
Source of Acquisition
NASA Johnson Space Center

CASE STUDY OF THE SPACE SHUTTLE COCKPIT AVIONICS UPGRADE
SOFTWARE

Roscoe C. Ferguson, Hirain C. Thonzpson, United Space Alliance, LLC
Houstorz, Texas

Abstract I. Introduction
The purpose of the Space Shuttle Cockpit

Avionics Upgrade project was to reduce crew
workload and improve situational awareness. The
upgrade was to augment the Shuttle avionics system
with new hardware and software. An early version
of this system was used to gather human factor
statistics in the Space Shuttle Motion Simulator of
the Johnson Space Center for one month by
multiple teams of astronauts. The results were

- ~ ~ A ~ e a i t - -
was determined that the system provided a better
than expected increase in situational awareness and
reduction in crew workload. Even with all of the
benefits nf the system, NASA cance!!ed the project
towards the end of the development cycle.

A major success of this project was the
validation of the hardware architecture and software
design. This was significant because the project
incorporated new technology and approaches for
the development of human rated space software.
This paper serves as a case study to document
knowledge gained and techniques that can be
applied for future space avionics development
efforts. The major technological advances were the
use of reflective memory concepts for data
acquisition and the incorporation of Commercial off
the Shelf (COTS) products in a human rated space
avionics system. The infused COTS products
included a real time operating system, a resident
linker and loader, a display generation tool set, and
a network data manager. Some of the successful
design concepts were the engineering of identical
outputs in multiple avionics boxes using an event
driven approach and inter-computer

The user interface of the Space Shuttle was
designed in the 1970's. The human factors of the
system did not evolve to meet those present in
today's modem cockpits of both commercial and
military aircraft. Even though the Space Shuttle
Program performed a successful effort to upgrade
the analog "steam gauges" into flat screen displays,
the approach for providing the core information
remained unchanged. The Cockpit Avionics
~~ade(GAU)pr~~-1~a-~-t~d&essthi~ssue.
NASA cancelled the project towards the end of the
development phase. However, before this event, a
successful early evaluation of the system (Figure 1)
was performed using multiple teams of astronauts
in the Space Shuttle Motion Simulator (SMS) of the
Johnson Space Center. The NASA Ames Research
Center compiled the results of the evaluation and
determined that the new system provided a
significant increase in situational awareness and
reduction in crew workload [I].

- -
communication, a reconfigurable data acquisition
engine, the use of dyiiailic IiilEiig at imtimz, aid Figure I. CAU Pre-SMS valuation'
the use of a dynamic bus bandwidth allocation
algorithm. Other significant experiences captured
were the use of prototyping to reduce risk, and the
correct balance between Object Oriented and
Functional based programming. ' Photo courtesy of Ronnie Montgomery

https://ntrs.nasa.gov/search.jsp?R=20070018256 2019-08-30T01:01:05+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10536784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The CAU project incorporated technology and
design approaches that will most likely be used to
implement the systems to support NASA's new
exploration vision. For technology, this includes the
use of COTS products, modern programming
languages, and modern hardware piatforins. For
design approaches, this includes the design of data
acquisition systems, bus profile management, and
multi-string systems. This paper provides a
synopsis of the major software design concepts
used in the CAU project. It also provides
information on the project's experience with using
COTS products and problems encountered using
new technology in a space man-rated project. It
concludes with suggestions and considerations for
frlture 2vicnics projects.

2. CAU Design Driver Overview
The user interface of the current Space S h u E -

system provides an enormous amount of data for
processing by the crew. The problem is that the
crew has to perform "data mining" to extract
information on system status and probiem
diagnosis. The core data is provided to the crew
using three CRT style display units to share over
100 available display formats. Each display format
generally provides data from a single avionics data
source. The Space Shuttle has multiple subsystems
that are controlled by software that can be executed
in up to five General Purpose Computers (GPCs) at
a single time. Furthermore, the software load can
vary across the set. The crew relies on heavy
training, memorization, ground support, and paper
lookups to process critical information.

The goal of the CAU project was to increase
the situational awareness of the crew by performing
the "data mining" to provide useful information on
a minimum number of displays. This was to be
implemented via the concept of data fusion. The
new system would provide single display formats
with information integrated from multiple sources.
The displays would include advanced logic to
provide concise summaries of the health and
condition of the spacecraft. Figure 2 shows the set
of control displays required to perform an on-orbit
burn maneuver using the existing user interface,
while Figure 3 shows the equivalent in the CAU
system.

Figure 2. On-Orbit Burn Maneuver ~ i s ~ l a ~ s *

The new system required the augmentation of
the existing system with new hardware and
software. The new hardware would include support
for data acquisition, commanding and a new fast
processing platfornl to process the data.

Figure 3. CAU On-Orbit Burn Maneuver
~ i s ~ l a ~ ~

Courtesy of Space Shuttle Cockpit Council

3. CAU Hardware Architecture
Overview

The CAU hardware architecture was driven by
the concept of data fusion. The GPC was to serve as
the primzq datlta sclurce. The preject war,ted to
obtain GPC data without perturbing the existing
architecture. The Shuttle architecture uses 1 Mb/s
Manchester encoded serial buses, which is referred
to as a Multiplexer Interface Adapter (MIA) bus, to
comnunicate between devices. The speed of the
MIA Bus was not adequate to provide the required
amount of data at a high rate. Also, the project
wanted to minimize the effect on the existing GPC
flight software. The ingenious insight was to use the
GPC facility support interface to acquire the data.
This interface provides access to the GPC local bus.
A solution was devised where the memory
transactions on the local bus would be snooped,
senalized, and transferred to a device creating a
reflective memory image of the GPC.

The project developed two hardware units to
augment the existing avionics system. These were
the Avionics Ground Equipment Serializer (AGES)
and the Command and Data Processor (CDP). The
AGES was the implementation of the device to
snoop the GPC memory transactions for the
formulation of reflective memory images. The CDP
was to replace the existing user interface computers,

The CDP was composed of the SP103S Single
Board Computer (SBC), the Deserializer Module
(DSM) board, Keyboard Input Output (KIO) board,
and the MIA Input Output (MIO) board. Each was
manufactured by Lockheed Martin - Owego.

The SP 103 S was to provide the core platform
for data processing. It was designed around the
PowerPC 7455 processor and provided external
interface support via UARTs and Ethernet.

The DSM reconstructed the transactions from
the AGES into GPC reflective memory images (1
Mbyte). There was a hardware channel to support a
reflective memory image for each of the five GPCs.
Each channel was equipped with ability to freeze
the r.o~tents of its reflective memory image using
trigger points based on address and memory
transaction type. This was used to provide the
ability to obtain homogenous data. FIFO's were
used to buffer incoming memory transactions while
the image was frozen.

The KIO provided for FLASH mass storage,
discrete interface support, keyboard interface
support, 22d 1553 bus interface support. The MI0
provided interface support to the 1 Mbls bus
system. In particular, support was provided for the
GPC comaiid iiiterface aiid f ~ r the snooping of
data on the Orbiter Instrumentation (GI) Bus. The
01 Bus was another source of information to be
used for data fusion.

The entire system (Figure 4) consisted of five
AGES and three CDPs. Each AGES unit was to be
connected to each of the CDPs via Fibre Channel.
CDP inter-computer communication was
established using the 1553 bus system. The 1553
bus system also connected the eleven
Multifunctional Display Units (MDUs) to the set of
three CDPs. The MDUS are the units used to
display information. Each CDP was also interfaced
, n - n T w r . r r o f p m a n t l f h p r ; P @ k M T n

interface.

This design provided for an architecture where
software executing in the SP 103 S could access data
from each GPC (via a PC1 Bus) and the 0 1 data
stream (via a VME Bus). This was necessary to
provide enhanced situational awareness using the
concept of data fusion.

Figure 4. Rev G Hardware Architecture

4. CAU Software Architecture
Overview

The software for the CAU system was
organized into three modes. These were Normal,
D&a Services, a3d Maintenmce Modes. Each mode
was a distinct set of software designed for a system
operational task based on criticality. Non-critical
software modes could be isolated to prevent
operational malknctions by the non-initialization of
hardware resources and the absence of its support
software modules. Normal Mode was to be used
during normal systems operation for all flight
phases. This mode had access to all data and bus
resources. It drove MDU displays and provided
commanding back to the GPCs. Data Services
Mode was to be used during orbit operations. It had
access to incoming data, but not the 1553 or Shuttle
1 Mb/s bus systems. It was to serve as a data sewer

- where system data would be sent over an btnernet
bus to a laptop computer with custom data
processing. Maintenance Mode was to be used to
perform software maintenance operations such as
load updates. It had no access to incoming data and
buses. This paper focuses on the design of the
software for Normal Mode. However, a significant
amount of Normal Mode software components were
reused to support the other modes.

Figure 4. Normal Mode Software Architecture

The Normal Mode (Figure 4) software was
composed of System Software (SSW), a COTS
RTOS, and applications. The system software was

organized into packages which each provided a
related area of management and services. The
packages were System Management, System
Control, Data Management, System Utilities, and
System Interface.

4.1 SS W Systein Management Package
The System Management package provided support
for initizlizztion, IrZ m~mgement, display
management, device management, health
management, and inter-computer communication
management (ICC). The CDP Initialization
provided the ability to initialize the CDP using
tables specifying software files to load and
initialization functions to invoke. It used the
dynamic loader and linker of the RTOS to provide
"DLL style" capability for the system. It also
performed operations wch as the invocation of
' 3 ~ c ~ ~ r n c e ~ ~ c ~ e
system errors caused by system interruption. The I 0
Management system provided the control of the
1553 and M U Bus transactions. This included the
mznagement of transrLitter and receiver
configurations, I 0 profiles (including the 1553
bandwidth management), and error processing.
Display Management provided support for the
control of active display formats, display
navigation, and the formulation of display output
buffers for transfer to the MDUs. Device
management provided support for keyboard
processing and MDU management. Keyboard
processing consisted of syntax checking and
support for command validation. MDU
management provided support for the control of
communication with the MDU devices. This
included heartbeat management and status
monitoring. Health management and error
processing was provided by the Health and System
Manager (HSM). This was a centralized entity that
responded to errors detected by software logic or
hardware exceptions. The response logic was
implemented as reconfigurable policy functions that
were associated with each defined error. The system
was configured using an external tool set. HSM also
had an active element that continuously checked for
problems as part of the idle task of the system. The
logic looked for problems such as runtime dynamic
memory allocation, remaining file storage capacity,
stack overflows. ICC management provided for the

packing, unpacking, and processing of inter-CDP
messages.

4.2 System Control Package
The Systerx Control Package provided for the

sequencing control of system operations. It was
composed of the Event Synchronization Manager,
Time Manager, and Process Control. The CDP was
designed to "cycle" based on 25 Fa peri~dic emnts
from the GPCs. The Event Synchronization
Manager was designed to sync to these events and
trigger CDP processing. It provided a platform that
was a hybrid between an executive and a
task-oriented system. The executive allowed for the
chaining of in order operations that was inefficient
to be performed using tasks. The majority of SSW
logic was invoked as functions by the executive.
The executive allowed for functions to be called 2t
mulT@lZC5fthi5-Hz cycle. i he Event
Synchronization Manager triggered the start of task
execution and the detection of overrun and deadline
violations. It used functions containing scheduling
algorithms provided by Process Control.

In essence, the external events seen by all
CDPs allowed the group to operate as a set in the
absence of a shared clock source. These events
where used to trigger the sending of ICC messages
between CDPs.

Time Management provided two primary
services. The first was to maintain the time source
used for CDP time operations. The other was to
serve as the event trigger to the Event Sync
Manager in the absence of GPCs. In this case, a
single CDP would assume the role as master and
would send a pulse over the 1553 Bus to the other
CDPs to trigger the start of their operations. The
master CDP used an internal 40 ms clock as the
periodic pulse signal.

4.3 Data Managenzeizt Package
The Data management Package provided for

the acquisition, processing, and distribution of data
for SSW and applications. The system was based
around the design of the database concept. There
was a database for each source of data. The
database provided an interface for data selection
and access. It also provided services to support

centralized data conversions, scaling, status
management, and reader-writer management.

The database for each source was populated by
a data acquisition entity. These were GPC, 01, and
application entities. The GPC data acquisition entity
was responsible for collecting data from the GPC
reflective memory images. It was composed of a
GPC State Machine and a data-crunching element.
The GPC State Machine was responsible for
tracking the state of configuration of the GPC
images using pattern recognition and configuration
of the DSM hardware. It was also responsible for
notifying the Event Synchronization Manager of
events received from the GPCs. The data-crunching
element was responsible for the movement and
parsing of data blocks into parameters for storage
into the database. The 0 1 data acquisition entity
was responsible for processing and parsing blocks

nfnT-reGeivedf1~m-theI4A4anag~.rApI.1ication--
were also allowed to serve as data sources to the
databases. This allowed for the sharing of data
between applications using a centralized database.

4.4 Systein Utilities Package
The System Utilities Package provided support

for system maintenance and logging operations.
Software updates provided the ability to apply small
patches to the system. Patches were to be applied to
the executables and data files stored in the file
system. A system reset would be required for the
activation of the updated software. The patched
files were to be applied using a COTS patch tool.
Data logging provided support for log files and
general file services. The log files were to be fixed
in size using to circular queue to manage
predictable files sizes. Also to be supported were
data dumps to support error analysis.

4.5 Systeitz Iizterface Package
The System Interface Package provided a set

of interfaces to be used by applications and ground
support for SSW services. For applications, this
included APIs for the access of data, error
management, keybozrd pr~cessing, and task
management. For ground support, it provided the
ability to send commands to be processed by the
CDP using uplink and ground interface processing.

4.6 Displays
Displays consisted of display formats and

associated logic used to provide information to the
crew on MDUs. The logic for displays was
organized into display computational units. These
units contained the algorithms to process data for
improved situational awareness. The display
formats and computational units were managed by
the Display Manager.

4.7 SIzuttle Abort Fliglzt Management
(SAFM)

The SAFM application was used to provide
on-board aborting monitoring capability to the
crew. This function was available to the crew via
gretx~d scpport only. h gencrz!, SLUM wcs 22

external display computational unit. The results of
its caiculati~ns were stored in the application --

database where it was accessed by displays for crew
presentation.

5. COTS For A Fast Start
The use of COTS by the CAU project provided

for a fast start to the development effort. COTS
products provided pre-packaged solutions to
complex systems coniponents. This saved
development time in regards to the CDP operating
system and display system.

5.1 Vx Works 5.4
VxWorks 5.4 was the COTS RTOS selected

for use by the CAU project. The Board Support
Package (BSP) was provided for the SP 103s SBC
by Lockheed Martin - Owego. The development
effort required for an operating system is a complex
and time-consuming task. Even more critical is a set
of supporting tools providing a development,
debugging, and analysis environment. These tools
were very valuable to the CAU development effort.
The most valuable used tools were VxSim (RTOS
simulator) and WindView (real time analysis tool).
VxSim allowed the development team to become
f ~ m i l i z with the product before the availability of
the hardware. It also allowed for the early start of
code development. WindView provided detailed
insight into the sequence of events that occurred
during system operation. In addition to the tools, the
project took advantage of the RTOS support

features. For example, the True Flash File System
(TFFS) and DOS FS 2.0 were used as the flash
management and file system of the flash mass
storage on the KIO hardware module.

VxWorks was selected during a product trade
study. There were over 100 choices to select from
in 2000. After notification of the intent to use a
COTS RTOS, the project was flooded with
information by vendors and their salesmen. To sift
through the available options, a trade study was
devised. The study and down select was
accomplished in three phases. The first phase was
to review the available literature and technical
information to eliminate the obvious vendors. This
lead to a second phase and the remaining vendors
were sent a list of technical and business filter
questions. The responses were evaluated and a
subset of vendors were interviewed and evaluated

i n p e r s o n _ F m m e r e ~ ~ ~ n d o -
for the final phase of the selection task. The purpose
of the final phase was to use the products of the two
vendors in a lab to develop an application. During
this phase, the project was a beta site for VxWorks
6.0, which provided the concept of Protection
Domains. VxWorks 6.0 was the initial selection, but
NASA preferred VxWorks 5.4 due to its long shelf
life. The RTOS selection was validated in a white
paper presented at the 2oth DASC by an
independent group [2].

5.2 RtPatch
RtPatch was the COTS product selected for

use to patch the CDP software. It was VxWorks
compatible and had a long shelf life in its use by
Microsoft products. The product was to be used in
the Software Updates component of Normal Mode
and in the Maintenance Mode software.

5.3 Network Data Delivery Service (NDDS)
NDDS was to be used as the protocol and

infrastructure for data transfer in Data Services
Mode. NDDS provides the PublisWSubscribe
protocol and hides the details of network
prc?gramning such rs Endim cnnsider~tions.

5.4 VAPS
VAPS was the display generation tool used by

the project to build the display representations. The

CAU project had over ninety displays and needed a
tool to facilitate the display development. The
CAU project began work with eNGENUITY,
formerly known as Virtual Prototypes Inc., of
Canada, to study the feasibility of integrating the
VAPS run-time layer int~ the legacy dis9!2y uunit
software design. eNGENUiTY had already beer,
working with NASA JSC in a different, but similar
capacity on a simulation project. The VAPS
product line was rnodifred about the time of the
CAU project to support limited menlory display
target systems. eNGENUITY added support to
their product line that allows the transfer of the
display representation over a bus to the display unit.
This assumes, and was so in our case, that the
system creating the data for display has more
processing and storage than the display device
itself. An artifact of the allocation of hardware
components in the system generallq. allows more
processingand storage to the co l lEEZ3 the data.
The CAU project used pre-existing display units
that couldn't be upgraded to new graphical
capabilities and additional memory due to cost and
impact to the critical path of the schedule.

The early analysis and prototyping effort
performed on the 1553 bus management proved to
be useful in knowing the limits of the amount of
detail that could be provided for a specific display.
The VAPS tool has many capabilities that can
exceed the capacity of older pre-existing display
units. A set of standards was created for building
displays that restricted the use of various
capabilities of the tool. The use of the tool and
adherence to the standards allowed the display
developer to focus on drawing the displays rather
than being aware of the graphical primitives
required at the target device. VAPS allows a
project to have a smaller set of skilled personnel
with knowledge of low-level graphics processing
due to the VAPS porting layer. The VAPS porting
layer tailors the VAPS graphics commands to the
primitives of the device. While the project did
experience difficulty with porting layer efficiency
combined with the performance of the graphics
controller, methods were devised that fit within
design of the porting layer and the performance
needs of the display. In terms of the CAU display
rate requirements and the ability to separate display
creation knowledge from low level device

processing, VAPS proved to be a success for the
CAU project.

6. Major Design Concepts For CAU
Flight Software

This section focuses oil useful design
techniques and concepts used for the CAU
software.

6.1 Reconfgurable Data Managetnent System
The CAU system was to rely on the processing

and usage of large amounts of data. Therefore, a
design was required to manage and manipulate this
data. The best approach was to use databases vs. the
traditional use of structures.

Flexibility was the key design factor for Data
n / l a n a g e m e n t T h e h e p ~ ~ t o i m . i z e _ t h n e e d L
for system compilations due to changes in
application data requirements. The result was the
design of a table driven system with a flexible user
interface. To create a flexible user interface, the
database was design to store simple data types.
Each database entry was a union that could
represent any of the supported data types.
Applications were required to register for
parameters from the database. This decoupled
applications from SSW. The registration interface
encapsulated the hidden implementation and
provided type-checking support. There was also a
query interface where applications could access
parameter data from the database. The database also
provided a post and commit interface to be used by
data acquisition.

Tables were used to store information required
to support database and data acquisition operations.
The tables were tool generated. For data
acquisition, these tables were used to build Direct
Memory Access (DMA) tables during system
initialization and to provide rules for data collection
based on minor cycles. The tables were created in
separate modules from the database and data
acquisition modules. The two were combined
during system initialization using dynamic loading
and linking.

This design was invaluable as the project was
able to change applications, data requirements, and
data collection rules without the need for a system

recompile. The behavior of the Data Management
system could be changed by the update of the table
files.

6.2 Design For Identical Outputs
The goal of the CAU system was to increase,

not decrease situational awareness. It was a
requirement for the same display format driven by
separate CDPs to provide on-conflicting results in
the absence of error. This was the driver to create a
system that could produce identical display outputs.

The requirement of identical outputs was
achieved using an event driven technique. Each
CDP had access to the memory images of all GPCs.
The GPCs are tightly synced d . e to their
redunda~cy management scheme. Therefore, the
GPC events tracked by the CDPs would be
important - to the design.

In order for the CDP algorithms to produce
identical outputs, each CDP would have to first
produce identical data states. Next, each task would
have to start en the same cycle, acquire the same
input from the identical data states, and output the
results on the same cycle.

The Event Synchronization Manager was
designed to support identical outputs. To support
the generation of an identical data state across
CDPs, a latch was designed to wait for the
occurrence of events from multiple GPCs before
exit. The events were tied to data collection and
after latch exit, each CDP would have the same data
state. Database commits were performed by the
Event Synchronization Manager. The latch was
configurable and provided support for time out
detection.

To guarantee that tasks start execution on the
same cycle, the scheduling algorithms used the
major and minor cycle numbers from the GPCs. For
tasks across CDPs to acquire the same inputs and
perform outputs on the same cycle, processing was
divided between the context of the Event
Synchronization Manager and that task. Algorithm
processing to be perform at the task level was
separated into input, processing, and output
components. Input and output processing was
provided as callback functions to be invoked in the
context of the Event Synchronization Manager.
Processing was to be performed in the context of

the task. At the start of a cycle, the Event
Synchronization Manager would call all the output
functions for tasks scheduled to complete, followed
by all input functions for tasks schedule to start
execution. All tasks would then be "kicked off' to
start the pmcessing ef the i n p t d2t2. Te protect
against outputs occurring at different times across
CDPs, output hnctions were to be invoked N
number of cycles after task start by the Event
Synchronization Manager and not the task.

This concept was thoroughly tested using long
duration runs in NASA test facilities. The results
system was able to consistently produce identical
outputs.

The nature of the CDP architecture was that it
required symmetrical processing, but command and
control of certain devices was asymmetrical. The
ovmership of some of the devises in the system was
not 1ixedXhe crew had the ability to dynamically
change the ownership for power saving or failure
situations. System state had to be maintained and
integrity checked to successfully manage the
control of devices amongst the system and to
reconfigure owners of device amongst CDPs.

The start of the minor cycle processing would
first trigger an exchange of system state and any
commands that needed to be processed. For CDPs
to be symmetrical, this meant they needed to
process commands in a similar manner. Consistent
processing of configuration commands implies
symmetrical data state information. This is why
the state was exchanged between CDPs before the
minor cycle processing began.

The handover of bus resources within the
system was performed only at the request from the
user. The processing of the handover was a multi-
round exchange sequenced to preclude dual
ownership of a resource.

The system state was an important aspect that
supported the control of identical outputs to the
displays within the system. All CDPs controlled
their own display units, but the same display and
information could be brought up on a display unit
owned by another CDPs. The state, processing, and
activation of processing associated with a display
was kept common.

One of the system needs requested by the user
was the ability to cross-check of information that

was being entered on a display using the
commander or pilot keyboard. This crosscheck
extended to the actual keystrokes entered from one
display being visible on the same display in the
cockpit either already visible or requested. The
keystrekes were visible to the ether crew member
until the termination key in the sequence was
pressed. The common and cross-checked system
state allowed asymmetrical data to be display in a
coinion, symmetrical iilamer.

6.3 1553 Dyizaiizic Bandwidth Algorithm
An early observation was that the system was

I/0 bound in relation to data needs of the graphical
displays, the bus speed to the display units, points at
which VO could be dispatched, and modifications
by the COTS display tool vendor to send the
display definition dynamically instead having each

~ % $ a f l a t i e d ~ ~ m e r p f t h r e $ i s p ~ z ~ -
unit. Early analysis and prototyping analyzed the
overhead of the components and found the
maximum window for VO to the display units and
the other CDPs. creztive method had to be found
to optimize the window for VO to the display units
while still maintaining completion points to
exchange I/O to other CDPs. A display unit's
needs were context sensitive based on flight phase,
type of display being displayed, and other on-
demand factors. A range of displays could be
requested one or all of the eleven display units at
any time. It told us there is variability within the
demand needs. This variability is the very fact that
found the dynamic management of the I/O in the
display unit window.

The goal of the dynamic bandwidth algorithm
is to maximize the display unit allocation. The
algorithm conceptually follows a free space
resource management approach. The algorithm is
also sensitive to device starvation. To achieve this
the dynamic bandwidth is comprised of a
guaranteed space allocation to a group of devices
and a free space allocation. The dynamic
bandwidth logic can also be thought of in terms of
first and second pass type processing. The design
also allowed for certain types of I/O transactions io
be interrupted. Integrating data intensive graphical
displays with a legacy 1 MBIsecond MIL-STD-
1553 bus in not an optimal solution.

Many aspects of I/O design follow a bottom up
design since the designer is presented with a set of
known devices and bus capabilities with a set of
needs based on the desires and goals of the system.
It is the rates at which certain processing can be
achieved that are traded in the repiremeats zad
design process. The buses to the &splzy cnits alse
served as the communication bus to the other CDPs.
Since the CDPs operated as a coupled set and the
bus used for output to the display units was the
same bus needed for exchange of data to the other
CDPs, this meant the bus had to be free at the start
of each minor cycle for transmission of the fixed
exchange data. This meant the processing points of
the system became the deadlines. The display unit
data needs had different transport lag requirements
based critical need factors. Transport lag is the time
from request of some event until the end result of
the eveat has been coqleted. The needs of the bzta
and the control commands to the display units
formed the prioritization of the types of 110
transactions.

Built into the algorithm is the exact amount of
I/O data that can be sent within a window of time to
a range of devices. It accounts for the protocol
overhead associated with the transmission. The
algorithm has two components that are a guaranteed
and free space allocation. The guaranteed
allocation insures device starvation does not occur.
The guaranteed allocation is a result of static
analysis of the number of devices and the window
for the I/O transmission. The amount of time that a
device didn't use out of its guaranteed allocation
was placed in a free space pool. At the end of
processing of the gaai-anteed space alillocation, the
free space pool is utilized to allow transmission of
the remaining time on the bus.

To aid in the use of the guaranteed space and
to support the free space management, every type of
I/O need was categorized by priority. For the free
space, its allocation is based on a priority that is a
combination of priority of the transaction and the
device. This technique for the CAU project proved
to be a success in management of large amounts of
data with various transport lag requirements using a
relative slow speed bus in terms data hungry
devices.

7. Software Project Hurdles
Every large software project encounters

challenges during the development effort. This
trend was no different for the CAU project.

7.1 Lack ofMeraory Protectiolz
By default, VxWorks 5.4 provides a flat

address space for its kernel and applications. The
CAU project used this default configuration and
encountered major problems with memory
corruption.

The project expended a fair amount of time
tracking down system problems mostly due to the
misuse of pointers and memcpy commands. The
advent of special tools and special code audits were
used to alleviate this problem. The use of a
protection domain system such as VxWorks 6.0

-- w-o~vebe&HValua'o~-Pnin~g-t~-tim-

expended tracking down these problems.

7.2 Use of COTS
COTS products were beneficial to the

development effort of the CAU project, however
issues did exist. First, COTS products are not
without error. The project encountered "bugs" in
the compiler, VxWorks, and the VxWorks board
support package during the development phase.
Some of the bugs had existing fixes, some fixes
were pending, and some needed to be fixed. In each
case, the project was dependent on the vendor for
the fixes. The same was true for some of the other
COTS products. Next, COTS products are generally
not intended to be changed, and this was a
challenge for the project. The CAU's augmentztion
of the legacy Shuttle system with new technology
required some custom techniques and the need for
insight into the design of the products. A lot of
development time was spent working with and
around this issue.

7.3 V O Bottlerzecks
The PowerPC7455 Processor of the SP103S

SBC was connected to its primary data source (GPC
Reflective Memory Images) via a 32 bit, 30MHz
Peripheral Component Interconnect (PCI) Bus.
Unfortunately, this same bus was used to interface
the processor to all available external devices. The

result was a performance degregration due to I 0
bottlenecks.

The processor had complete access to all the
memory of each GPC. However, that access was
expensive because the images were not located in
memory local to the processor. Direct access of
large blocks of data from the images increased the
processor duty cycle to 60% and over (for data
inovenlent only), so DMA was used to niove these
blocks into local memory before processing. This
regained processor utilization, but the system was
still affected by the time required to move the data
before processing. The solution was to resort to
compromises in the use of GPC data and to perform
PC1 Bus load balancing. Even with these
compromises, there were performance problems
due to the occurrence VG transai;iioas dur-iag DTSIA.
The memory controller would stall the processor,
_thURinflaf jngdevicedriveun&inlandpLsemke- --
routine times from microseconds to milliseconds.
The solution was to use the DMA startlstop
capability of the memory controller to halt DMA
operation when I/O transactions were requested.
DMA operation was resumed after completion of
each I/0 transaction. This starthtop mechanism was
embedded in each I/O device driver and the
VxWorks interrupt handler of the board support
package.

7.4 Object Oriented (00) Programrizirzg
It was found that software components

utilizing all be benefits of 00 programming had the
worst performance. Several components had to be
redesigned and rewritten to fix this problem. Instead
of using factories and patterns, the best practice was
to use the concept of encapsulation for design
partitioning and limited inheritance. This was
especially important for code segments with a high
frequency of execution.

7.5 Corzcurrerzt Erzgineerirzg
Simultaneously designing and developing

components with dependencies lead to a lot of
fmstration and !nst time. There were several design
changes in SSW that had a ripple effect on
applications. In some cases, hundreds of modules
had to be opened and changed due to simple
changes in SSW design philosophy and interfaces.

8. Design By Evolution Or Spiral
Prototyping

invaluable to success of producing a working
system.

At the start of the CAU project, there was great
concern over the feasibility of building such a
complex system. However, the use of prototyping
was essential to buying down the risk of the most
complicated system design concepts. Using this
technique, the project provided mature design
concepts as input fer requirements ge~eration. Also,
system problems were discovered early in the
development phase and were resolved. An
unexpected effect was the increase in employee
moral. Team members were delighted to see paper
concepts working the labs.

The preject skirted the prototy.?jing effort as
ei:rly as 1999. The first prototpe wzs the use of z
GPC emulator to prototype GPC data collection and
storage using reflective memory. Both the GPC -

emulator and CAU prototyped were located in a
Unix workstation. The next prototype evolved to
using the GPC emulator to provide GPC memory
image data over the Ethernet to a PowerPC SBC
executing the prototype CAU code driving displays
on a real MDU. In this same prototype, experiments
were performed using technology unrelated to the
project. The prototype incorporated machine
learning technology that was able to learn the task
of an existing Shuttle software conlponent and
produce identical results in a side by side
comparison during runtime. It also used a text-to-
speech converter to provide an example of speech
synthesis. The next prototype was performed using
CDP-proto units acquiring data from real GPCs that
published data using NDDS to laptops for VAPS
displays. This test was performed in the NASA JSC
Avionics Engineering Laboratory (JAEL) at the
Johnson Space Center. The laptop displays were
compared side by side against legacy displays
executing on MDUs.

The prototyping effort evolved to a complete
CAU system executing in the JAEL. This is where
the design concepts for identical outputs and multi-
string were matured. Prototyping was also used to
estimate CPU duty cycle (single and multiple CPU
configurations) and 1553 bus loading.

9. Suggestions For Future Projects
The CAU effort can be considered to be a

pathf111der effort in regards to the development
effort of future hurnan-rated space software. The
most important suggestions are listed bellow.

Use prototyping to buy down risk and feed
requirements.

o Consider supports tools when evaluating
the selection of a COTS RTOS.

Minimize the modification of COTS
products. This task can be more difficult
than it appears.

o Create a System Software Framework
early to support concurrent engineering.

o Provide platform that provides memory
protection.

Analyze hardware designs early to look for
I 0 Bottlenecks in data intensive systems.

AcknowIedgments
The authors wish to thank Mark Lostracco,

Brian Watson and Wendy Wilkinson for their
support of this work.

References
[I] McCandless, Ph.D., Jeffrey W., September 30,
2004, Evaluation of the Space Shuttle Cockpit
Avionics Upgrade (CAU) Displays, Revision G,
Human-Automation Integration Research Branch,
NASA Ames Research Center, p.3.

[2] Morris, A. Terry, Peter A. Beling, Space Shuttle
RTOS Bayesian Network, 2oth Digital Avionics
Systems Conference Proceedings, Section 4.

24th Digital Avionics Systenzs Colzfererzce
October 30,2005

The CAU early prototyping effort can be
considered to be a precursor to NASA's plan to use
Simulation Based Acquisition. This technique was

