniaxial strain gages were positioned around the perimeter of the cutout edge to characterize the rapidly 

varying strain gradients that develop during loading.  These gages were aligned tangent to the cutout edge at the four 

corners and at the mid-length of each of the four sides, as shown in Fig. 2.  In addition, far-field strain gages were 

positioned at several locations around the specimen to characterize the prebuckling load introduction into the 

specimen and load redistribution after local and global buckling occurs. 

 Direct-current differential transducers (DCDTs) were used to measure displacements.  In particular, several 

DCDTs were positioned in the interior of the specimen to measure radial displacements near the cutout, as shown in 

Fig. 2a.  In addition, three non-collinear DCDTs were positioned at three corners of the upper loading platen and 

used to measure the end-shortening displacement and the loading platen rotations, as shown in Fig. 1.  

A shadow moiré interferometery technique was used to observe the shell-wall prebuckling, buckling, and 

postbuckling radial deformation patterns.  All data were recorded with a data acquisition system, and the moiré 

patterns were recorded photographically, on videotape, and with a high-speed digital video camera.  The high-speed 

digital video camera recorded images at a rate of 2000 Hz. 

 The specimens were loaded in compression with a 120-Kip hydraulic universal-testing machine by applying an 

end-shortening displacement to the shell ends (loading surfaces) of a specimen.  To control the load introduction 

into the specimen, the upper loading platen was aligned with the loading surface of the specimen before the test by 

adjusting leveling bolts in the corners of the upper loading platen until strains measured by selected far-field strain 

gages on the specimens indicated a uniform axial strain distribution around the circumference of the shell.  The 

specimens were loaded until global collapse and failure of the shells occurred. 

III. Finite-element Models and Analysis Methods 

A. Finite-Element Models 

All the shells considered in this study were analyzed with the STAGS (Structural Analysis of General Shells) 

nonlinear shell analysis code.
 31

  STAGS is a finite-element code designed for the static and dynamic analysis of 

general shells, and includes the effects of geometric and material nonuniformities and progressive interlaminar and 

intralaminar material failure.  The cylinders were modeled using the standard 410 quadrilateral elements from the 

STAGS element library.  This element is a flat facet-type element based on Kirchoff-Love thin-shell theory and the 

nonlinear Lagrangian strain tensor.   A more thorough explanation of model development and validation procedures 
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for high-fidelity modeling of compression-loaded composite laminated shells with and without cutouts is presented 

in Refs. 1 and 2.  The models also include the effects of progressive intralaminar and interlaminar material failures 

and preliminary results from these analyses are presented herein.   The progressive failure methodology is described 

next. 

B. Progressive Failure Methodology 

 Intralaminar material failures were predicted by using the Hashin
32 

failure criteria.  The progressive failure 

theory and implementation are discussed in Ref. 29 and 30.  Some relevant details are presented subsequently.   

The intralaminar failure modes considered include matrix cracking, fiber-matrix shear failure, and fiber failure. To 

apply the failure criterion, the stress state is analyzed at each material point in the finite element model for a given 

solution step in the analysis.   If the failure criteria is met (i.e., if the Hashin failure index exceeds a value of 1.0) 

then it is assumed that the material at point has failed the material stiffnesses at that point are then degraded 

according to the Chang and Lessard degradation model.
33

 Material allowables used in the present study for 

AS4/3502 material are as follows:  in-plane shear stress allowable S12 = 25.5 ksi,  longitudinal tension and 

compression stress allowables Xt = 200.0 ksi and Xc = 180.0 ksi, respectively, and transverse tension and 

compression stress allowables Yt = 12.6 ksi and Yc = 24.6 ksi, respectively. 

 The initiation and progression of interlaminar, delamination failures are predicted by using a decohesion element 

that is positioned between composite laminae in potential delamination locations.
 
A material-softening constitutive 

law developed by Goyal et al.
30

 is used in the formulation of the decohesion element.  This constitutive law governs 

the initiation of a delamination and the subsequent delamination growth.  The initiation of a delamination is 

specified to occur when the maximum interfacial strength between plies is exceeded and subsequent propagation of 

the delamination occurs when the fracture energy release rate is exceeded.  The interfacial material failure properties 

used in the present study for AS4/3502 are as follows:  the critical energy release rates GIc = 1.31 lb/in, and GIIc, = 

GIIIc = 3.3 lb/in.  The maximum interfacial strengths T1
c
= 9.0 ksi, and T2

c
, = T3

c
 = 10.5 ksi.   The decohesion element 

was implemented in the STAGS finite-element code as a user-defined element. 

IV.Results and Discussion 

Numerically predicted and experimentally measured results for three compression-loaded composite cylindrical 

shells with cutouts are presented in this section.  The predicted results were obtained from finite-element analyses of 

geometrically and include the effects of intralaminar and interlaminar progressive failure.  First, experimentally 

measured results are presented for the three cylinders with different laminate stacking sequences to illustrate the 

typical buckling and failure response of the shells and provide a baseline for comparison with the numerically 

predicted results. The results include load-shortening response curves, load-strain response curves, and observed and 

predicted out-of-plane deformation patterns and material failures.  The values of axial load P, presented herein, are 

normalized with respect to the linear bifurcation buckling load of a geometrically perfect, quasi-isotropic cylinder 

without a cutout, Pcr
o
 = 42,590 lb.  The end-shortening displacements are normalized by the specimen length L = 

16.0 in., respectively. 

A. Experimental Results 

 Measured load–end-shortening response curves for the three cylinders with unreinforced cutouts, C1 ([-

m45/0/90]s), C2 ([m45/02]s), and C3 ([m45/902]s), considered in this study, are shown in Fig. 3.  Buckling loads are 

indicated by filled circles and global collapse loads are indicated by an X.  The cylinders exhibit a linear prebuckling 

load-shortening response up to buckling (note: the initial nonlinearity in the prebuckling response is attributed to the 

usual initial misalignment between the specimen and the loading platen).  Cylinders C1 and C2 exhibit a local 

buckling response at normalized load levels of 0.48 and 0.39, respectively.  The buckling response is characterized 

by localized, unstable dynamic buckling event in the cylinder and includes the formation of large-magnitude out-of-

plane deformations and rapidly varying strains near the cutout.  It has been shown by Hilburger et al.
19, 20

 that this 

local buckling response is caused by nonlinear coupling between the compressive in-plane biaxial stresses and the 

out-of-plane deformations that occur near the cutout.  A stable post-local-buckling response is exhibited by 

specimens C1 and C2 and additional load is carried by these shells until global collapse occurs at load levels of 0.52 

and 0.41, respectively.  As loading continues in the post-local-buckling region of the response, these shells exhibit a 

slight reduction in the effective axial stiffness.  This reduction in axial stiffness, manifested by a change in slope of 

the response curves, is caused by increasingly large out-of-plane deformations that develop in the shell and cause a 

redistribution of load away from the cutout, there by reducing the effective load-carrying cross-section of the shell.  

The global collapse response is characterized by a significant reduction in axial load and the development of the 
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general instability deformation pattern.   Specimens C1 and C2 obtain stable post-collapse equilibrium at load levels 

of 0.32 and 0.23, respectively and can sustain additional loading until complete failure of the cylinders occurs due to 

significant accumulation of material failures in the shell wall.  In contrast, shell C3 exhibits an unstable local 

buckling response, at a load of  0.51, that caused a catastrophic failure of the specimen and, as a result, there was no 

residual post-buckling strength for this specimen.   

 The results in Fig. 3 and results in Reference 1 also indicate that the measured initial buckling load of specimens 

with a cutout are an average of 37.3% less than the measured buckling loads of the corresponding specimens without 

a cutout. However, there are no noticeable differences in the prebuckling stiffnesses of the specimens with the same 

laminate, regardless of whether there is a cutout or not.  Moreover, the measured post-buckling loads for specimens 

C1 and C2 after global collapse are 2.1 and 1.4%, respectively, greater than the corresponding buckling loads for the 

shells without cutouts and indicates that, in some cases, the cutout can have a relatively small effect on the post-

buckling strength of these specimens. 

 Typical observed local buckling and global collapse out-of-plane deformation patterns for specimen C2 are 

shown Fig 4.  In general, the specimens exhibit small-magnitude prebuckling deformations.  During the local 

buckling response, the cylinders exhibit radial displacements at the corners of the cutout that range from -1.0 to +1.5 

times the nominal shell-wall thickness.  After global collapse, the specimens exhibit displacements of approximately 

+2.0 to +3.0 times the shell-wall thickness.  The local buckling deformation response consists of large ellipse-like 

buckles on either side of the cutout and are aligned in a helical or skew direction (see Fig. 4a)  After additional load 

is applied, the specimens collapse into a general instability buckling pattern in which the local buckles near the 

cutout increase in size and magnitude, and additional buckles develop around the circumference of the specimen 

(see Fig. 4b). 

 Typical measured strain results for specimens C1, C2, and C3 are shown in Fig. 5.  The figure includes data from 

three axially aligned back-to-back strain gage pairs located at the right edge of the cutout in specimens C1-C3.  The 

solid and dashed lines denote measured strain data from gages located on the outer shell-wall surface and the inner 

shell-wall surface, respectively.  In general, the results indicate that specimens C1 and C2 exhibit some local 

bending during the prebuckling response, as indicate by the divergence of the back-to-back strain gage curves, and 

have maximum strains that approach 0.6% strain.   The strains near the cutout in specimens C1 and C2 increase 

significantly when local buckling and global collapse occur and can exceed 2.0% strain.  Once local buckling 

occurs, these large-magnitude bending strains near the cutout activate an interlaminar shear failure mechanism in 

specimens C1 and C2 as shown in Fig. 6 for specimen C1.  The local interlaminar shear failures that developed in 

specimens C1 and C2 typically propagate approximately 0.5 in. beyond the free edge of the cutout around the 

circumference of the shell.  In contrast, specimen C3 exhibits significant bending from the onset of loading and 

these large-magnitude bending strains activate an interlaminar shear failure mechanism prior to buckling.  The initial 

local failures that occur near the cutout in shell C3 propagated around the circumference of the specimen very 

rapidly and, as a result, this specimen had no post-buckling strength as shown in Fig 7. 

B. Predicted Results 

 Predicted results were obtained for the three shell specimens, and include load–end-shortening response curves; 

pre-buckling, buckling, and post-buckling deformations; and selected results that illustrate the progressive 

interlaminar and intralaminar failure response of these shells.  

 Predicted load—end-shortening response curves for shells C1 through C3 are presented in Fig.  8.  Two 

predictions were obtained for each shell and include the effects of intralaminar or interlaminar (delamination) 

progressive failures in the analyses, denoted by the suffixes –PFA and –DELAM, respectively.  The local buckling 

events are marked with a filled circle symbols and global collapse or failure is marked with an X.  The results 

indicate that all the shells exhibit lower local buckling loads when including the effects of the interlaminar failures.  

Shells C1 and C2 exhibit additional post-local-buckling load carrying capability until global collapse occurs as 

indicate by the X symbol and the sudden reduction in the axial load predicted by using the transient analysis 

capability in the STAGS finitie-element analysis code.  No significant growth in the damage zones occur during the 

initial global collapse event.  In contrast, shell C3 exhibits a local buckling event that couples with local interlaminar 

failures near the free edge of the cutout to cause the sudden failure of the shell.  This sudden failure of the shell is 

indicated by the rapid reduction in axial load and the significant propagation of the interlaminar failures around the 

circumference of the shell. 

 Typical predicted intralaminar and interlaminar material failures incipient to local buckling and global collapse 

for shell C1 are shown in Figs. 9a through 9d.  The results indicate some intralaminar failures in the upper and lower 

right corners of the cutout in the form of matrix tension failures and fiber compression failures. However, the 

analysis also predicts the initiation and propagation of interlaminar shear-type failures near the free-edge of the 
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cutout (see Figs 9c and 9d).  The location and the extent of the damage in the shell appears to agree well with the 

observed damage shown in Fig. 6.   Similar failure predictions were obtained for shell C2 and C3 and results for the 

circumferentially-stiff shell C3 are shown in Fig. 10.  Predicted delamination-type failures in shell C2 are less 

pronounced than those predicted for shell C1 and agree well with the observed failure response in the shell. 

Preliminary failure predictions obtained for shell C3 indicate an increased potential for the initiation of interlaminar 

failures at the edges of the cutout and the rapid propagation of these delaminations around the circumference of the 

shell, as observed in the test.  This increased potential for interlaminar shear failures is due to relatively large-

magnitude bending strains (> 1% strain) and deformations near the cutout, as compared to the strains exhibited by 

shells C1 and C2.  In addition, it is well established that delamination-type failures will initiate and propagate more 

easily in a structure where the lamina fibers are oriented parallel to the direction of propagation.   

 It should be noted that, at the time this paper was written, the final transient collapse and or failure predictions 

for all three shells were only partially complete and that the results and conclusions presented herein are based on 

response trends identified in the initial transient analysis results.  

V. Concluding Remarks 

 Results from a numerical and experimental study of the response of compression-loaded, laminated-composite, 

cylindrical shells with either reinforced or unreinforced cutouts have been presented.  The numerical results were 

obtained by using high-fidelity nonlinear finite-element analyses.  The analysis accounted for the effects of 

intralaminar and interlaminar material failures.  The results identify some of the effects of shell-wall orthotropy on 

the buckling and failure response of the shells.  For the quasi-isotropic shell and the axially-stiff shell considered in 

the present study, the local buckling response near the cutout in the shell results in a stable post-local-buckling 

response and is accompanied by local interlaminar material failures near the cutout and additional load can be 

applied to the shell before it undergoes global collapse.  In contrast, the local response near the cutout in the 

circumferentially-stiff shell causes a significant increase in the accumulation of interlaminar failures.  Furthermore, 

preliminary results indicate that these interlaminar failures continue to accumulate throughout the transient collapse 

response and lead to the overall failure of the shell.  

 The selected results presented herein suggest that tailoring the laminate orthotropy, in a compression-loaded 

shell can result in significant increases in the buckling load of the shell, and can reduce the local strains, and damage 

accumulation near the cutout.  The robust validated high-fidelity nonlinear analysis procedure used in this study 

offers the opportunity to provide insight into various laminate orthotropies on the buckling and failure response of 

compression-loaded shell structures.  Moreover, results from such a high-fidelity analysis procedure can improve 

some of the engineering approximations and methods that are used in the design of composite shell structures with 

cutouts. 

References 

1. Starnes, J. H., Jr., Hilburger, M. W., and Nemeth, M. P., "The Effects of Initial Imperfections on the Buckling of 

Composite Shells," Composite Structures: Theory and Practice, ASTM STP 1383, P. Grant and C. Q. Rousseau, Eds., American 

Society for Testing and Materials, 2000, pp. 529-550. 

2. Hilburger, M. H., and Starnes, J. H., Jr., "Effects of Imperfections on the Buckling Response of Compression-loaded 

Composite Shells," International Journal of Non-linear Mechanics, Vol. 37, 2002, pp. 623-643. 

3. Hilburger, M. W., and Nemeth, M. P., and Starnes, J. H., Jr., “Shell Buckling Design Criteria Based on Manufacturing 

Imperfection Signatures,” NASA/TM-2004-212659, May, 2004. 

4. Tennyson, R. C., “The Effects of Unreinforced Circular Cutouts on the Buckling of Circular Cylindrical Shells,'' Journal of 

Engineering for Industry, Transactions of the American Society of Mechanical Engineers, Vol. 90, November 1968, pp. 541-546. 

5. Brogan, F. A. and Almroth, B. O., “Buckling of Cylinders with Cutouts,'' AIAA Journal, Vol. 8, No. 2, February 1970, pp. 

236-240. 

6. Starnes, J. H., Jr., “The Effect of a Circular Hole on the Buckling of Cylindrical Shells,'' Ph. D. Dissertation, California 

Institute of Technology, Pasadena, California, 1970.  

7. Jenkins, W. C., “Buckling of Cylinders with Cutouts under Combined Loading,” MDC Report G2476, October 1971, 

McDonnell-Douglas Astronautics Co. 

8. Almroth, B. O. and Holmes, A. M. C., "Buckling of Shells with Cutouts, Experiment and Analysis," International Journal 

of Solids and Structures, Vol. 8, 1972, pp. 1057-1071. 

9. Starnes, J. H., Jr., “Effect of a Slot on the Buckling Load of a Cylindrical Shell with a Circular Cutout, '' AIAA Journal, 

Vol. 10, No. 2, February 1972, pp. 227-229. 

10.  Almroth, B. O., Brogan, F. A., and Marlowe, M. B., “Stability Analysis of Cylinders with Circular Cutouts,” AIAA 

Journal, Vol. 11, No. 11, 1973, pp. 1582-1584. 



 

American Institute of Aeronautics and Astronautics 

 

7 

11. Starnes, J. H., Jr., “The Effects of Cutouts on the Buckling of Thin Shells,'' Thin-Shell Structures: Theory, Experiment, 

and Design, edited by Y. C. Fung and E. E. Sechler, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974, pp. 289-304. 

12.  Almroth, B. O., Meller, E, and Brogan, F. A., “Computer Solutions for Static and Dynamic Buckling of Shells,” 

Buckling of Structures, edited by B. Budiansky, IUTAM Symposium, Cambridge, Massachusetts, 1974, pp. 52-66. 

13. Toda, S, "Buckling of Cylinders with Cutouts Under Axial Compression," Experimental Mechanics, Vol. 3, 1983, pp. 

414-417. 

14. Janisse, T. C. and Palazotto, A. N., “Collapse Analysis of Composite Panels With Cutouts,” Proceedings of the 

AIAA/ASME/ASCE/AHS 24th Structures, Structural Dynamics, and Materials Conference, AIAA paper 83-0875, 1983. 

15. Knight, N. F. and Starnes, J. H., Jr., “Postbuckling Behavior of Selected Graphite-Epoxy Cylindrical Panel Loaded in 

Compression,” Proceedings of the AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics, and Materials Conference, 

AIAA paper 86-0881-CP, 1986.   

16. Knight, N. F. and Starnes, J. H., Jr., “Postbuckling Behavior of Axially Compressed Graphite-Epoxy Cylindrical Panels 

with Circular Holes,” Proceedings of the 1984 ASME Joint Pressure Vessels and Piping/Applied Mechanics Conference, 1984. 

17.  Lee, C. E. and Palazotto, A. N., “Nonlinear Collapse Analysis of Composite Cylindrical Panels With Small Cutouts or 

Notches,”  Proceedings of the AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics, and Materials Conference, AIAA 

paper 84-0889, 1984. 

18. Madenci, E. and Barut, A., “Pre- and Postbuckling Response of Curved, Thin, Composite Panels with Cutouts Under 

Compression, International Journal for Numerical Methods in Engineering, Vol. 37, 1994, pp. 1499-1510. 

19. Hilburger, M. W., "Numerical and Experimental Study of the Compression Response of Composite Cylindrical Shells 

with Cutouts," Ph. D. Dissertation, University of Michigan, Ann Arbor, Michigan, 1998. 

20.  Hilburger, M. W., Waas, A. M., and Starnes, J. H., Jr., “Response of Composite Shells with Cutouts Subjected to Internal 

Pressure and Compression Loads,” AIAA Journal, Vol. 32, No. 2, 1999, pp. 232-237. 

21. Hilburger, M. W., Starnes, J. H., Jr., and Waas, A. M. "A Numerical and Experimental Study of the Response of Selected 

Compression-loaded Composite Shells with Cutouts," Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics, and Materials Conference, Long Beach, CA, AIAA Paper No. 98-1768, 1998. 

22. Jullien, J. F. and Limam, A., “Effects of Openings on the Buckling of Cylindrical Shells Subjected to Axial Compression, 

Thin-Walled Structures, Vol. 31, 1998, pp. 187-202. 

22. Nemeth, M. P. and Starnes, J. H., Jr., “The NASA Monographs on Shell Stability Design Recommendations: A Review 

and Suggested Improvements, NASA/TP-1998-206290, January 1998. 

23. Hilburger, M. W., Britt, V. O., and Nemeth, M. P., “Buckling Behavior of Compression-Loaded Quasi-Isotropic Curved 

Panels with a Circular Cutout, ," International Journal of Solids and Structures, Vol. 38, 2001, pp. 1495-1522. 

24. Tafreshi, A., “Buckling and Post-buckling Analysis of Composite Cylindrical Shells with Cutouts Subjected to Internal 

Pressure and Axial Compression Loads,” International Journal of Pressure Vessels and Piping, Vol. 79, 2002, pp. 351-359. 

25. Madenci, E. and Barut, A., “The Influence of Geometric Irregularities on the Linear Buckling of Cylindrical Shells with 

an Elliptical Cutout,” Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 

Conference, Norfolk, VA.  AIAA Paper No. 2003-1929, 2003. 

26. Cervantes, J. A. and Palazotto, A. N., "Cutout Reinforcement of Stiffened Cylindrical Shells," Journal of Aircraft, Vol. 

16, No. 3, 1979, pp. 203-208. 

27. Hilburger, M. W., and Starnes, J. H., Jr., "Bucking of Compression-loaded Composite Cylindrical Shells with Reinforced 

Cutouts," Proceedings of the AIAA/ASME/ASCE/AHS/ASC 43rd Structures, Structural Dynamics, and Materials Conference, 

Denver, CO.  AIAA Paper No. 2002-1516, 2002. 

28. Hilburger, M. W., and Starnes, J. H., Jr., "Bucking of Compression-loaded Composite Cylindrical Shells with Reinforced 

Cutouts," NASA/TM-2004-212656, September 2004. 

29. Jaunky, N., Ambur, D. R., Davila, C. G., and Hilburger, M. W., “Progressive Failure Studies of Composite Panels with 

and without Cutouts,” NASA/CR-2001-211223, September 2001. 

30. Vinay, K. G., Jaunky, N., Johnson, E. R., and Ambur, D. R., "Intralaminar and Interlaminar Progressive Failure Analyses 

of Composite Panels with Circular Cutouts," Proceedings of the AIAA/ASME/ASCE/AHS/ASC 43rd Structures, Structural 

Dynamics, and Materials Conference, Denver, CO.  AIAA Paper No. 2002-1745, 2002. 

31. Rankin, C. C., Brogan, F. A., Loden, W. A., and Cabiness, H. D., “STAGS Users Manual, Version 5.0,” Lockheed Martin 

Missiles & Space Co., Inc., Advance Technology Center, Report LMSC P032594, 2005. 

32. Hashin, Z., “Failure Criteria for Unidirectional Fiber Composites,” Journal of Applied Mechanics, 47, 1980, pp. 329-334. 

33. Chang, F. K., and Lessard, L., “Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to 

Compressive Loadings: Part I – Analysis,” Journal of Composite Materials, 25, 1991, pp. 2-43. 

 



 

American Institute of Aeronautics and Astronautics 

 

8 

  

   
 

 a) Front view  b) Rear view  

 

Fig. 1  Typical test set-up for a compression-loaded composite cylinder with a cutout. 

 

 

 

 a) Internal strain gages and DCDTs  b) Instrumentation pattern near cutout 

 

Fig.  2  Typical DCDT and strain gage instrumentation near the cutout. 
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Fig. 3  Load-shortening response curves for compression-loaded composite cylinders with unreinforced 1-in. by 1-

in. square-shaped cutouts (Pcr
o
 = 42,590 lb is the linear bifurcation buckling load of the corresponding geometrically 

perfect quasi-isotropic shell without a cutout). 

 

 

 

   
  

 a) Local buckling moiré fringe pattern b) Global collapse moiré fringe pattern 
 

Fig. 4  Observed radial deformation patterns near a cutout for specimen C2. 
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Fig. 5  Load-strain response near unreinforced 1-in. by 1-in. square-shaped cutouts in compression-loaded composite 

cylinders (Pcr
o
 = 42,590 lb is the linear bifurcation buckling load of the corresponding geometrically perfect quasi-

isotropic shell without a cutout). 

 

 

   
 

 a) delamination at the right edge of the cutout b) magnified view of cutout delamination 

 

Fig. 6  Observed local delamination failures in specimen C1. 
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 a) global view of failed specimen b) magnified view of delamination on left side 
 

Fig. 7  Observed catastrophic delamination failures in specimen C3. 

 

 
 

 

 
 

 

Fig. 8  Predicted load—end-shortening response curves for compression-loaded laminated composite cylinders and 

including the effects of interlaminar (DELAM) or intralaminar (PFA) progressive material failures.  Pcr
o
 = 42,590 lb 

is the predicted linear bifurcation buckling load of the corresponding geometrically perfect quasi-isotropic shell 

without a cutout. 
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a) Intralaminar failures 

      
 

b) Interlaminar (delamination) failures 

 

Fig. 9  Predicted local material failures for quasi-isotropic specimen C1 (extent of failures shaded in red for clarity). 
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a) Intralaminar failures 

 

      
  

b) Interlaminar (delamination) failures 

   

Fig. 10  Predicted local material failures for circumferentially-stiff specimen C3 (extent of failures shaded in red for 

clarity). 

 

 
 


