
Source of Acquisition
NASA Johnson Space Center

NASA's SOFTWARE SAFETY STANDARD

Christopher M. Ramsay

NASA, Johnson Space Center, Space Slzuttle Safety Division, 2101 NASA Parkway, Houston, TX, USA
Entail: Cl~ristophel:m.rarnsal,Olzasa~,_eo~~

ABSTRACT

NASA (National Aeronautics and Space
Administration) relies more and more on software to
control, monitor, and verify its safety critical systems,
facilities and operations. Since the 1960's there has
hardly been a spacecraft (manned or unmanned)
launched that did not have a computer on board that
provided vital command and control services.

Despite this growing dependence on software control
and monitoring, there has been no consistent application
of software safeu~actic_es-andLmethodology_topp -- --

NASA's pxojects with safety critical software. - -- -- -- --

Led by the NASA Headquarters Office of Safety and
Mission Assurance, the NASA Software Safety
Standard (STD-18 l9.13B) has recently undergone a
significant update in an attempt to provide that
consistent y.

This paper will discuss the key features of the new
NASA Software Safety Standard. It will start with a
brief history of the use and development of software in
safety critical applications at NASA. It will then give a
brief overview of the NASA Software Working Group
and the approach it took to revise the software
engineering process across the Agency.

1. A HISTORY OF SOFTWARE SAFETY
AT NASA

Despite a growing dependence on software control and
monitoring, until recently there has been little to no
consistent application of standardized, Agency-wide,
software safety practices and methodology to projects
with safety critical software. NASA was formed in
October of 1958 by legislation that, among other things,
converted laboratories and facilities belonging to the
previously exiting NACA (National Advisory Council
on Aeronautics) over to NASA. These laboratories had
a long history of conducting their own research and
engineering practices, with little or no supervision fiom
a centralized "headquarters" authority.

The Apollo Program used its onboard software and
computers as the primary method for performing the
critical rendezvous in lunar orbit, which was absolutely
necessary to get the crew back to earth. (This served as
a driver for the development of microprocessors that
would fit within the small Apollo spacecraft.) However,

the ground software, as well as the crew onboard served
to back up the onboard computations. In fact,
procedures existed to completely return to earth without
the onboard computer. The rapid development cycle of
Apollo also meant that much of the management for
Apollo was at the "center" level. This did not allow for
any real standardization across the Agency on software
creation. In fact, it tended to centralize the expertise for
producing such software within a select group of
engineers and contractors. This led to a view of the
software as a system within itself, rather than a part of
the much larger Apollo system.

Asthe-Shuttle-Program came-into-existence, the role of
software greatly increased, along with its complexity.
Given the extreme aerodynamic environments in whch
the Crbiter is reqti-ed to fly (from Mach 25 tit 4400,406 fi
to a glided touchdown), it became the first true "fly-by-
wire" vehicle designed (NOTE: Other "fly-by-wire"
vehicles were actually built and flown before the
Orbiter). The crew would make their inputs into the
software that would actually fly the vehicle. In the
ascent phase, the software would be in direct control of
the vehicle. Because of this, it was realized that the
software and computers would be directly responsible
for the safety of the vehicle.

The computer system for the shuttle was built with a
large amount of hardware redundancy. Not only were
there multiple computers to perform the same task, there
were multiple data paths to provide commanding to the
components. This concept of redundancy was also
applied, in a more limited sense, to the software, with
the development of a Primary Avionics Software
System (PASS) and a Backup Flight System (BFS). The
BFS was independently programmed by a totally
separate vendor using different requirements running on
the same platform. The concept was that this would
protect for a "generic software problem" in the primary
flight software.

Both of the Shuttle software systems were designed and
built under very tight requirements management, design
reviews, configuration control, and testing processes.
By the late 1970's similar processes had been used quite
successfully for the development of complex hardware
systems. Their rigorous application to software was
rather revolutionary for that timeframe. The
management of the Shuttle Program saw no reason why
they could not be used for the development of complex
software systems as well. This "process-driven"

https://ntrs.nasa.gov/search.jsp?R=20070018255 2019-08-30T01:01:03+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10536783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approach to the management of software worked quite
well for the shuttle. In fact the IBM flight software
organization was one of the first to achieve a CMM
Level 5 rating because of their excellent processes.
However, as with Apollo, there was no standardization
of these processes from the headquarters organization
for use across the Agency.

Meanwhile, academia and private industry started
stepping forward with procedures and standards for
safety critical systems and software. For example Dr.
Nancy Leveson's book Safovare: System Safety and
Computers, published in 1995, was one of the first to
recognize that software was a part of overall system
safety. Dr. Leveson's approach was to analyze the
system as a whole and determine what hazards were
either caused or mitigated by software. Specific
software requirements would then be developed to
mitigate or control these hazards. This would lead to a
traceability between the system hazard, and the

- - -- - - - - - - -

software requirement[s] that would control it. This
- - - - -- - - - - - -- - - - -- -

approach put software as part of a "top-down" system
safety analysis, thereby ensuring that it would not be
considered i11 isolation &om the other parts of the
system which it controlled and/or monitored.

The first NASA Software Safety Standard, (STD-
8719.13a) was published in 1997. This was the f ~ s t
NASA effort at a standardized methodology throughout
the Agency to look at software as a contributor to safety
at a "system" level. Unfortunately, this product was
widely ignored by the software development
organizations across the Agency. This was due to its
complexity and poor organization. It also focused on
concepts rather than definite procedural requirements
organized around a software project lifecycle.

2. THE SOFTWARE WORKING GROUP

In 2002, the Chief Engineer's Office at NASA
Headquarters chartered the Software Working Group
(SWG). With designated representatives located at each
center, its purpose "is to develop and oversee the
formulation and implementation of an Agency wide
plan to work toward continuous, sustained software
engineering process and product improvements in
NASA" [I]. Among its functions are to: "Establish
guidelines and requirements for the development of
software in NASA.", and to "ICecommend, draft as
requested, review, and promote software lifecycle
management, engineering, and
assurance.. . standards.. .to the Agency." [I]. This
charter made the NASA Chief Engineer, Chief
Information Officer, and the Associate Administrator of
Safety and Mission Assurance "responsible for jointly
promoting software policies, [and] standards.. .in their
respective areas of responsibility." [I] This Charter
provided the motivation and guidance for the complete

revision of the way that NASA developed and managed
its software programs, which included the NASA
Software Safety Standard. It also, for the first time in
NASA's history, put the development of software
strategy and procedures to the Headquarters level for
greater visibility and oversight.

In order to meet this challenge, the NASA Chief
Engineer's Office implemented the NASA Software
Engineering Initiative hnplenzentation Plan. This plan
created 4 "strategies" in order to meet the objectives of
the SWG [2]. These strategies address the major aspects
of software development and management at NASA.
"Strategy 2" has as its goals to "improve safety,
reliability, and quality of software through the
establishment and integration of sound software
engineering principles and sta~dards."[2] Given this
focus on "safety, reliability, and quality", it became
natural to see this strategy as "software assurance", and
to place it under the c
organization.

In order to meet the challenges of Strategy 2, the NASA
Office of Safety and Mission Assurance established the
Software Assurance Working Group (SAWG). The
SAWG is a sub-group of the SWG that focuses on the
challenges of the many disciplines related to software
assurance. These disciplines are best represented by the
"umbrella" concept shown in Fig. 1.

Software
Safety s.

Fig. 1 Software Assurance "Umbrella"

This figure shows the major sub-disciplines that are part
of software assurance and thus fall under strategy 2. As
can be seen, Software Safety falls under this umbrella of
assurance, and thus strategy 2 had the responsibility for
revising the software safety standard, as well as the
stadards for assEance, and engineering. To cover this
umbrella of differing disciplines, the SAWG established
a series of documents. These documents could be
arranged in a "tree" fashion. The higher documents on
the tree would be the ones that invoke the requirements
or procedures of the lower level documents.

The portion of this tree that pertains to the software
engineering and assurance processes is shown in Fig. 2.
The docun~ents with the "+"symbol (NOTE: NF'D =

NASA Program Directive, NPR = NASA Program
Requirement) are actually under the control of the
NASA Chief Engineer's Office. However, they directly
call out the "8700" series of documents that contain the
standards and procedures for "Safety- and Mission
Success". Ths shows the relationship established
between the engineering processes and safety and
mission assurance at the NASA Headquarters level.

PIIIQII + WFD 2320 l + FPDT1204

f ig . 2 NASA Safety aiid Mission Asr~irance
Requirements Tree (Partial) [3]

The structure of this tree would also seem to require that
the NPD's and NPR's be developed before the
standards. This was not the approach taken by Strategy
2. Instead, there was a parallel effort to develop the
standards and the higher level documents that invoked
them. In fact, the standards were completed before the
higher level documents.

3. DEVELOPMENT OF STD-8719.13B

In order to develop a new Software Safety Standard,
(STD-8719.13B) the leader of Strategy 2 pulled together
an Agency-Wide team of software safety experts.
Originally, there were representatives from each NASA
center on the team with a team leader. This team
established the objectives for the update, along with an
outline for the standard. These objectives were based on
what were seen as the major weaknesses of the existing
standard. In summary these were:

More clearly defme the requirements (i.e. the
"shalls") for the definition: creation; testing,
documentation, procurement, and operational use of
safety critical software within NASA.
Define personnel functioizs that are necessary to
manage a safety critical software project.

0 Bring the standard more in line with the current
philosophy and thinking of the software safety
community in the rest of government, academia, and
private industry.

Document the good practices that are currently being
performed, or should have beert peifornzed, by safety-
critical software projects across the Agency.

It was then decided that in order to write the actual text
of the standard the process would work much better if
the team was reduced to a "core" team of 4 members
that would actually put the standard together. The other
representatives would then be brought back for the later
stages of development of the standard to get consn~ellls
and "buy-in" from the software practitioners at their
respective centers.

During the development and approval, it was made clear
to the centers that t h s standard would be a "living
documenty' and could be expected to go through
significant revisions as the Agency learned more about
the development and use of software in safety critical
systems. Also, great care was taken to make sure that
the document would not conflict with any "local" (i.e.

--

Enter-specific) S t a T d a T d ~ c Z d u i s . This was done
bT?focusing o f ~ z a t ~ ~ r a t h e F thZn how tFdo-15-
These "how-to" questions would be deferred to an
accompanying software safety "guidebook".

4. MAJOR FEATURES OF THE UPDATE

The following sections of this paper will briefly discuss
the major features of the new standard. In summary
these are:

It was completely reorganized into a "requirements
based" document.
It clearly states what constitutes "safety critical
software".
Provides a clear set of organizational and personnel
responsibilities and functions that must be performed
for safety-critical software.
It spells out the linkage between software safety and
software assurance.
It contains requirements for "off-the-shelf' software
that is used in safety-critical applications.

In addition to the above, the new standard was
accompanied by a "tri-fold" brochure that contained
easy reference material for managers and practitioners
to implement the requirements of this standard.

5. SOFTWARE SAFETY PROCESS
OVERVIEW

As mentioned above, a major goal of the new standard
was produce a "requirements based" document. The
emphasis is on stating, by use of "numbered shall
statements", what nztlst be done for safety critical
software projects. This made the standard a process-
oriented document as compared to the previous version
of the standard which had a more philosophical

approach. Some introductory paragraphs included for
explanations and guidance at the start of each major
section.

At a high level, the software safety process required by
the standard breaks down as follows:

First of all, there is an analysis and determination of
software's contribution to the safety of the system. The
emphasis st this poiiit is on the entire systeq not jns:
the software. This then leads to the creation of software
safety requirements. These are created from system
Hazard Reports and other generic software and system
safety sources. The Standard further defines them as
"new, or . . . existing, software requirements necessary
to mitigate or resolve any hazards where software is a
potential cause or contributor, or enable software to be
used as a hazard control."[4] At this point, the project
needs to provide a traceability mechanism "between
software safety requirements and system hazards, as

- - - - - - --

- -d

well as trace thef low ao%ifXRiErFsafe?y
-

requirements toae~ign,- iKp1~bG&Zid-tSt .~"[5]

Analysis is required throughout all of the stages of the
software project's life cycle: Requirements, design,
implementation (coding), and test. A critical part of this
analysis activity is to provide a closed-loop feedback
between this analysis activity and the overall system
design. This is to ensure that any new system-level
hazards that may involved software are properly
mitigated.

As the software nears its operational phase, "there shall
be an official certification process established,
documented, and conducted prior to the release of any
safety-critical software for its intended operational use.
[and] Center Safety and Mission Assurance software
safety personnel shall participate in the certification
process." [6] All of these activities required by the
Standard shall be thoroughly documented. Additionally,
these activities "shall continue to be applicable after the
safety-critical software has been released for operations.
The software safety requirements to specify, develop,
analyze, and test safety-critical software, shall apply to
all changes made to the software or routine operational
updates (e.g., mission specific database updates)." [7]

Further, the standard makes it clear that all of the
requirements ~f the sta~dard will be implemented or
formally waived. It does provide a description of the
waiver process that can be followed if a project cannot
meet one or more of the requirements of the standard.
During the creation process for the standard, there was a
significant amount of discussion about allowing the
specific requirements of the standard to be "tailored" by
a project. The previous version of the standard had
allowed such tailoring of requirements. This led to the
perception that the standard lacked authority to be

enforced. Because of this, it was decided to address the
topic of tailoring at the very start of the standard. This is
what the standard says regarding tailoring:

"While the requirements of this Standard
cannot be tailored, the specific activities and
depth of analyses needed to meet the
requirements can, and should, be tailored to
the soffivai-e safety risk. That is, while the
requirements must be met, the implementation
and approach to meeting these requirements
may and should vary to reflect the system to
which they are applied. Substantial differences
may exist when the same software safety
requirements are applied to dissimilar
projects." (emphasis supplied by author) [8]

This means, for example, that small, low budget
projects (e.g. a payload on the Space Station) do not
need the same number of people to perform the tasks as
a much larger anddmOrecOm$e
Sot have thFresources to h E a
safety experts to perform the required analyses and
documentation. The standard makes clear that the
ficnction for the software safety personnel rather than the
title or position. To help project managers understand
this concept, an appendix was added to the standard
showing how a smaller project can meet the
requirements without "breaking the bank". As
mentioned earlier in this paper, the goal of the standard
was to focus on what to do rather than how to do it.

6 SAFETY-CRITICAL SOFTWARE
DETERMINATION

In order to ensure the new standard had the proper
application across the agency, there needed to be a
clear, comprehensive, and coordinated definition of
what constitutes safety critical software. To meet this
need, an entire section of the new standard is devoted to
"Safety Critical Software Determination". To start with,
the standard states, "Until proven otherwise ... all
software within a safety critical system shall be assumed
to be safety critical."[9] It then goes on to provide what
has been referred to within Strategy 2 as "software
safety litmus test":

"Software shall be classified as safety-critical if it meets
at least one of the fc!!cwing criteria:

a. Resides in a safety-critical system (as
determined by a hazard analysis) AND at least
one of the following apply:

1) Causes or contributes to a hazard.
2) Provides control or mitigahon for
hazards.
3) Controls safety-critical functions.

4) Processes safety-critical
commands or data
5) Detects and reports, or takes
corrective action, if the system
reaches a specific hazardous state.
6) Mitigates damage if a hazard
occurs.
7) Resides on the same system
(processor) as safety-critical software
(see note 4-2 below).

b. Processes data or analyzes trends that lead
directly to safety decisions (e.g., determining
when to turn power off to a wind tunnel to
prevent system destruction).
c. Provides full or partial verification or
validation of safety-critical systems, including
hardware or software subsystems."[l 01

In order to make sure this definition got the widest
possible visibility, Strategy 2 made this decision to

- -

incluiFZiEXi%EWare A s s ~ S t a n d i E d ~ c h i s
th? ~Ont~lilingaocument foi- a l 1 S O ~ c l ~ ~ f i o n S .

7 CONCLUSION

The volume of software produced and used at NASA is
enormous. Thus, the implementation of such a
comprehensive set of procedures and requirements will
not be an easy task. As of the writing of this paper,
NASA has just completed a "gap analysis" of its
software projects to see how much in (or out of)
compliance they are with these requirements. Also,
NASA has decided that most of the larger projects that
were ongoing as of the publication of the Standard will
be "grand fathered" out of having to comply with it.
This includes the Space Shuttle and the International
Space Station. As of this date, it is assumed that the new
Crew Exploration Vehicle (CEV) will be in compliance.

The tasks and requirements of developing and
maintaining safety-critical software are potentially
expensive and time consuming. Many project managers
have complained that this is too much for them to deal
with for their particular projects. However, one does not
have to research very hard to find examples of recent
incidents where software has played a role in high-
profile mission failures and hazardous incidents (e.g. the
Mars Orbiter and Mars Polar Lander failures). In
response to t h s e who xvould question 2ad coxp!ain
about the effort and expense to develop this software I
would like to close with a quote fiom Dr. Werhner von
Braun in testimony to Congress after the Apollo I fire,
"We are not in the business of making shoes".

(CE)", April 3, 2002. As copied from the SWG website:

2. "NASA Software Engineering Initiative
Implementation Plan Office: AEIOffice of the Chief
Engineer", January 11, 2002. URL:
h V
wo-bdgt-info 1 .doc

3. NASA Safety and T~fissioii Assmaiice Requiirements
Tree URL:
http://www.hq.nasa.govloffice/codea/doctree/qdoc.htm

4. National Aeronautics and Space Administration,
Software Safety Standard, (NASA-STD-8719.13B
wIChange I), NASA Technical Standard, July 8, 2004.
URL: http:/lstandards.nasa.eov/ (NOTE: Site requires a
long-on ID), Section 4.2.2

5. Ibid., Section 5.7.1

67 IbidT, Sections 5.14.1 tIi~ough 5.1-4.2

7. Ibid., Sections 7.1 through 7.2

8. Ibid., Section 1.1

9. Ibid., Section 4.1.1.1

10. Ibid., Section 4.1.1.2

RERENCES:

1. "NASA Software Working Group Charter,
Responsible Office: AEIOffice of the Chief Engineer

