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Abstract I. Introduction 
The purpose of the Space Shuttle Cockpit 

Avionics Upgrade project was to reduce crew 
workload and improve situational awareness. The 
upgrade was to augment the Shuttle avionics system 
with new hardware and software. An early version 
of this system was used to gather human factor 
statistics in the Space Shuttle Motion Simulator of 
the Johnson Space Center for one month by 
multiple teams of astronauts. The results were 
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was determined that the system provided a better 
than expected increase in situational awareness and 
reduction in crew workload. Even with all of the 
benefits nf the system, NASA cance!!ed the project 
towards the end of the development cycle. 

A major success of this project was the 
validation of the hardware architecture and software 
design. This was significant because the project 
incorporated new technology and approaches for 
the development of human rated space software. 
This paper serves as a case study to document 
knowledge gained and techniques that can be 
applied for future space avionics development 
efforts. The major technological advances were the 
use of reflective memory concepts for data 
acquisition and the incorporation of Commercial off 
the Shelf (COTS) products in a human rated space 
avionics system. The infused COTS products 
included a real time operating system, a resident 
linker and loader, a display generation tool set, and 
a network data manager. Some of the successful 
design concepts were the engineering of identical 
outputs in multiple avionics boxes using an event 
driven approach and inter-computer 

The user interface of the Space Shuttle was 
designed in the 1970's. The human factors of the 
system did not evolve to meet those present in 
today's modem cockpits of both commercial and 
military aircraft. Even though the Space Shuttle 
Program performed a successful effort to upgrade 
the analog "steam gauges" into flat screen displays, 
the approach for providing the core information 
remained unchanged. The Cockpit Avionics 
~~ade(GAU)pr~~-1~a-~-t~d&essthi~ssue. 
NASA cancelled the project towards the end of the 
development phase. However, before this event, a 
successful early evaluation of the system (Figure 1) 
was performed using multiple teams of astronauts 
in the Space Shuttle Motion Simulator (SMS) of the 
Johnson Space Center. The NASA Ames Research 
Center compiled the results of the evaluation and 
determined that the new system provided a 
significant increase in situational awareness and 
reduction in crew workload [I]. 

- -  
communication, a reconfigurable data acquisition 
engine, the use of dyiiailic IiilEiig at imtimz, aid Figure I. CAU Pre-SMS  valuation' 
the use of a dynamic bus bandwidth allocation 
algorithm. Other significant experiences captured 
were the use of prototyping to reduce risk, and the 
correct balance between Object Oriented and 
Functional based programming. ' Photo courtesy of Ronnie Montgomery 
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The CAU project incorporated technology and 
design approaches that will most likely be used to 
implement the systems to support NASA's new 
exploration vision. For technology, this includes the 
use of COTS products, modern programming 
languages, and modern hardware piatforins. For 
design approaches, this includes the design of data 
acquisition systems, bus profile management, and 
multi-string systems. This paper provides a 
synopsis of the major software design concepts 
used in the CAU project. It also provides 
information on the project's experience with using 
COTS products and problems encountered using 
new technology in a space man-rated project. It 
concludes with suggestions and considerations for 
frlture 2vicnics projects. 

2. CAU Design Driver Overview 
The user interface of the current Space S h u E -  

system provides an enormous amount of data for 
processing by the crew. The problem is that the 
crew has to perform "data mining" to extract 
information on system status and probiem 
diagnosis. The core data is provided to the crew 
using three CRT style display units to share over 
100 available display formats. Each display format 
generally provides data from a single avionics data 
source. The Space Shuttle has multiple subsystems 
that are controlled by software that can be executed 
in up to five General Purpose Computers (GPCs) at 
a single time. Furthermore, the software load can 
vary across the set. The crew relies on heavy 
training, memorization, ground support, and paper 
lookups to process critical information. 

The goal of the CAU project was to increase 
the situational awareness of the crew by performing 
the "data mining" to provide useful information on 
a minimum number of displays. This was to be 
implemented via the concept of data fusion. The 
new system would provide single display formats 
with information integrated from multiple sources. 
The displays would include advanced logic to 
provide concise summaries of the health and 
condition of the spacecraft. Figure 2 shows the set 
of control displays required to perform an on-orbit 
burn maneuver using the existing user interface, 
while Figure 3 shows the equivalent in the CAU 
system. 

Figure 2. On-Orbit Burn Maneuver ~ i s ~ l a ~ s *  

The new system required the augmentation of 
the existing system with new hardware and 
software. The new hardware would include support 
for data acquisition, commanding and a new fast 
processing platfornl to process the data. 

Figure 3. CAU On-Orbit Burn Maneuver 
~ i s ~ l a ~ ~  

Courtesy of Space Shuttle Cockpit Council 



3. CAU Hardware Architecture 
Overview 

The CAU hardware architecture was driven by 
the concept of data fusion. The GPC was to serve as 
the primzq datlta sclurce. The preject war,ted to 
obtain GPC data without perturbing the existing 
architecture. The Shuttle architecture uses 1 Mb/s 
Manchester encoded serial buses, which is referred 
to as a Multiplexer Interface Adapter (MIA) bus, to 
comnunicate between devices. The speed of the 
MIA Bus was not adequate to provide the required 
amount of data at a high rate. Also, the project 
wanted to minimize the effect on the existing GPC 
flight software. The ingenious insight was to use the 
GPC facility support interface to acquire the data. 
This interface provides access to the GPC local bus. 
A solution was devised where the memory 
transactions on the local bus would be snooped, 
senalized, and transferred to a device creating a 
reflective memory image of the GPC. 

The project developed two hardware units to 
augment the existing avionics system. These were 
the Avionics Ground Equipment Serializer (AGES) 
and the Command and Data Processor (CDP). The 
AGES was the implementation of the device to 
snoop the GPC memory transactions for the 
formulation of reflective memory images. The CDP 
was to replace the existing user interface computers, 

The CDP was composed of the SP103S Single 
Board Computer (SBC), the Deserializer Module 
(DSM) board, Keyboard Input Output (KIO) board, 
and the MIA Input Output (MIO) board. Each was 
manufactured by Lockheed Martin - Owego. 

The SP 103 S was to provide the core platform 
for data processing. It was designed around the 
PowerPC 7455 processor and provided external 
interface support via UARTs and Ethernet. 

The DSM reconstructed the transactions from 
the AGES into GPC reflective memory images (1 
Mbyte). There was a hardware channel to support a 
reflective memory image for each of the five GPCs. 
Each channel was equipped with ability to freeze 
the r.o~tents of its reflective memory image using 
trigger points based on address and memory 
transaction type. This was used to provide the 
ability to obtain homogenous data. FIFO's were 
used to buffer incoming memory transactions while 
the image was frozen. 

The KIO provided for FLASH mass storage, 
discrete interface support, keyboard interface 
support, 22d 1553 bus interface support. The MI0 
provided interface support to the 1 Mbls bus 
system. In particular, support was provided for the 
GPC comaiid iiiterface aiid f ~ r  the snooping of 
data on the Orbiter Instrumentation (GI) Bus. The 
01 Bus was another source of information to be 
used for data fusion. 

The entire system (Figure 4) consisted of five 
AGES and three CDPs. Each AGES unit was to be 
connected to each of the CDPs via Fibre Channel. 
CDP inter-computer communication was 
established using the 1553 bus system. The 1553 
bus system also connected the eleven 
Multifunctional Display Units (MDUs) to the set of 
three CDPs. The MDUS are the units used to 
display information. Each CDP was also interfaced 
, n - n T w r . r r o f p m a n t l f h p r ; P @ k M T n  

interface. 

This design provided for an architecture where 
software executing in the SP 103 S could access data 
from each GPC (via a PC1 Bus) and the 0 1  data 
stream (via a VME Bus). This was necessary to 
provide enhanced situational awareness using the 
concept of data fusion. 

Figure 4. Rev G Hardware Architecture 



4. CAU Software Architecture 
Overview 

The software for the CAU system was 
organized into three modes. These were Normal, 
D&a Services, a3d Maintenmce Modes. Each mode 
was a distinct set of software designed for a system 
operational task based on criticality. Non-critical 
software modes could be isolated to prevent 
operational malknctions by the non-initialization of 
hardware resources and the absence of its support 
software modules. Normal Mode was to be used 
during normal systems operation for all flight 
phases. This mode had access to all data and bus 
resources. It drove MDU displays and provided 
commanding back to the GPCs. Data Services 
Mode was to be used during orbit operations. It had 
access to incoming data, but not the 1553 or Shuttle 
1 Mb/s bus systems. It was to serve as a data sewer 

- where system data would be sent over an btnernet 
bus to a laptop computer with custom data 
processing. Maintenance Mode was to be used to 
perform software maintenance operations such as 
load updates. It had no access to incoming data and 
buses. This paper focuses on the design of the 
software for Normal Mode. However, a significant 
amount of Normal Mode software components were 
reused to support the other modes. 

Figure 4. Normal Mode Software Architecture 

The Normal Mode (Figure 4) software was 
composed of System Software (SSW), a COTS 
RTOS, and applications. The system software was 

organized into packages which each provided a 
related area of management and services. The 
packages were System Management, System 
Control, Data Management, System Utilities, and 
System Interface. 

4.1 SS W Systein Management Package 
The System Management package provided support 
for initizlizztion, IrZ m~mgement, display 
management, device management, health 
management, and inter-computer communication 
management (ICC). The CDP Initialization 
provided the ability to initialize the CDP using 
tables specifying software files to load and 
initialization functions to invoke. It used the 
dynamic loader and linker of the RTOS to provide 
"DLL style" capability for the system. It also 
performed operations wch as the invocation of 
' 3 ~ c ~ ~ r n c e ~ ~ c ~ e  
system errors caused by system interruption. The I 0  
Management system provided the control of the 
1553 and M U  Bus transactions. This included the 
mznagement of transrLitter and receiver 
configurations, I 0  profiles (including the 1553 
bandwidth management), and error processing. 
Display Management provided support for the 
control of active display formats, display 
navigation, and the formulation of display output 
buffers for transfer to the MDUs. Device 
management provided support for keyboard 
processing and MDU management. Keyboard 
processing consisted of syntax checking and 
support for command validation. MDU 
management provided support for the control of 
communication with the MDU devices. This 
included heartbeat management and status 
monitoring. Health management and error 
processing was provided by the Health and System 
Manager (HSM). This was a centralized entity that 
responded to errors detected by software logic or 
hardware exceptions. The response logic was 
implemented as reconfigurable policy functions that 
were associated with each defined error. The system 
was configured using an external tool set. HSM also 
had an active element that continuously checked for 
problems as part of the idle task of the system. The 
logic looked for problems such as runtime dynamic 
memory allocation, remaining file storage capacity, 
stack overflows. ICC management provided for the 



packing, unpacking, and processing of inter-CDP 
messages. 

4.2 System Control Package 
The Systerx Control Package provided for the 

sequencing control of system operations. It was 
composed of the Event Synchronization Manager, 
Time Manager, and Process Control. The CDP was 
designed to "cycle" based on 25 Fa peri~dic emnts 
from the GPCs. The Event Synchronization 
Manager was designed to sync to these events and 
trigger CDP processing. It provided a platform that 
was a hybrid between an executive and a 
task-oriented system. The executive allowed for the 
chaining of in order operations that was inefficient 
to be performed using tasks. The majority of SSW 
logic was invoked as functions by the executive. 
The executive allowed for functions to be called 2t 
mulT@lZC5fthi5-Hz cycle. i he Event 
Synchronization Manager triggered the start of task 
execution and the detection of overrun and deadline 
violations. It used functions containing scheduling 
algorithms provided by Process Control. 

In essence, the external events seen by all 
CDPs allowed the group to operate as a set in the 
absence of a shared clock source. These events 
where used to trigger the sending of ICC messages 
between CDPs. 

Time Management provided two primary 
services. The first was to maintain the time source 
used for CDP time operations. The other was to 
serve as the event trigger to the Event Sync 
Manager in the absence of GPCs. In this case, a 
single CDP would assume the role as master and 
would send a pulse over the 1553 Bus to the other 
CDPs to trigger the start of their operations. The 
master CDP used an internal 40 ms clock as the 
periodic pulse signal. 

4.3 Data Managenzeizt Package 
The Data management Package provided for 

the acquisition, processing, and distribution of data 
for SSW and applications. The system was based 
around the design of the database concept. There 
was a database for each source of data. The 
database provided an interface for data selection 
and access. It also provided services to support 

centralized data conversions, scaling, status 
management, and reader-writer management. 

The database for each source was populated by 
a data acquisition entity. These were GPC, 01, and 
application entities. The GPC data acquisition entity 
was responsible for collecting data from the GPC 
reflective memory images. It was composed of a 
GPC State Machine and a data-crunching element. 
The GPC State Machine was responsible for 
tracking the state of configuration of the GPC 
images using pattern recognition and configuration 
of the DSM hardware. It was also responsible for 
notifying the Event Synchronization Manager of 
events received from the GPCs. The data-crunching 
element was responsible for the movement and 
parsing of data blocks into parameters for storage 
into the database. The 0 1  data acquisition entity 
was responsible for processing and parsing blocks 

nfnT-reGeivedf1~m-theI4A4anag~.rApI.1ication-- 
were also allowed to serve as data sources to the 
databases. This allowed for the sharing of data 
between applications using a centralized database. 

4.4 Systein Utilities Package 
The System Utilities Package provided support 

for system maintenance and logging operations. 
Software updates provided the ability to apply small 
patches to the system. Patches were to be applied to 
the executables and data files stored in the file 
system. A system reset would be required for the 
activation of the updated software. The patched 
files were to be applied using a COTS patch tool. 
Data logging provided support for log files and 
general file services. The log files were to be fixed 
in size using to circular queue to manage 
predictable files sizes. Also to be supported were 
data dumps to support error analysis. 

4.5 Systeitz Iizterface Package 
The System Interface Package provided a set 

of interfaces to be used by applications and ground 
support for SSW services. For applications, this 
included APIs for the access of data, error 
management, keybozrd pr~cessing, and task 
management. For ground support, it provided the 
ability to send commands to be processed by the 
CDP using uplink and ground interface processing. 



4.6 Displays 
Displays consisted of display formats and 

associated logic used to provide information to the 
crew on MDUs. The logic for displays was 
organized into display computational units. These 
units contained the algorithms to process data for 
improved situational awareness. The display 
formats and computational units were managed by 
the Display Manager. 

4.7 SIzuttle Abort Fliglzt Management 
(SAFM) 

The SAFM application was used to provide 
on-board aborting monitoring capability to the 
crew. This function was available to the crew via 
gretx~d scpport only. h gencrz!, SLUM wcs 22 

external display computational unit. The results of 
its caiculati~ns were stored in the application -- 

database where it was accessed by displays for crew 
presentation. 

5. COTS For A Fast Start 
The use of COTS by the CAU project provided 

for a fast start to the development effort. COTS 
products provided pre-packaged solutions to 
complex systems coniponents. This saved 
development time in regards to the CDP operating 
system and display system. 

5.1 Vx Works 5.4 
VxWorks 5.4 was the COTS RTOS selected 

for use by the CAU project. The Board Support 
Package (BSP) was provided for the SP 103s SBC 
by Lockheed Martin - Owego. The development 
effort required for an operating system is a complex 
and time-consuming task. Even more critical is a set 
of supporting tools providing a development, 
debugging, and analysis environment. These tools 
were very valuable to the CAU development effort. 
The most valuable used tools were VxSim (RTOS 
simulator) and WindView (real time analysis tool). 
VxSim allowed the development team to become 
f ~ m i l i z  with the product before the availability of 
the hardware. It also allowed for the early start of 
code development. WindView provided detailed 
insight into the sequence of events that occurred 
during system operation. In addition to the tools, the 
project took advantage of the RTOS support 

features. For example, the True Flash File System 
(TFFS) and DOS FS 2.0 were used as the flash 
management and file system of the flash mass 
storage on the KIO hardware module. 

VxWorks was selected during a product trade 
study. There were over 100 choices to select from 
in 2000. After notification of the intent to use a 
COTS RTOS, the project was flooded with 
information by vendors and their salesmen. To sift 
through the available options, a trade study was 
devised. The study and down select was 
accomplished in three phases. The first phase was 
to review the available literature and technical 
information to eliminate the obvious vendors. This 
lead to a second phase and the remaining vendors 
were sent a list of technical and business filter 
questions. The responses were evaluated and a 
subset of vendors were interviewed and evaluated 
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for the final phase of the selection task. The purpose 
of the final phase was to use the products of the two 
vendors in a lab to develop an application. During 
this phase, the project was a beta site for VxWorks 
6.0, which provided the concept of Protection 
Domains. VxWorks 6.0 was the initial selection, but 
NASA preferred VxWorks 5.4 due to its long shelf 
life. The RTOS selection was validated in a white 
paper presented at the 2oth DASC by an 
independent group [2]. 

5.2 RtPatch 
RtPatch was the COTS product selected for 

use to patch the CDP software. It was VxWorks 
compatible and had a long shelf life in its use by 
Microsoft products. The product was to be used in 
the Software Updates component of Normal Mode 
and in the Maintenance Mode software. 

5.3 Network Data Delivery Service (NDDS) 
NDDS was to be used as the protocol and 

infrastructure for data transfer in Data Services 
Mode. NDDS provides the PublisWSubscribe 
protocol and hides the details of network 
prc?gramning such rs Endim cnnsider~tions. 

5.4 VAPS 
VAPS was the display generation tool used by 

the project to build the display representations. The 



CAU project had over ninety displays and needed a 
tool to facilitate the display development. The 
CAU project began work with eNGENUITY, 
formerly known as Virtual Prototypes Inc., of 
Canada, to study the feasibility of integrating the 
VAPS run-time layer int~ the legacy dis9!2y uunit 
software design. eNGENUiTY had already beer, 
working with NASA JSC in a different, but similar 
capacity on a simulation project. The VAPS 
product line was rnodifred about the time of the 
CAU project to support limited menlory display 
target systems. eNGENUITY added support to 
their product line that allows the transfer of the 
display representation over a bus to the display unit. 
This assumes, and was so in our case, that the 
system creating the data for display has more 
processing and storage than the display device 
itself. An artifact of the allocation of hardware 
components in the system generallq. allows more 
processingand storage to the co l lEEZ3  the data. 
The CAU project used pre-existing display units 
that couldn't be upgraded to new graphical 
capabilities and additional memory due to cost and 
impact to the critical path of the schedule. 

The early analysis and prototyping effort 
performed on the 1553 bus management proved to 
be useful in knowing the limits of the amount of 
detail that could be provided for a specific display. 
The VAPS tool has many capabilities that can 
exceed the capacity of older pre-existing display 
units. A set of standards was created for building 
displays that restricted the use of various 
capabilities of the tool. The use of the tool and 
adherence to the standards allowed the display 
developer to focus on drawing the displays rather 
than being aware of the graphical primitives 
required at the target device. VAPS allows a 
project to have a smaller set of skilled personnel 
with knowledge of low-level graphics processing 
due to the VAPS porting layer. The VAPS porting 
layer tailors the VAPS graphics commands to the 
primitives of the device. While the project did 
experience difficulty with porting layer efficiency 
combined with the performance of the graphics 
controller, methods were devised that fit within 
design of the porting layer and the performance 
needs of the display. In terms of the CAU display 
rate requirements and the ability to separate display 
creation knowledge from low level device 

processing, VAPS proved to be a success for the 
CAU project. 

6. Major Design Concepts For CAU 
Flight Software 

This section focuses oil useful design 
techniques and concepts used for the CAU 
software. 

6.1 Reconfgurable Data Managetnent System 
The CAU system was to rely on the processing 

and usage of large amounts of data. Therefore, a 
design was required to manage and manipulate this 
data. The best approach was to use databases vs. the 
traditional use of structures. 

Flexibility was the key design factor for Data 
n / l a n a g e m e n t T h e h e p ~ ~ t o i m . i z e _ t h n e e d L  
for system compilations due to changes in 
application data requirements. The result was the 
design of a table driven system with a flexible user 
interface. To create a flexible user interface, the 
database was design to store simple data types. 
Each database entry was a union that could 
represent any of the supported data types. 
Applications were required to register for 
parameters from the database. This decoupled 
applications from SSW. The registration interface 
encapsulated the hidden implementation and 
provided type-checking support. There was also a 
query interface where applications could access 
parameter data from the database. The database also 
provided a post and commit interface to be used by 
data acquisition. 

Tables were used to store information required 
to support database and data acquisition operations. 
The tables were tool generated. For data 
acquisition, these tables were used to build Direct 
Memory Access (DMA) tables during system 
initialization and to provide rules for data collection 
based on minor cycles. The tables were created in 
separate modules from the database and data 
acquisition modules. The two were combined 
during system initialization using dynamic loading 
and linking. 

This design was invaluable as the project was 
able to change applications, data requirements, and 
data collection rules without the need for a system 



recompile. The behavior of the Data Management 
system could be changed by the update of the table 
files. 

6.2 Design For Identical Outputs 
The goal of the CAU system was to increase, 

not decrease situational awareness. It was a 
requirement for the same display format driven by 
separate CDPs to provide  on-conflicting results in 
the absence of error. This was the driver to create a 
system that could produce identical display outputs. 

The requirement of identical outputs was 
achieved using an event driven technique. Each 
CDP had access to the memory images of all GPCs. 
The GPCs are tightly synced d . e  to their 
redunda~cy management scheme. Therefore, the 
GPC events tracked by the CDPs would be 
important - to the design. 

In order for the CDP algorithms to produce 
identical outputs, each CDP would have to first 
produce identical data states. Next, each task would 
have to start en the same cycle, acquire the same 
input from the identical data states, and output the 
results on the same cycle. 

The Event Synchronization Manager was 
designed to support identical outputs. To support 
the generation of an identical data state across 
CDPs, a latch was designed to wait for the 
occurrence of events from multiple GPCs before 
exit. The events were tied to data collection and 
after latch exit, each CDP would have the same data 
state. Database commits were performed by the 
Event Synchronization Manager. The latch was 
configurable and provided support for time out 
detection. 

To guarantee that tasks start execution on the 
same cycle, the scheduling algorithms used the 
major and minor cycle numbers from the GPCs. For 
tasks across CDPs to acquire the same inputs and 
perform outputs on the same cycle, processing was 
divided between the context of the Event 
Synchronization Manager and that task. Algorithm 
processing to be perform at the task level was 
separated into input, processing, and output 
components. Input and output processing was 
provided as callback functions to be invoked in the 
context of the Event Synchronization Manager. 
Processing was to be performed in the context of 

the task. At the start of a cycle, the Event 
Synchronization Manager would call all the output 
functions for tasks scheduled to complete, followed 
by all input functions for tasks schedule to start 
execution. All tasks would then be "kicked off' to 
start the pmcessing ef the i n p t  d2t2. Te protect 
against outputs occurring at different times across 
CDPs, output hnctions were to be invoked N 
number of cycles after task start by the Event 
Synchronization Manager and not the task. 

This concept was thoroughly tested using long 
duration runs in NASA test facilities. The results 
system was able to consistently produce identical 
outputs. 

The nature of the CDP architecture was that it 
required symmetrical processing, but command and 
control of certain devices was asymmetrical. The 
ovmership of some of the devises in the system was 
not 1ixedXhe crew had the ability to dynamically 
change the ownership for power saving or failure 
situations. System state had to be maintained and 
integrity checked to successfully manage the 
control of devices amongst the system and to 
reconfigure owners of device amongst CDPs. 

The start of the minor cycle processing would 
first trigger an exchange of system state and any 
commands that needed to be processed. For CDPs 
to be symmetrical, this meant they needed to 
process commands in a similar manner. Consistent 
processing of configuration commands implies 
symmetrical data state information. This is why 
the state was exchanged between CDPs before the 
minor cycle processing began. 

The handover of bus resources within the 
system was performed only at the request from the 
user. The processing of the handover was a multi- 
round exchange sequenced to preclude dual 
ownership of a resource. 

The system state was an important aspect that 
supported the control of identical outputs to the 
displays within the system. All CDPs controlled 
their own display units, but the same display and 
information could be brought up on a display unit 
owned by another CDPs. The state, processing, and 
activation of processing associated with a display 
was kept common. 

One of the system needs requested by the user 
was the ability to cross-check of information that 



was being entered on a display using the 
commander or pilot keyboard. This crosscheck 
extended to the actual keystrokes entered from one 
display being visible on the same display in the 
cockpit either already visible or requested. The 
keystrekes were visible to the ether crew member 
until the termination key in the sequence was 
pressed. The common and cross-checked system 
state allowed asymmetrical data to be display in a 
coinion, symmetrical iilamer. 

6.3 1553 Dyizaiizic Bandwidth Algorithm 
An early observation was that the system was 

I/0 bound in relation to data needs of the graphical 
displays, the bus speed to the display units, points at 
which VO could be dispatched, and modifications 
by the COTS display tool vendor to send the 
display definition dynamically instead having each 
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unit. Early analysis and prototyping analyzed the 
overhead of the components and found the 
maximum window for VO to the display units and 
the other CDPs. creztive method had to be found 
to optimize the window for VO to the display units 
while still maintaining completion points to 
exchange I/O to other CDPs. A display unit's 
needs were context sensitive based on flight phase, 
type of display being displayed, and other on- 
demand factors. A range of displays could be 
requested one or all of the eleven display units at 
any time. It told us there is variability within the 
demand needs. This variability is the very fact that 
found the dynamic management of the I/O in the 
display unit window. 

The goal of the dynamic bandwidth algorithm 
is to maximize the display unit allocation. The 
algorithm conceptually follows a free space 
resource management approach. The algorithm is 
also sensitive to device starvation. To achieve this 
the dynamic bandwidth is comprised of a 
guaranteed space allocation to a group of devices 
and a free space allocation. The dynamic 
bandwidth logic can also be thought of in terms of 
first and second pass type processing. The design 
also allowed for certain types of I/O transactions io 
be interrupted. Integrating data intensive graphical 
displays with a legacy 1 MBIsecond MIL-STD- 
1553 bus in not an optimal solution. 

Many aspects of I/O design follow a bottom up 
design since the designer is presented with a set of 
known devices and bus capabilities with a set of 
needs based on the desires and goals of the system. 
It is the rates at which certain processing can be 
achieved that are traded in the repiremeats zad 
design process. The buses to the &splzy cnits alse 
served as the communication bus to the other CDPs. 
Since the CDPs operated as a coupled set and the 
bus used for output to the display units was the 
same bus needed for exchange of data to the other 
CDPs, this meant the bus had to be free at the start 
of each minor cycle for transmission of the fixed 
exchange data. This meant the processing points of 
the system became the deadlines. The display unit 
data needs had different transport lag requirements 
based critical need factors. Transport lag is the time 
from request of some event until the end result of 
the eveat has been coqleted. The needs of the bzta 
and the control commands to the display units 
formed the prioritization of the types of 110 
transactions. 

Built into the algorithm is the exact amount of 
I/O data that can be sent within a window of time to 
a range of devices. It accounts for the protocol 
overhead associated with the transmission. The 
algorithm has two components that are a guaranteed 
and free space allocation. The guaranteed 
allocation insures device starvation does not occur. 
The guaranteed allocation is a result of static 
analysis of the number of devices and the window 
for the I/O transmission. The amount of time that a 
device didn't use out of its guaranteed allocation 
was placed in a free space pool. At the end of 
processing of the gaai-anteed space alillocation, the 
free space pool is utilized to allow transmission of 
the remaining time on the bus. 

To aid in the use of the guaranteed space and 
to support the free space management, every type of 
I/O need was categorized by priority. For the free 
space, its allocation is based on a priority that is a 
combination of priority of the transaction and the 
device. This technique for the CAU project proved 
to be a success in management of large amounts of 
data with various transport lag requirements using a 
relative slow speed bus in terms data hungry 
devices. 



7. Software Project Hurdles 
Every large software project encounters 

challenges during the development effort. This 
trend was no different for the CAU project. 

7.1 Lack ofMeraory Protectiolz 
By default, VxWorks 5.4 provides a flat 

address space for its kernel and applications. The 
CAU project used this default configuration and 
encountered major problems with memory 
corruption. 

The project expended a fair amount of time 
tracking down system problems mostly due to the 
misuse of pointers and memcpy commands. The 
advent of special tools and special code audits were 
used to alleviate this problem. The use of a 
protection domain system such as VxWorks 6.0 
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expended tracking down these problems. 

7.2 Use of COTS 
COTS products were beneficial to the 

development effort of the CAU project, however 
issues did exist. First, COTS products are not 
without error. The project encountered "bugs" in 
the compiler, VxWorks, and the VxWorks board 
support package during the development phase. 
Some of the bugs had existing fixes, some fixes 
were pending, and some needed to be fixed. In each 
case, the project was dependent on the vendor for 
the fixes. The same was true for some of the other 
COTS products. Next, COTS products are generally 
not intended to be changed, and this was a 
challenge for the project. The CAU's augmentztion 
of the legacy Shuttle system with new technology 
required some custom techniques and the need for 
insight into the design of the products. A lot of 
development time was spent working with and 
around this issue. 

7.3 V O  Bottlerzecks 
The PowerPC7455 Processor of the SP103S 

SBC was connected to its primary data source (GPC 
Reflective Memory Images) via a 32 bit, 30MHz 
Peripheral Component Interconnect (PCI) Bus. 
Unfortunately, this same bus was used to interface 
the processor to all available external devices. The 

result was a performance degregration due to I 0  
bottlenecks. 

The processor had complete access to all the 
memory of each GPC. However, that access was 
expensive because the images were not located in 
memory local to the processor. Direct access of 
large blocks of data from the images increased the 
processor duty cycle to 60% and over (for data 
inovenlent only), so DMA was used to niove these 
blocks into local memory before processing. This 
regained processor utilization, but the system was 
still affected by the time required to move the data 
before processing. The solution was to resort to 
compromises in the use of GPC data and to perform 
PC1 Bus load balancing. Even with these 
compromises, there were performance problems 
due to the occurrence VG transai;iioas dur-iag DTSIA. 
The memory controller would stall the processor, 
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routine times from microseconds to milliseconds. 
The solution was to use the DMA startlstop 
capability of the memory controller to halt DMA 
operation when I/O transactions were requested. 
DMA operation was resumed after completion of 
each I/0 transaction. This starthtop mechanism was 
embedded in each I/O device driver and the 
VxWorks interrupt handler of the board support 
package. 

7.4 Object Oriented (00) Programrizirzg 
It was found that software components 

utilizing all be benefits of 00 programming had the 
worst performance. Several components had to be 
redesigned and rewritten to fix this problem. Instead 
of using factories and patterns, the best practice was 
to use the concept of encapsulation for design 
partitioning and limited inheritance. This was 
especially important for code segments with a high 
frequency of execution. 

7.5 Corzcurrerzt Erzgineerirzg 
Simultaneously designing and developing 

components with dependencies lead to a lot of 
fmstration and !nst time. There were several design 
changes in SSW that had a ripple effect on 
applications. In some cases, hundreds of modules 
had to be opened and changed due to simple 
changes in SSW design philosophy and interfaces. 



8. Design By Evolution Or Spiral 
Prototyping 

invaluable to success of producing a working 
system. 

At the start of the CAU project, there was great 
concern over the feasibility of building such a 
complex system. However, the use of prototyping 
was essential to buying down the risk of the most 
complicated system design concepts. Using this 
technique, the project provided mature design 
concepts as input fer requirements ge~eration. Also, 
system problems were discovered early in the 
development phase and were resolved. An 
unexpected effect was the increase in employee 
moral. Team members were delighted to see paper 
concepts working the labs. 

The preject skirted the prototy.?jing effort as 
ei:rly as 1999. The first prototpe wzs the use of z 
GPC emulator to prototype GPC data collection and 
storage using reflective memory. Both the GPC - 

emulator and CAU prototyped were located in a 
Unix workstation. The next prototype evolved to 
using the GPC emulator to provide GPC memory 
image data over the Ethernet to a PowerPC SBC 
executing the prototype CAU code driving displays 
on a real MDU. In this same prototype, experiments 
were performed using technology unrelated to the 
project. The prototype incorporated machine 
learning technology that was able to learn the task 
of an existing Shuttle software conlponent and 
produce identical results in a side by side 
comparison during runtime. It also used a text-to- 
speech converter to provide an example of speech 
synthesis. The next prototype was performed using 
CDP-proto units acquiring data from real GPCs that 
published data using NDDS to laptops for VAPS 
displays. This test was performed in the NASA JSC 
Avionics Engineering Laboratory (JAEL) at the 
Johnson Space Center. The laptop displays were 
compared side by side against legacy displays 
executing on MDUs. 

The prototyping effort evolved to a complete 
CAU system executing in the JAEL. This is where 
the design concepts for identical outputs and multi- 
string were matured. Prototyping was also used to 
estimate CPU duty cycle (single and multiple CPU 
configurations) and 1553 bus loading. 

9. Suggestions For Future Projects 
The CAU effort can be considered to be a 

pathf111der effort in regards to the development 
effort of future hurnan-rated space software. The 
most important suggestions are listed bellow. 

Use prototyping to buy down risk and feed 
requirements. 

o Consider supports tools when evaluating 
the selection of a COTS RTOS. 

Minimize the modification of COTS 
products. This task can be more difficult 
than it appears. 

o Create a System Software Framework 
early to support concurrent engineering. 

o Provide platform that provides memory 
protection. 

Analyze hardware designs early to look for 
I 0  Bottlenecks in data intensive systems. 
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The CAU early prototyping effort can be 
considered to be a precursor to NASA's plan to use 
Simulation Based Acquisition. This technique was 


