

NASA/CR-2007-214542
NIA Report No. 2007-02

Model Checking Abstract PLEXIL Programs
with SMART

Radu I. Siminiceanu
National Institute of Aerospace (NIA), Hampton, Virginia

April 2007

https://ntrs.nasa.gov/search.jsp?R=20070018203 2019-08-30T00:57:48+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/10536755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

NASA/CR-2007-214542
NIA Report No. 2007-02

Model Checking Abstract PLEXIL Programs
with SMART

Radu I. Siminiceanu
National Institute of Aerospace (NIA), Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Cooperative Agreement NCC1-02043

April 2007

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

MODEL CHECKING ABSTRACT PLEXIL PROGRAMS
WITH SMART

Radu I. Siminiceanu∗

ABSTRACT

We describe a method to automatically generate discrete-state models of abstract Plan
Execution Interchange Language (PLEXIL) programs that can be analyzed using model
checking tools. Starting from a high-level description of a PLEXIL program or a
family of programs with common characteristics, the generator lays the framework that
models the principles of program execution. The concrete parts of the program are
not automatically generated, but require the modeler to introduce them by hand. As
a case study, we generate models to verify properties of the PLEXIL macro constructs
that are introduced as shorthand notation. After an exhaustive analysis, we conclude
that the macro definitions obey the intended semantics and behave as expected, but
contingently on a few specific requirements on the timing semantics of micro-steps in
the concrete executive implementation.

1 ABSTRACT MODELING OF PLEXIL PROGRAMS

This study is intended to investigate properties of general PLEXIL programs. The test
suite for the experiment are standard program templates introduced as shorthand nota-
tion (frequently called “syntactic sugar”) for PLEXIL [4] (section 5.2). The state tran-
sitions diagrams in [4] are used to derive a model of the execution of abstract programs
in the tool SMART [2]. The modeling formalism of the tool is Stochastic Petri Nets [5].
A full description of SMART can be found in the user manual [3] (available on-line at
http://cs.ucr.edu/~ciardo/SMART/).

Each node in a PLEXIL program can be modeled as an abstract automaton that specifies:

• the node type: list, command, assign, function call;

• the node internal state: inactive, waiting, executing,

failing, iteration ended, finishing, finished, etc;

• six boolean variables representing the values of the following conditions (predicates):
start condition, stop condition, invariant condition,

pre condition, post condition, repeat until condition;

• a variable to store the nature of the outcome: success, failure, skipped,

parent failure.

∗National Institute of Aerospace, 100 Exploration Way, Hampton VA, 23666. E-mail: radu@nianet.org
This work was supported in part by the National Aeronautics and Space Administration under the coop-

erative agreement NCC-1-02043.

1

No other variables are considered at this point (local, global, program counters, etc.),
but they can be manually introduced in the generated models as desired.

If a condition is defined as fully abstract, then its value can change independently, at any
point in time, from false to true or vice versa. Such changes will trigger either internal
transitions to a node (such as a start condition becoming true causing a node to transition
from waiting to executing state), or global transitions (such as the invariant condition of
a list node becoming false that triggers the failure of all its descendant nodes).

The automaton for the local transformations of a single node is the same for each category
of nodes: list, command, assign, or function call. The global transitions will reflect the
interactions between these components, depending on the topology of the system.

1.1 Model builder input syntax

The model builder, written in C, builds the SMART automaton for the entire PLEXIL
program with a simple compositional approach, from the description of the topology:

• The number of nodes N > 0 (on the first input file line);

• For each node, a description of:

– node type: LIST, COMMAND, ASSIGN, FNCALL;

– the parent-child relationships

– condition types: abstract, concrete, or default.

There is one node descriptor per line, with the syntax:

NODE id node type [CHILDREN id list] [CONDITIONS [ABSTRACT|CONCRETE|DEFAULT]
cond list]

Whenever a condition is not specifically defined, it is assumed to have a default value (true
for all, except end condition which is defined as “all children nodes finished”)

0

1 2 3

4

Figure 1: Sample topology

The example in Figure 1 could be described with the following input:

2

NODE 0 LIST CHILDREN 1 2 3 CONDITIONS ABSTRACT start end pre post until invariant

NODE 1 FNCALL CONDITIONS ABSTRACT start CONCRETE end

NODE 2 COMMAND CONDITIONS ABSTRACT start end pre post until invariant

NODE 3 LIST CHILDREN 4 CONDITIONS CONCRETE pre

NODE 4 ASSIGN CONCRETE

This input file represents an abstract program consisting of five nodes, where node 0 is
a fully abstract list node with three child nodes (1, 2, 3). Node 1 is a function call node
with an abstract start condition and concrete end condition (to be manually introduced in
the model), with the remaining four conditions taking the default value. Node 2 is a fully
abstract command node. Node 3 is a list node with default conditions, except a concrete
precondition, and a single child, node 4 (see Figure 1).

Using this approach, we instantiate the SMART model of the corresponding system
topology (where a node in the figure is replaced by the appropriate automaton), and then
investigate properties of interest related to the general execution flow of all PLEXIL pro-
grams represented by that abstract model.

This approach can be extended in an incremental manner, most importantly by allowing
concrete conditions, but also by incorporating other program details, as desired. Also, this
method should be orthogonal to the formal semantics chosen for PLEXIL, as the rules to
execute the transitions can be implemented to reflect the semantic rules. At this stage, the
models follow the PLEXIL document [4].

State space reduction.

In many circumstances (as it is the case of the macros) the majority of the node conditions
have default values and remain unchanged throughout the entire execution of the program.
The model builder has been optimized to prune entire sections of the model that are guaran-
teed to be disabled. For example, with a default invariant condition, all transitions dealing
with a false invariant for that node, and also all the transitions dealing with a false ancestor
invariant for its descendants can be eliminated. This helps in significantly reducing not only
the state-space size, but also the size of the input file itself. An example of a pruned model
is given in Appendix A.

Challenges.

A major issue in deciding a desired semantics for PLEXIL programs was the synchronous
execution of micro-steps for quiescence. Since the number of micro-steps executed by a node
in a quiescence cycle is not known in advance and, moreover, each node could execute a
different number of steps, capturing the synchronous composition of this kind of automata,
in either SAL [1] or SMART for abstract programs is not only a non-trivial task but it might
have no representation in the two tools that we considered.

However, at the level of abstraction employed in this study, this issue has not had a
critical impact on the analysis.

2 CASE STUDY: MACRO TEMPLATES

We next look at the following five macro templates defined in [4].

3

• Sequence;

• If-Then-Else, with the special case If-Then;

• While loop;

• For loop;

To interpret the topology figures, the solid lines represent parent–child relationships, dashed
lines represent a consequential relationship enforced by setting the start condition of the
target node to the condition that the source node is finished. Other relevant labels were
added to the figure for the sake of clarity.

2.1 Sequence

Syntactic sugar for: sequence N1, N2, ..., Nk

Node:{
NodeID: sequenceN1Nk;
NodeList:{

Node:{
NodeID: doN1;
NodeList:{ N1 }

}
Node:{

NodeID: doN2;
StartCondition: doN1.state == FINISHED;
NodeList:{ N2 }

}
Node:{

NodeID: doNk;
StartCondition: doNk-1.state == FINISHED;
NodeList:{ Nk }

}
}

}

0

1 2 3 N
...

Figure 2: Sequence macro topology

An input file for the model builder is:

4

4

NODE 0 LIST CHILDREN 1 2 3

NODE 1 ASSIGN

NODE 2 ASSIGN CONDITIONS CONCRETE start

NODE 3 COMMAND CONDITIONS CONCRETE start

Discussion.

• The execution of the model produces a single final state, where each node has the
outcome SUCCESS. This is the correct behavior.

• Moreover, the time intervals when the nodes Ni are in state executing do not overlap.

2.2 If-Then-Else

Macro definition: if C then N1 else N2

0:Node:{
Boolean: which;
NodeList:{

1: Node:{
NodeID: setup;
Assignment: which = C;

}
2: Node:{

NodeID: doIf;
StartCondition: setup.state == FINISHED;
EndCondition:

isTrueNode.state == FINISHED ||
isFalseNode.state == FINISHED

NodeList:{
3: Node:{

NodeID: isTrueNode;
StartCondition: which=true
NodeList:{ N1 }

}
4: Node:{

NodeID: isFalseNode;
StartCondition: which=false
NodeList:{ N2 }

}
}

}
}

}

The input file for the model builder is:

5

0

1 2

3 4

setup

(which:=C)

start: setup finished

(which T case) (which F case)

end: 3 or 4 finished

Figure 3: If-then-else macro topology

5

NODE 0 LIST CHILDREN 1 2

NODE 1 ASSIGN

NODE 2 LIST CHILDREN 3 4 CONDITIONS CONCRETE start end

NODE 3 COMMAND CONDITIONS ABSTRACT start

NODE 4 COMMAND CONDITIONS CONCRETE start

Discussion.

• The execution of the model ends in two possible states:

– When the value of the variable which is true, node 4 is skipped and node 3 is
executed;

– When the value of the variable which is false, node 3 is skipped and node 4 is
executed;

This should be the desired behavior. However,

• This is contingent on the value of which being set to C at the correct moment in time,
that is when the macro execution starts. For the macro, the value of C is read at a
time corresponding to node 0 being executed. In the expanded program, which is set
by node 2.

∗ Therefore, we derive the following requirement on the execution model:
“The total time observed between the moments when the execution of node 0 and node

2 starts is 0”
or
“The value of C does not change between the moments when the execution of node 0

and node 2 starts”.

6

2.2.1 Special case: If-Then

Macro definition: if C then N

0:Node:{
Boolean: which;
NodeList:{

1: Node:{
NodeID: setup;
Assignment: which = C;

}
2: Node:{

NodeID: doIf;
StartCondition: setup.state == FINISHED;
EndCondition:

which == false |
isTrueNode.state == FINISHED

NodeList:{
3: Node:{

NodeID: isTrueNode;
StartCondition: which=true
NodeList:{ N }

}
}

}
}

}

The input file for the model builder is:

4

NODE 0 LIST CHILDREN 1 2

NODE 1 ASSIGN

NODE 2 LIST CHILDREN 3 4 CONDITIONS CONCRETE start end

NODE 3 COMMAND CONDITIONS ABSTRACT start

Discussion.

• Similar to the general case, the execution of the model ends in two possible states:

– When the value of the variable which is true, node 3 is executed;

– When the value of the variable which is false, node 3 is skipped;

This is the desired behavior, contingent on the same prerequisites as in the general
case.

7

2.3 While loop

Macro definition: while C do N

0:Node:{
Boolean: which;
NodeList:{

1: Node:{
NodeID: setup;
Assignment: which = C;

}
2: Node:{

NodeID: doWhile;
StartCondition: setup.state == FINISHED;
EndCondition:

which == false |
isTrueNode.state == FINISHED

NodeList:{
3: Node:{

NodeID: isTrueNode;
StartCondition: which=true
Repeat-until-condition: not C;

4: NodeList:{ N }
}

}
}

}
}

The input file for the model builder is:

5

NODE 0 LIST CHILDREN 1 2

NODE 1 ASSIGN

NODE 2 LIST CHILDREN 3 CONDITIONS CONCRETE start end

NODE 3 LIST CHILDREN 4 CONDITIONS CONCRETE start until

NODE 4 COMMAND

Discussion.

• Intuitively, one would expect that the execution always ends in a state where C is false,
capturing the last (failed) attempt to execute the loop. In reality, the analysis is not
as straightforward. Nevertheless, the behavior of the macro can be deemed as correct.

In our model, the execution of the macro ends in two types of states:

1. Nodes 3 and 4 are skipped, the value of variable which is false;

8

0

1 2

3

4

setup

start: setup finished

(which:=C)

end: which F or
 3 finished

start: which T
until: not C

Figure 4: While loop macro topology

2. Nodes 3 and 4 finish normally after executing at least once, the value of variable
which is true.

In both cases, the value of C in the final states does not necessarily match that of
which. This situation occurs when C changes after the loop execution ends. Note that
C is an abstract expression, so its value should be independent of other model variables
and has no restrictions on whether and when it changes.

• Additionally, it can be checked that the value of variable which is always true when
node 4 executes; Note that the same cannot be stated of the value of C;

• A requirement on the timing of storing the value of C to which similar to the If-Then-
Else case is again needed;

2.4 For loops

Macro definition: for (int counter=init(Z), C(counter,X), f(counter,Y)) N

0:Node:{
Integer: counter;
Boolean: which;
NodeList:{

1: Node:{
NodeID: setup;
Assignment: counter = init(Z);

}
2: Node:{

NodeID: setup;

9

Assignment: which = C(counter,X);
}

3: Node:{
NodeID: doWhile;
StartCondition: setup.state == FINISHED;
EndCondition:

which == false |
doLoop.state == FINISHED

NodeList:{
4: Node:{

NodeID: doLoop;
Repeat-until-condition: ! C(counter, X);
NodeList:{

5: Node:{
NodeId: doN;
NodeList:{ N }

}
6: Node:{

NodeId: counterUpdate;
StartCondition: doN.state == FINISHED;
Assignment: counter = f(counter,Y);

}
}

}
}

}
}

}

The input file for the model builder is:

7

NODE 0 LIST CHILDREN 1 2 3

NODE 1 ASSIGN

NODE 2 ASSIGN

NODE 3 LIST CHILDREN 4 CONDITIONS CONCRETE start end

NODE 4 LIST CHILDREN 5 6 CONDITIONS CONCRETE until

NODE 5 COMMAND

NODE 6 ASSIGN CONDITIONS CONCRETE start

Discussion.

The execution of this macro is significantly more complex than the previous ones. We have
several observations that might present some concern.

10

0

1

4

5

setup
2 3

(which:=C(ctr))(ctr:=init)

start: setup finished

setup

end: which F or
 4 finished

until: not C(ctr)

6

(ctr++)

Figure 5: For loop macro topology

• It is possible that the for loop starts with an uninitialized counter.

This scenario unfolds as follows:

- Node 0 starts executing;

- Nodes 1 and 2 have default start condition, hence they will simultaneously start
executing, too.

- Node 1 sets the value of counter to the initial value init(Z); concurrently, node
2 decides the value of which based on the uninitialized value of counter , which =
C(counter , X).

- The for loop is then executed or not, based on a nondeterministic choice (whether
the uninitialized value of counter was indeed satisfying the condition C or not),
rather than a deterministic one;

This situation can be fixed by requiring that node 2 starts only after node 1 has finished,
and thus reads the correct value of counter ;

• It should be expected that the execution ends with the first value of the counter that
does not satisfy the finish criteria f(counter , Y). This does not happen in our model.
To make the analysis easier to understand, we illustrate the faulty scenario by means
of the traditional case of a simple counter increment

for (int counter = min, counter++, counter < max) N;

instead of the general format.

11

• When min < max , the programs yields the expected results: node N is executed
exactly max − min times, and ends with counter = max .

• However, when min ≥ max , the model might not have only the expected outcome (that
is, node N is skipped) but could also exhibit one behavior when node N is actually
executed once. This is contingent on the interpretation of priorities, as explained below.
The scenario unfolds as follows:

- Node 2 sets the value of which to false;

- Node 3 starts executing, also triggering the move of its child node 4 (doLoop)
from inactive to waiting;

- Node 3 immediately (i.e. in the next micro-step) satisfies its end condition (the
term which == false);

- Simultaneously, node 4 has two racing events: ancestor ends and start condition

(default) true; If the higher priority is given to the start condition (priority 3
vs. 2), node 4 proceeds to executing one iteration;

- Eventually, upon entering state iteration ended, node 4 does not repeat (be-
cause counter ≥ max) and the program finally ends.

• The situation can be corrected by adding a start condition to node 4 to rule out the
possibility of executing when which is false.

2.5 Adding a fully abstract context

The models studied so far have been stand-alone, where the root node of the macro is also
the root node of the entire PLEXIL program and all variables are either concrete or default.
While the study offers guarantees that the macros behave as expected in isolation, in order
to make more general statements, they have to be studied in a context. To this extent,
we can add a fully abstract node as parent of the root node of the macro model. Since
its conditions are fully independent, the abstract node serves the purpose of exhaustively

checking the behavior of the macro in all possible contexts.
For example, the model of the If-Then-Else macro in a context is described by the following
input:

6

NODE 5 LIST CHILDREN 0 CONDITIONS ABSTRACT start end pre post until invariant

NODE 0 LIST CHILDREN 1 2

NODE 1 ASSIGN

NODE 2 LIST CHILDREN 3 4 CONDITIONS CONCRETE start end

NODE 3 COMMAND CONDITIONS ABSTRACT start

NODE 4 COMMAND CONDITIONS CONCRETE start

As expected, the major challenge is the state-space explosion, mostly due to the large
number of possible interleavings of external events (that change the value of the abstract
conditions). It can be equally attributed to a number of state transitions that are only

enabled in the general context, such as those caused by invariant failure or parent failure,
that were not present in the stand-alone macro.

12

As a measure of this state-space increase (NB: due to a single abstract node!), the
number of states in the If-Then-Else macro with context balloons from 80 to 3, 267, 980, 384.
These kind of state-spaces can usually be handled only by symbolic model checkers.

3 CONCLUSIONS. FUTURE WORK.

We described a method to automatically generate discrete-state models of abstract PLEXIL
programs that can be analyzed using model checking tools. We generated models of the
PLEXIL macro constructs that are introduced as syntactic sugar to the language and ex-
haustively checked the reachable states in the models to verify that they obey the intended
semantics. This technique is of general purpose and can be used to model any concrete
PLEXIL program and investigate its properties, granted that the symbolic state-space of
the model fits into the maximum 4GB of memory on a 32-bit platform.

A similar model builder is currently being developed to generate output models for the
tool SAL [1]. The intent is to utilize the wider array of model checking techniques and the
more expressive input language to be able to analyze other aspects of interest, beside the
basic safety properties.

REFERENCES

[1] L. de Moura, S. Owre, and N. Shankar. The SAL Language Manual. Technical report,
SRI International, Menlo Park, CA, USA, Aug. 2003.

[2] Gianfranco Ciardo, Robert L. Jones, Andrew S. Miner, and Radu Siminiceanu. Logical
and stochastic modeling with SMART. In Modeling Techniques and Tools for Computer

Perf. Eval., LNCS 2794, pages 78–97, Urbana, IL, USA, September 2003. Springer-Verlag.

[3] Gianfranco Ciardo, Andrew Miner, and Radu Siminiceanu. SMART: Stochas-
tic Model checking Analyzer for Reliability and Timing, User Manual.
http://cs.ucr.edu/∼ciardo/SMART/.

[4] Tara Estlin, Ari Jónsson, Corina Păsăreanu, Reid Simmons, Kam Tso, and Vandi Verma.
Plan execution interchange language (PLEXIL). Technical report, NASA Ames, Septem-
ber 2005.

[5] Tadao Murata. Petri Nets: properties, analysis and applications. Proc. IEEE, 77(4):541–
579, April 1989.

13

APPENDIX A

The SMART model of the if-then-else macro template is listed below:

/***

Model generated by SMB v3.0 (July 2006)

Author: Radu I. Siminiceanu (NIA)

**/

// Topology

// Node 0: type LIST parent: -1 children: 1 2

// Node 1: type ASSIGN parent: 0 children:

// Node 2: type LIST parent: 0 children: 3 4

// Node 3: type COMMAND parent: 2 children:

// Node 4: type COMMAND parent: 2 children:

spn plexil := {

place

st_inactive_0,

st_waiting_0,

st_executing_0,

st_failing_0,

st_iter_ended_0,

st_finishing_0,

st_finished_0,

ancestor_end_0,

ancestor_failed_0,

outcome_success_0,

outcome_failure_0,

outcome_parent_failure_0,

outcome_skipped_0;

partition(

st_inactive_0:st_waiting_0:st_executing_0:

st_finishing_0:st_failing_0:st_iter_ended_0:st_finished_0:

ancestor_end_0:ancestor_failed_0:

outcome_success_0:outcome_failure_0:outcome_parent_failure_0:

outcome_skipped_0

);

14

place

st_inactive_1,

st_waiting_1,

st_executing_1,

st_failing_1,

st_iter_ended_1,

st_finishing_1,

st_finished_1,

ancestor_end_1,

ancestor_failed_1,

/* MANUALLY ADDED */ which, C,

outcome_success_1,

outcome_failure_1,

outcome_parent_failure_1,

outcome_skipped_1;

partition(

which:C,

st_inactive_1:st_waiting_1:st_executing_1:

st_finishing_1:st_failing_1:st_iter_ended_1:st_finished_1:

ancestor_end_1:ancestor_failed_1:

outcome_success_1:outcome_failure_1:outcome_parent_failure_1:

outcome_skipped_1

);

place

st_inactive_2,

st_waiting_2,

st_executing_2,

st_failing_2,

st_iter_ended_2,

st_finishing_2,

st_finished_2,

ancestor_end_2,

ancestor_failed_2,

outcome_success_2,

outcome_failure_2,

outcome_parent_failure_2,

outcome_skipped_2;

15

partition(

st_inactive_2:st_waiting_2:st_executing_2:

st_finishing_2:st_failing_2:st_iter_ended_2:st_finished_2:

ancestor_end_2:ancestor_failed_2:

outcome_success_2:outcome_failure_2:outcome_parent_failure_2:

outcome_skipped_2

);

place

st_inactive_3,

st_waiting_3,

st_executing_3,

st_failing_3,

st_iter_ended_3,

st_finishing_3,

st_finished_3,

ancestor_end_3,

ancestor_failed_3,

outcome_success_3,

outcome_failure_3,

outcome_parent_failure_3,

outcome_skipped_3;

partition(

st_inactive_3:st_waiting_3:st_executing_3:

st_finishing_3:st_failing_3:st_iter_ended_3:st_finished_3:

ancestor_end_3:ancestor_failed_3:

outcome_success_3:outcome_failure_3:outcome_parent_failure_3:

outcome_skipped_3

);

place

st_inactive_4,

st_waiting_4,

st_executing_4,

st_failing_4,

st_iter_ended_4,

st_finishing_4,

st_finished_4,

ancestor_end_4,

ancestor_failed_4,

16

outcome_success_4,

outcome_failure_4,

outcome_parent_failure_4,

outcome_skipped_4;

partition(

st_inactive_4:st_waiting_4:st_executing_4:

st_finishing_4:st_failing_4:st_iter_ended_4:st_finished_4:

ancestor_end_4:ancestor_failed_4:

outcome_success_4:outcome_failure_4:outcome_parent_failure_4:

outcome_skipped_4

);

//---

// Local transitions for list node #0

//---

trans

t_inactive_to_waiting_0;

arcs(

st_inactive_0:t_inactive_to_waiting_0,

t_inactive_to_waiting_0:st_waiting_0

);

trans

t_waiting_to_executing_0;

arcs(

st_waiting_0:t_waiting_to_executing_0,

t_waiting_to_executing_0:st_executing_0

);

trans

t_executing_end_condition_true_post_condition_true_0;

arcs(

st_executing_0:t_executing_end_condition_true_post_condition_true_0,

t_executing_end_condition_true_post_condition_true_0:st_finishing_0,

outcome_success_0:t_executing_end_condition_true_post_condition_true_0:

tk(outcome_success_0),

t_executing_end_condition_true_post_condition_true_0:outcome_success_0

);

17

guard(

t_executing_end_condition_true_post_condition_true_0:

/* MANUALLY ADDED */ tk(st_finished_1)>0 & tk(st_finished_2)>0

);

trans

t_failing_to_finished_0;

arcs(

st_failing_0:t_failing_to_finished_0,

t_failing_to_finished_0:st_finished_0

);

guard(

t_failing_to_finished_0:

tk(outcome_parent_failure_0)==1

);

trans

t_finishing_post_true_0;

arcs(

st_finishing_0:t_finishing_post_true_0,

t_finishing_post_true_0:st_iter_ended_0,

outcome_success_0:t_finishing_post_true_0:tk(outcome_success_0),

t_finishing_post_true_0:outcome_success_0

);

trans

t_iter_ended_no_repeat_0;

arcs(

st_iter_ended_0:t_iter_ended_no_repeat_0,

t_iter_ended_no_repeat_0:st_finished_0

);

init(st_inactive_0:1);

//---

// Local transitions for assign node #1

//---

trans

t_inactive_ancestor_ends_1,

t_inactive_to_waiting_1;

18

arcs(

st_inactive_1:t_inactive_ancestor_ends_1,

t_inactive_ancestor_ends_1:st_finished_1,

outcome_skipped_1:t_inactive_ancestor_ends_1:tk(outcome_skipped_1),

t_inactive_ancestor_ends_1:outcome_skipped_1,

ancestor_end_1:t_inactive_ancestor_ends_1,

st_inactive_1:t_inactive_to_waiting_1,

t_inactive_to_waiting_1:st_waiting_1

);

guard(

t_inactive_to_waiting_1:tk(st_executing_0)>0,

t_inactive_ancestor_ends_1:tk(st_executing_0)==0 & tk(ancestor_end_1)==1

);

trans

t_waiting_ancestor_ends_1,

t_waiting_to_executing_1;

arcs(

st_waiting_1:t_waiting_ancestor_ends_1,

ancestor_end_1:t_waiting_ancestor_ends_1,

t_waiting_ancestor_ends_1:st_finished_1,

outcome_skipped_1:t_waiting_ancestor_ends_1:tk(outcome_skipped_1),

t_waiting_ancestor_ends_1:outcome_skipped_1,

st_waiting_1:t_waiting_to_executing_1,

/* MANUALLY ADDED */

which:t_waiting_to_executing_1:tk(which),

t_waiting_to_executing_1:which:tk(C),

t_waiting_to_executing_1:st_executing_1

);

guard(

t_waiting_ancestor_ends_1:

tk(ancestor_end_1)==1

);

trans

t_executing_end_condition_true_post_condition_true_1;

arcs(

st_executing_1:t_executing_end_condition_true_post_condition_true_1,

t_executing_end_condition_true_post_condition_true_1:st_iter_ended_1,

outcome_success_1:t_executing_end_condition_true_post_condition_true_1:

19

tk(outcome_success_1),

t_executing_end_condition_true_post_condition_true_1:outcome_success_1

);

trans

t_iter_ended_no_repeat_1;

arcs(

st_iter_ended_1:t_iter_ended_no_repeat_1,

t_iter_ended_no_repeat_1:st_finished_1

);

trans

t_finished_to_inactive_1;

arcs(

st_finished_1:t_finished_to_inactive_1,

t_finished_to_inactive_1:st_inactive_1,

outcome_success_1:t_finished_to_inactive_1:tk(outcome_success_1),

outcome_failure_1:t_finished_to_inactive_1:tk(outcome_failure_1),

outcome_parent_failure_1:t_finished_to_inactive_1:

tk(outcome_parent_failure_1)

);

guard(t_finished_to_inactive_1:tk(st_waiting_0)==1);

init(st_inactive_1:1);

//---

// Local transitions for list node #2

//---

trans

t_inactive_ancestor_ends_2,

t_inactive_to_waiting_2;

arcs(

st_inactive_2:t_inactive_ancestor_ends_2,

t_inactive_ancestor_ends_2:st_finished_2,

outcome_skipped_2:t_inactive_ancestor_ends_2:tk(outcome_skipped_2),

t_inactive_ancestor_ends_2:outcome_skipped_2,

ancestor_end_2:t_inactive_ancestor_ends_2,

st_inactive_2:t_inactive_to_waiting_2,

t_inactive_to_waiting_2:st_waiting_2

);

20

guard(

t_inactive_to_waiting_2:tk(st_executing_0)>0,

t_inactive_ancestor_ends_2:tk(st_executing_0)==0 & tk(ancestor_end_2)==1

);

trans

t_waiting_ancestor_ends_2,

t_waiting_to_executing_2;

arcs(

st_waiting_2:t_waiting_ancestor_ends_2,

ancestor_end_2:t_waiting_ancestor_ends_2,

t_waiting_ancestor_ends_2:st_finished_2,

outcome_skipped_2:t_waiting_ancestor_ends_2:tk(outcome_skipped_2),

t_waiting_ancestor_ends_2:outcome_skipped_2,

st_waiting_2:t_waiting_to_executing_2,

t_waiting_to_executing_2:st_executing_2

);

guard(

t_waiting_ancestor_ends_2:

tk(ancestor_end_2)==1,

t_waiting_to_executing_2:

/* MANUALLY MODIFIED */

tk(st_finished_1)==1

);

trans

/* MANUALLY ADDED */ t_executing_end_condition_true_post_condition_true_2a,

t_executing_end_condition_true_post_condition_true_2;

arcs(

/* MANUALLY ADDED + MODIFIED */

st_executing_2:t_executing_end_condition_true_post_condition_true_2a,

t_executing_end_condition_true_post_condition_true_2a:st_finishing_2,

outcome_success_2:t_executing_end_condition_true_post_condition_true_2a:

tk(outcome_success_2),

t_executing_end_condition_true_post_condition_true_2a:outcome_success_2,

t_executing_end_condition_true_post_condition_true_2a:ancestor_end_3,

st_executing_2:t_executing_end_condition_true_post_condition_true_2,

t_executing_end_condition_true_post_condition_true_2:st_finishing_2,

outcome_success_2:t_executing_end_condition_true_post_condition_true_2:

tk(outcome_success_2),

t_executing_end_condition_true_post_condition_true_2:ancestor_end_4,

21

t_executing_end_condition_true_post_condition_true_2:outcome_success_2

);

guard(

t_executing_end_condition_true_post_condition_true_2:

/* MANUALLY ADDED */ tk(st_finished_3)>0,

t_executing_end_condition_true_post_condition_true_2a:

/* MANUALLY ADDED */ tk(st_finished_4)>0

);

trans

t_failing_to_finished_2;

arcs(

st_failing_2:t_failing_to_finished_2,

t_failing_to_finished_2:st_finished_2

);

guard(

t_failing_to_finished_2:

tk(outcome_parent_failure_2)==1

);

trans

t_finishing_post_true_2;

arcs(

st_finishing_2:t_finishing_post_true_2,

t_finishing_post_true_2:st_iter_ended_2,

outcome_success_2:t_finishing_post_true_2:tk(outcome_success_2),

t_finishing_post_true_2:outcome_success_2

);

trans

t_iter_ended_no_repeat_2;

arcs(

st_iter_ended_2:t_iter_ended_no_repeat_2,

t_iter_ended_no_repeat_2:st_finished_2

);

trans

t_finished_to_inactive_2;

arcs(

22

st_finished_2:t_finished_to_inactive_2,

t_finished_to_inactive_2:st_inactive_2,

outcome_success_2:t_finished_to_inactive_2:tk(outcome_success_2),

outcome_failure_2:t_finished_to_inactive_2:tk(outcome_failure_2),

outcome_parent_failure_2:t_finished_to_inactive_2:

tk(outcome_parent_failure_2)

);

guard(t_finished_to_inactive_2:tk(st_waiting_0)==1);

init(st_inactive_2:1);

//---

// Local transitions for command node #3

//---

trans

C_goes_false,

C_goes_true;

arcs(

C:C_goes_false,

C_goes_true:C

);

inhibit(

C:C_goes_true

);

guard(

/* MANUALLY MODIFIED */

C_goes_false:

(tk(st_inactive_1)==1 | tk(st_waiting_1)==1),

C_goes_true:

(tk(st_inactive_1)==1 | tk(st_waiting_1)==1)

);

trans

t_inactive_ancestor_ends_3,

t_inactive_to_waiting_3;

arcs(

st_inactive_3:t_inactive_ancestor_ends_3,

t_inactive_ancestor_ends_3:st_finished_3,

outcome_skipped_3:t_inactive_ancestor_ends_3:tk(outcome_skipped_3),

23

t_inactive_ancestor_ends_3:outcome_skipped_3,

ancestor_end_3:t_inactive_ancestor_ends_3,

st_inactive_3:t_inactive_to_waiting_3,

t_inactive_to_waiting_3:st_waiting_3

);

guard(

t_inactive_to_waiting_3:tk(st_executing_2)>0,

t_inactive_ancestor_ends_3:tk(st_executing_2)==0 & tk(ancestor_end_3)==1

);

trans

t_waiting_ancestor_ends_3,

t_waiting_to_executing_3;

arcs(

st_waiting_3:t_waiting_ancestor_ends_3,

ancestor_end_3:t_waiting_ancestor_ends_3,

t_waiting_ancestor_ends_3:st_finished_3,

outcome_skipped_3:t_waiting_ancestor_ends_3:tk(outcome_skipped_3),

t_waiting_ancestor_ends_3:outcome_skipped_3,

st_waiting_3:t_waiting_to_executing_3,

t_waiting_to_executing_3:st_executing_3

);

guard(

/* MANUALLY MODIFIED */

t_waiting_ancestor_ends_3:

tk(which)==0 & tk(ancestor_end_3)==1,

t_waiting_to_executing_3:

tk(which)==1

);

trans

t_executing_end_condition_true_post_condition_true_3;

arcs(

st_executing_3:t_executing_end_condition_true_post_condition_true_3,

t_executing_end_condition_true_post_condition_true_3:st_iter_ended_3,

outcome_success_3:t_executing_end_condition_true_post_condition_true_3:

tk(outcome_success_3),

t_executing_end_condition_true_post_condition_true_3:outcome_success_3

);

trans

24

t_failing_abort_incomplete_3,

t_failing_to_finished_3;

arcs(

st_failing_3:t_failing_abort_incomplete_3,

t_failing_abort_incomplete_3:st_failing_3,

st_failing_3:t_failing_to_finished_3,

t_failing_to_finished_3:st_finished_3

);

guard(

t_failing_to_finished_3:

tk(outcome_parent_failure_3)==1

);

trans

t_finishing_post_true_3;

arcs(

st_finishing_3:t_finishing_post_true_3,

t_finishing_post_true_3:st_iter_ended_3,

outcome_success_3:t_finishing_post_true_3:tk(outcome_success_3),

t_finishing_post_true_3:outcome_success_3

);

trans

t_iter_ended_no_repeat_3;

arcs(

st_iter_ended_3:t_iter_ended_no_repeat_3,

t_iter_ended_no_repeat_3:st_finished_3

);

trans

t_finished_to_inactive_3;

arcs(

st_finished_3:t_finished_to_inactive_3,

t_finished_to_inactive_3:st_inactive_3,

outcome_success_3:t_finished_to_inactive_3:tk(outcome_success_3),

outcome_failure_3:t_finished_to_inactive_3:tk(outcome_failure_3),

outcome_parent_failure_3:t_finished_to_inactive_3:

tk(outcome_parent_failure_3)

);

25

guard(t_finished_to_inactive_3:tk(st_waiting_2)==1);

init(st_inactive_3:1);

//---

// Local transitions for command node #4

//---

trans

t_inactive_ancestor_ends_4,

t_inactive_to_waiting_4;

arcs(

st_inactive_4:t_inactive_ancestor_ends_4,

t_inactive_ancestor_ends_4:st_finished_4,

outcome_skipped_4:t_inactive_ancestor_ends_4:tk(outcome_skipped_4),

t_inactive_ancestor_ends_4:outcome_skipped_4,

ancestor_end_4:t_inactive_ancestor_ends_4,

st_inactive_4:t_inactive_to_waiting_4,

t_inactive_to_waiting_4:st_waiting_4

);

guard(

t_inactive_to_waiting_4:tk(st_executing_2)>0,

t_inactive_ancestor_ends_4:tk(st_executing_2)==0 & tk(ancestor_end_4)==1

);

trans

t_waiting_ancestor_ends_4,

t_waiting_to_executing_4;

arcs(

st_waiting_4:t_waiting_ancestor_ends_4,

ancestor_end_4:t_waiting_ancestor_ends_4,

t_waiting_ancestor_ends_4:st_finished_4,

outcome_skipped_4:t_waiting_ancestor_ends_4:tk(outcome_skipped_4),

t_waiting_ancestor_ends_4:outcome_skipped_4,

st_waiting_4:t_waiting_to_executing_4,

t_waiting_to_executing_4:st_executing_4

);

guard(

t_waiting_ancestor_ends_4:

tk(which)==1 & tk(ancestor_end_4)==1,

t_waiting_to_executing_4:

26

/* MANUALLY MODIFIED */

tk(which)==0

);

trans

t_executing_end_condition_true_post_condition_true_4;

arcs(

st_executing_4:t_executing_end_condition_true_post_condition_true_4,

t_executing_end_condition_true_post_condition_true_4:st_iter_ended_4,

outcome_success_4:t_executing_end_condition_true_post_condition_true_4:

tk(outcome_success_4),

t_executing_end_condition_true_post_condition_true_4:outcome_success_4

);

trans

t_failing_abort_incomplete_4,

t_failing_to_finished_4;

arcs(

st_failing_4:t_failing_abort_incomplete_4,

t_failing_abort_incomplete_4:st_failing_4,

st_failing_4:t_failing_to_finished_4,

t_failing_to_finished_4:st_finished_4

);

guard(

t_failing_to_finished_4:

tk(outcome_parent_failure_4)==1

);

trans

t_finishing_post_true_4;

arcs(

st_finishing_4:t_finishing_post_true_4,

t_finishing_post_true_4:st_iter_ended_4,

outcome_success_4:t_finishing_post_true_4:tk(outcome_success_4),

t_finishing_post_true_4:outcome_success_4

);

trans

t_iter_ended_no_repeat_4;

arcs(

27

st_iter_ended_4:t_iter_ended_no_repeat_4,

t_iter_ended_no_repeat_4:st_finished_4

);

trans

t_finished_to_inactive_4;

arcs(

st_finished_4:t_finished_to_inactive_4,

t_finished_to_inactive_4:st_inactive_4,

outcome_success_4:t_finished_to_inactive_4:tk(outcome_success_4),

outcome_failure_4:t_finished_to_inactive_4:tk(outcome_failure_4),

outcome_parent_failure_4:t_finished_to_inactive_4:

tk(outcome_parent_failure_4)

);

guard(t_finished_to_inactive_4:tk(st_waiting_2)==1);

init(st_inactive_4:1);

//-----------------

// Queries

//-----------------

bool db := debug;

bigint ns := num_states(false);

stateset fin := difference(reachable, prev(potential(true)));

bigint nfin := card(fin);

bool prn_fin := printset(fin);

};

#StateStorage MDD_SATURATION

#Verbose true

compute(plexil.db);

print("Number of reachable states: ", plexil.ns, "\n");

print("\nExecution ends in the following states:\n");

compute(plexil.prn_fin);

28

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
REPORT NUMBER

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19b. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE
19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	REPORT DATE (DD-MM-YYYY): 01-04-2007
	REPORT TYPE: Contractor Report
	DATES COVERED (From - To):
	TITLE AND SUBTITLE: Model Checking Abstract PLEXIL Programs with SMART
	5a:
	 CONTRACT NUMBER:

	5b:
	 GRANT NUMBER: NCC1-02043

	5c:
	 PROGRAM ELEMENT NUMBER:

	5d:
	 PROJECT NUMBER: 2605

	5e:
	 TASK NUMBER:

	5f:
	 WORK UNIT NUMBER:

	AUTHOR: Radu I. Siminiceanu
	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES): NASA Langley Research Center National Institute of Aerospace (NIA)Hampton, VA 23681-2199 100 Exploration Way Hampton, VA 23666
	PERFORMING ORGANIZATION: NIA Report No. 2007-02
	SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES): National Aeronautics and Space AdministrationWashington, DC 20546-0001
	SPONSORING/MONITOR'S ACRONYM: NASA
	SPONSORING/MONITORING: NASA/CR-2007-214542
	DISTRIBUTION/AVAILABILITY STATEMENT: Unclassified - UnlimitedSubject Category 62Availability: NASA CASI (301) 621-0390
	SUPPLEMENTARY NOTES: Langley Technical Monitor: Ben Di Vito
	ABSTRACT: We describe a method to automatically generate discrete-state models of abstract Plan Execution Interchange Language (PLEXIL) programs that can be analyzed using model checking tools. Starting from a high-level description of a PLEXIL program or a family of programs with common characteristics, the generator lays the framework that models the principles of program execution. The concrete parts of the program are not automatically generated, but require the modeler to introduce them by hand. As a case study, we generate models to verify properties of the PLEXIL macro constructs that are introduced as shorthand notation. After an exhaustive analysis, we conclude that the macro definitions obey the intended semantics and behave as expected, but contingently on a few specific requirements on the timing semantics of micro-steps in the concrete executive implementation.
	SUBJECT TERMS: Model Checking; Planning; Spacecraft Autonomy
	SECURITY CLASSIFICATION OF REPORT: U
	SECURITY CLASSIFICATION OF: ABSTRACT: U
	SECURITY CLASSIFICATION OF: THIS PAGE: U
	LIMITATION OF ABSTRACT: UU
	NUMBER OF PAGES: 33
	NAME OF RESPONSIBLE PERSON: STI Help Desk (email: help@sti.nasa.gov)
	TELEPHONE NUMBER (Include area code): (301) 621-0390

