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Abstract

Near-surface soil moisture is a critical component of land surface energy and water balance
studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and
evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the
difficulty in accurately representing soil texture and hydraulic properties in land surface models.
This study approaches the problem of parameterizing soils from a unique perspective based on
components originally developed for operational estimation of soil moisture for mobility
assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave
remote sensing were acquired on six dates during the Monsoon ’90 experiment in southeastern
Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer
information on the soil conditions of the region. Specifically, a robust parameter estimation tool
(PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution
across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil
moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic
properties through the use of pedotransfer functions. By estimating a continuous range of widely
applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil
texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy
and consistency of the resulting soils could then be assessed.

In addition, the sensitivity of this calibration method to the number and timing of microwave
retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The
resultant soil properties were applied to an extended time period demonstrating the improvement in
simulated soil moisture over that using default or county-level soil parameters. The methodology is
also applied to an independent case at Walnut Gulch using a new soil moisture product from active
(C-band) radar imagery with much lower spatial and temporal resolution. Overall, results
demonstrate the potential to gain physically meaningful soils information using simple parameter
estimation with few but appropriately timed remote sensing retrievals. '
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This study examines the ability of microwave remote sensing estimates of soil moisture to be used to
calibrate a land surface model and, in the process, infer soil textural and hydraulic properties across
spatially heterogeneous landscapes. Results also demonstrate the limitations and potential
improvements in simulating soil moisture evolution using a combination of remote sensing,

modeling, and parameter estimation techniques.
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Abstract

Abstract

Near-surface soil moisture is a critical component of land surface energy and water
balance studies encompassing a wide range of disciplines. However, the processes of
infiltration, runoff, and evapotranspiration in the vadose zone of the seil are not easy to
quantify or predict because of the difficulty in accurately representing soil texture and
hydraulic properties in land surface models. This study approaches the problem of
parameterizing soils from a unique perspective based on components originally developed
for operational estimation of soil moisture for mobility assessments. Estimates of near-
surface soil moisture derived from passive (L-band) microwave remeote sensing were
acquired on six dates during the Monsoon *90 experiment in southeastern Arizona, and used

to calibrate hydraulic properties in an offline land surface model and infer information on the

~ soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was

used to calibrate the Noah land surface model and run at very high spatial resolution across
the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil
moisture were minimized by adjusting the seil texture, which in turn controls the hydraulic
properties through the use of pedotransfer functions. By estimating a continuous range of
widely applicable soil properties such as sand, silt, and elay percentages rather than applying
rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the
physical aceuracy and consistency of the resulting soils could then be assessed.

In addition, the sensitivity of this calibration method to the number and timing of
microwave retrievals is determined in relation to the temporal patterns in preeipitation and
seil drymg The resultant soﬂ properties were applied to an extended time period

demonstrating the improvement in simulated soil moisture over that using default or county-




level soil parameters. The methodology is also applied to an independent case at Walnut
Guleh using a new soil meoisture product from active (C-band) radar imagery with much
lower spatial and temporal resolution. Overall, results demonstrate the potential to gain
physically meaningful soils information using simple parameter estimation with few but

appropriately timed remote sensing retrievals.
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1. Introduction

Seil moisture remains an essential yet elusive component of Earth system seience research
across a wide range of scales and applications. In addition to impacting agriculture, water
resource management, and extreme events such as flooding and drought, the day-to-day
variability in seoil meisture on field to global scales is an important quantity for atmespherie
modeling and prediction. In fact, the accuracies of climate, mesoscale, boundary layer, land
surface, and hydrologic models are ultimately dependent on propér treatment and simulation of
the state and transfer of water and heat at the land surface (Koster et al. 2004; Findell and Eltahir
2003; Berbery et al. 2003; Betts et al. 2003; Betts 2000). -

Unfortunately, soil moisture is not as easily measured or observed as atmospheric properties
such as temperature, humidity, and wind speed. For example, in situ or remotely-sensed
observations of soil moisture for initialization, update, and validation purposes are not yet
available on the scales of most models. Observations are generally eonfined to short-term field
experiments, many of which have highlighted the heterogeneous nature of soils in terms of water
content and texture (Mohanty et al. 2002). Indirect estimates of soil moisture can be obtained
using thermal infrared measurements (Carlson et al. 1995), but require a priori information on
the surface characteristics. As an alterpative, passive and active microwave remote sensing
methods have had the greatest suceess in estimating soil moisture in a temporally and spatially
consistent manner ( Thoma et al. 2006; Moran et al. 2004; Hollenbeck et al. 1996).

Recent studies have noted that the most successful and promising approach to estimating
soil moisture continnously over time and space must include a combination of remote sensing
and modeling (Entekhabi et al. 1999; Houser et al. 1998). The majority of land surface models

(LSMs) require soil hydraulic parameters to solve for the transport of moisture within the soil




using Richards’ (1931) formulations. These parameters are often derived from soil texture
information, but due to the heterogeneous nature of soils and lack of detailed maps of soil
properties, soil parameterization schemes are often crude, inflexible, or inappropriate. Further,
LSMs have been shown to potentially be more sensitive to the choice of soil hydraulic properties
or soil texture data than to atmespheric foreing or surface characteristics (Gutmann and Small
2005; Pitman 2003).

Because of these difficulties, numerous attempts have been made to We
LSM parameters using observations of state variables such as soil moisture and surface
temperature as constraints (Hogue et al. 2005; Liu et al. 2004; Hess 2001; Gupta et al. 1999).
While these studies highlight the potential for parameter estimation techniques to derive large
sets of ‘effective’ parameters and diagnese specific model weaknesses, little has been gained in
terms of aecquiring physically-meaningful or hydraulically consistent estimates of individual
parameters. Because of the complexity and number of estimation techniques and parameter sets
employed in these studies, it remains diffieult to infer or derive any parameter information that
could be applied to other independent étudies or models.

With these issues i mind, this paper examines the potential use of passive and active
microwave retrievals of near-surface soil moisture to calibrate a LSM and infer a physically-
meaningful and. consistent set of soil hydraulic parameters, using a combination of high-
resolution land surface modeling and parameter estimation. The experimental design of this
work was originally developed for the purpese of estimating troop and vehicle mobility for the
United States Army based on operational soil moisture prediction from a very limited set of input
data (Army Remeote Moisture System; ARMS; Tischler et al. 2006). Here, we have tested and

extended ARMS to assess the ability of parameter estimation techniques to minimize inherent




model error, yet still provide information on difficult to obtain soil properties over the Walnut
Guleh Environmental Watershed (WGEW) in Arizona.

Accordingly, Section 2 summarizes the current state of knowledge of the many components
of the ARMS project including soil parameterizations in LSMs, microwave remeote sensing of
soil moisture, and parameter estimation. In Section 3, the models, site, and remote sensing data
employed in this stady are described. Results of the calibration experiments are presented in
Section 4, including an evaluation of the optimized parameters and sensitivity to temporal
sampling of remote sensing. Finally, Section 5 discusses the limitations and applicability of the
results, including suggestions for the future utility of physically meaningful parameters in LSMs.

2. Background
a. Soil Parameterizations in LSMs

The mfluence of near-surface soil moisture on the partitioning of surface turbulent fluxes
from offline LSMs to fully coupled global climate models has been well-documented (e.g.,
Braun and Schadler 2005; Ek and Holtslag 2003; Santanello and Carlson 2001; Cuenca et al.
1996; Sun and Besilovich 1996; Ek and Cuenca 1994; Jacobs and DeBruin 1992). In order to
simulate the evolutioﬁ of moisture in the soil, a set of soil hydraulic parameters are combined
with expressions (known as soil moisture characteristic curves) relating soil moisture (6) with
matric potential (), and soil moisture with hydraulic conductivity (K). The expressions derived
by Brooks and Corey (1964) and Campbell (1974) are most commeonly used in meteorological
coupled models, while the van Genuchten (1980) functions based on a different set of soil
measurements are used for more detailed soil and hydrological models. A full deseription and

evaluation of these functions can be found in Braun and Schadler (2005).




The three forms of ﬁe characteristic curves above depend on a set of 4 (Campbell, 1974) or
5 (Brooks and Corey, 1964; van Genuchten, 1980) hydraulic parameters, which are a funetion of
 the soil composition and structure. These parameters include the saturated matric potential (y4;
aka “bubbling” er “air entry”), the saturated hydraulic conductivity (K), the saturated seil
moisture content (porosity; 6), the residual soil mo}sture content (6,), and the pore size
distribution mdex (b). Unfortunately, estimating these parameters consistently and accurately
has proven difficult even for identical soils measured under controlled laboratory conditions.
Further, studies have shown that LSM simulation of soil moeisture can be more dependent upon
the specification of hydraulic parameters than atmeospheric foreing or surface conditions
(Gutmann and Small 2005; Santanello and Carlson 2001).

To mitigate these differences and écquire a somewhat standard set of parameters for LSM
applications, ‘bulk’ parameters have been derived that are based on soil type. The results of
Clapp and Hornberger (CH; 1978), Rawls et al. (1982), and Cosby (1984) and provide the meost
extensive and commeonly employed lookup tables of hydréulie parameters for LSMs, with
atmospheric-based applications favoring CH and Cosby and seil hydrology models employing
the Rawls parameters. Unfortgnately, parameter lookup tables are only as aceurate as the
available soil texture type information and provide an “average” value of each parameter for
each soil type. High-resolution soil texture maps remain difficult to obtain, particularly on
regional and global scales, and there is little flexibility between soil types or for mixed soils
despite that larger differences in soil properties have been observed within a certain soil type
than between types (Gutmann and Small 2005; Seet and Stricker 2003; Feddes et al. 1993).

To bridge the gap between rigid soil textural classes and the heterogeneous nature of soils,

numerous pedotransfer functions (PTFs) have been developed (Sobieraj et al. 2001). The most




commonly used ‘class’ PTFs relate diserete soil types to hydraulic parameters and are the basis
upon which lookup tables are used in LSM and meteorological modeling applications.
‘Continuous’ PTFs are more detailed and relate measurable soil properties such as pereent of
sand and clay, porosity, and bulk density to hydraulic properties using regression equations
derived from soil samples. These functions are continnous without bounds, and therefore allow
more flexibility and independence in parameter values than those from leokup tables, More
importantly, continuous PTFs that are able to reproduce areal averaged conditions in LSMs have
beeﬁ shown to scale linearly in space and therefore could be used to infer spaﬁaﬂyéaggrégated
hydraulic parameters.  Although the advantages of continuous over class PTFs has been
demenstrated for hydrologic models (Soet and Stricker 2003), continuous PTFs are not routinely
employed in LSMs (exeept for CLM, give reference) or atmospherie_ models where the bread
definition and application of soil types still dominate the sinmlation of soil moisture.

b. Parameter Estimationt

An alternative to specifying highly-uncertain soil hydraulic parameters in LSMs is to use
parameter estimation and model calibration techniques. For example, a relatively simple and
well-established parameter estimation model (PEST; Dehert} 2004) has been used by a number
of scientific disciplines to optimizé ﬁlodel parameters given himited observations of fundamental
output variables. For example, by adjusting soil porosity in a LSM until the difference in
simulated versus observed soil moisture is minimized (through a specified objective function), an
LSM can be calibrated using PEST.

In recent years, more sophisticated estimation techniques have been developed to estimate
large and diverse sets of parameters. Liu et al. (2003) used a multi-objective technique for

offline and partially-coupled LSMs to examine the pathways by which a deficiency in the model




physics impacts coupled and uncoupled simulations. Following this work, Liu et al. (2004)
performed controlled parameter estimation studies of offline and partially-coupled models and
examined the effects of including atmespheric (in addition to seil and vegetation) parameters in
the optimization. Hegue et al. (2005) investigated the transferability of large optimized
patameter sets in an offline LSM across varying surface conditions and time periods, and
concluded that parameter optimization needs to be site-specific for best results, and should be
recalibrated for changes in seasons or over longer time intervals.

Scott et al. (2000) performed soil hydraulic parameter estimation using the Hydrus soil
moisture model at two sites in the Walnut Gulch Environmental Watershed (WGEW) in Arizona.
While the focus was on the vertical distribution of soil moisture and recharge at these points
alone, their results show that the model was least sensitive to K, and most sensitive to porosity
and b, which is consistent with other studies. Scott et al. (2000) also stress that the derived
parameters are ‘effective’ in nature, compensating for errors in the soil physics of the model, and
that further research is needed to assess the limitations of parameter estimation across spatially
heterogeneous and distributed watersheds.

Overall, parameter estimation studies have focused on large sets of parameters and complex
algorithms that require a great deal of computational time. From these studies, it could also be
argued that the bulk of the work done to this point has been focused on ‘model calibration’ rather
than parameter estimatioﬁ, particularly when there is significant model error accounted for in the
optimized parameters. It is important to note that the research presented here differs from suech
multi-objectives techniques, and is focused solely on calibrating a physically meaningful set of
soil hydraulic properties that improve soil moisture simulated by a LSM.

¢. Remote Sensing of Soil Moisture




Due to the limited nature of available soil instrumentation and measurement techniques
(e.g., theta probe, TDR, Vitel probe, gravimetric), a spatially continuous gnd reliable netwotk of
soil moisture measurements that could be used to initialize and evaluate LSMs does not exist.
As a result, passive microwave (L-band; 1.4 GHz) estimation of soil moisture has been has been
explored a great deal using instruments such as NASA’s push broom microwave radiometer
(PBMR; Schmugge et al. 1988). Due to the high spatial resolution required at this wavelength
(21 emy), passive nﬁerewave radiometers are typically flown on aircraft where they have shown a
great deal of promise in estimating soil moisture across varying surface conditions (Mattikalli et
al. 1998; Burke et al. 1997; Hollenbecek et al. 1996). Changes in the dielectric constant the top 5
em of soil are due to changes in the relative water content, and are evident in the brightness
temperature measured by the sensor.

More recently, techniques have been developed to estimate soil moisture using active
microwave remote sensing (C-band; 5.3 GHz). Because of the shorter wavelength (5.6 em),
active sensors can placed aboard satellite platforms and potentially acquire high resolution
estimates of soil moisture when combined with empirical and physical models (Thoma et al.
2006). To date, there have been mixed results using radar remote sensing to estimate soil
moisture due to the sensitivity of low frequency backseatter .to the nature and degree of surface
interactions and, consequently, the degree of signal correction required (see also review by
Moeoran et al. ‘2004).

Rgcently, Thoma et al. (2006) have developed an image differencing technigue for active
remote sensing that shows promise in eliminating much of the noise in C-band radar data. This

‘delta index’ method requires a single reference (dry) image to compare with a separate (wet)

image over the same domain (assuming no other changes in surface characteristics), thereby




isolating the change in backscatter due to soil moisture variations, This method acts to minimize
errors due to surface roughness effects using filtering techniques to reduce the amount of speckle
that is common in radar imagery (particularly in regions of high rock fragment).

The delta index is defined as foﬂows,

O e — Cay

O gy

delta index = 1y

where 6,4, is the backscatter (db) from a dry radar image, and o,,,, is the radar backscatter (db)
from the identical pixel loecation in a wet image. The delta index has been shown to have a near
linear (1:1) relationship with volumetric soil moisture, and is particularly applicable to semi-arid
regioﬁs where a spatially-uniform dry reference image can be acquired (Thoma et al. 2006).

d. Estimation of Soil Hydraulic Properties

Since the development of L-band passive microwave soil moisture retrievals, numerous
studies have attempted to use a combination of remote sensing imagery, LSMs, radiative transfer
(emission) models, and observations to infer soil hydraulic properties. For example, van de
Griend and O’Neill (1986) demonstrated that independent measurements of soil moisture from
microwave remote sensing and the thermal inertia of the soil can be related to hydrologic
properties of loamy sand soiis during an 11-day dry down period. This work was extended by
Camillo et al. (1986) using a combination of models and measurements for three distinet soil
types under highly controlled plot-scale conditions. They calibrated a soil mpdel (hydraulic
properties) until a coupled microwave emission model best matched the observations of L-band
miecrowave brightness temperature over a 3-day.drydown. Overall, Camillo et al. (1986) suggest
that a wider range of soil moisture conditions than those observed here may improve results by

better capturing the functional drying curves represented by the soil model parameterizations.




Fellowing the work of Camillo et al. (1986), Burke et al. (1997) and (1998) used a coupled
land surface-microwave emission model in conjunction with radiometer measurements to infer
soil properties for bare and vegetated soil plots. Performed over a 10-day period with a primarily
sandy soil and bare soil, corn, and soybean canopies, hydraulic parameters were adjusted to |
match the emission model output with L-band radiometer measurements. In agreement with
other studies, the model was found to be least sensitive to K, and most sensitive to b, and for the
corn-‘ and soybean plots vegetation parameters such as leaf area index and root density were
significant. Overall, these laboratory and peint-scale studies point towards the future use of
PTFs rather than a one-at-a-time parameter estimation approach to acquire spatially-distributed
soil properties over watersheds, and suggest that an intensive period of rﬁierowave images be
acquired to capture significant soil drydowns.

Feddes et al. (1993) examined the use of microwave measurements of soil moisture,
temperature, and albedo to calibrate and infer soil hydraulic properties. They found that the
‘effective’ soil parameters for the LSM eould be derived using this appreach. However, their
method also required a great deal of measurements and paraméters, such as evaporation and in-
- situ soil moisture at multiple depths, thereby limiting its application to highly centrolled and
plot-scale experiménts.

Hollenbeck et al. (1996) used PBMR estimates of soil moisture to infer soil conditions
during large-scale field experiment at HAPEX-Sahel. Two PBMR brightness temperature
images, two days apart, were used to calculate the relative change in soil moisture following a
precipitation event to infer soil hydraulic properties over the watershed. Though their results
were entirely based on qualitative image-differencing, they were able to isolate the impact of soil

properties on the image differences versus that of initial soil meisture, land eover, and rainfall
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distribution. The impact of antecedent precipitation is suggested for further study, as it greatly
impaéts the stage of soil drying being monitored by the PBMR.

Finally, Mattikalli et al. (1998) tested the laboratory results of Ahuja (1993), who
demonstrated that K, could be derived using remotely sensed estimates of 2-day changes in soil
moisture. They concentrated on calibrations of a hydrologic model for 3 layers of soil moisture
and parameters across 13 sites in the Little Washita, OK watershed. A significant qualitative
correlation between spatial maps of brightness temperature, soil moisture, and soil texture give
validity to the strong relationships between microwave measureménts and soil type and
properties for this region. Although treatment of the remaining hydraulic parameters, spatial
distribution of K, or a detailed evaluation against typical K, values was not presenfed, this
study confirms the theoretical framework by which a mere comprehensive approach to
estimating these parameters can be based.

e. Summary

These studies have demonstrated that the strong hnk between microwave remote sensing
and soil moisture (that is ultimately controlled by hydraulic parameters) can provide a pathway
to improve LSM seil physics and parameterizations. While these works have provided a strong
physical and methodelogical foundation by which to address these issues, each has limitations in
terms of scope and applicability that can now be improved upon by taking the suggested next
steps and utilizing new approaches and data. Specifically, this paper will bridge the gaps
between and extend previous studies by:

1) Determining the ability of parameter estimation to calibrate a LSM and to infer physically

meaningful estimates of soil hydraulic properties using pedotransfer functions and

_ microwave remote sensing of soil moisture at high spatial and temporal resolution;
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2) Testing the sensitivity of the calibration proeess and retrieved properties on precipitation
and soil drydown patterns using temporal sampling of remote sensing imagery; and
3) Applying the retrieved soil parameters to an independent dataset, and assess the ability of
a new image differencing technique of estimating soil moisture from active microwave
remote sensing to be used in the calibration proeess.
3. Methodelogy and Data
a ARMS Background
The Army Remeote Moisture System (ARMS; Tischler et al. 2006) project is an ongoing
collaboration between the U. S. Army Corps of Engineers, U. S. Department of Agriculture,
NASA-GSFC, and the University of Wyoming. The goal of this work is to provide improved
operational estimates of soil meoisture and hydraulie properties as inputs to decision-making
meodels based on factors such as troop and vehicle mobility and landing strip suitability. The
three main components of ARMS are 1) high-resolution microwave remote sensing of soil
moisture, used to calibrate a 2) land surface model by eptimizing hydraulic properties through 3)
parameter esﬁmation. The ultimate goal of ARMS is to be able to use iimited site information
and radar-based soil moisture retrievals to ealibrate an LSM for any location in the world and
enable soil moisture and properties to be more aceurately simulated going forward. While this
stady is focused on a semian'd testbed in Arizona, ARMS is also being tested at other diverse
locations across the U. S. (OK, GA, and CO).
b. Site Information
Thé Walnut Gulch Experimental Watershed (WGEW) is a located in southeastern Arizona,
covering 148 km® of semi-arid grassland and shrub covered rangeland. The detailed

instrumentation and long record length of the datasets available in this region have made the -
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WGEW the focus of many hydrological, meteorological, and remeote sensing studies. Most
notably, the Monsoon 90 field experiment (M90; Kustas et al. 1991) was conducted in this
region in July and August of 1990, and included the deployment of eight Metflux sites across the
watershed that measured standard meteorological data as well as land cover, soil moisture, and
soil property information. (Fig. 1)

Overall, the conditions throughout the WGEW are dominated by the summer monsoon
season of July and August, when the bulk of the annual 250-500 mm rainfall (mainly convective)
occurs. Rainfall events during the monsoon period are typically < 10 mm and only influence the
top 10 em of soil before being quickly returned to the atmosphere through ET within 3 days
(Kurc and Small 2004). This means that the near-surface soil moisture is the only variable
reservoir of moisture in this region. During the period from April-July, the soils often reach a
desiccated state before the onset of the monsoonal precipitation. Land cover consists mainly of
open shrubland (< 30% cover) in the western half of the WGEW, and grass cover (< 50% cover)
in the east.

At each Metflux site, standard meteorological variables were measured at 20-minute
intervals. Precipitation measurements were derived from a dense 98-gauge network covering the
entire watershed, from which spatially interpolated rainfall estimates (useful for meodeling
applications) have been generated using a variety of techniques (Garceia et al. 2006; Houser et al.
1998). Two supersites were furnished with additional instrumentation: Lucky Hills (LH)
located in the shrub dominated north-central part of the domain, and Kendall located in the
grasslands of the east. Soil meisture in the upper 5 em layer was estimated at each site using
multiple gravimetric measurements, and vertical profiles of soil moisture were estimated at

Kendall and LH using time domain reflectrometry, giving estimates from 5-50 em in depth.
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In addition to the M90 period, extensive meteorological and flux measurements at the LH
and Kendall sites and co-located precipitation and soil moisture measurements at the rain gauge
stations have been acquired for the 2002-2004 period. This dataset is temporally more extensive
than that of M90 and provides an independent dataset to evaluate LSM simulations as well as
new remote sensing data and parameter estimation techniques.
¢. Remote Sensing of Soil Moisture

Passive microwave remote semsing measurements (L band; 2l-em) of brightness
temperature were made over a significant portion of the WGEW during the M90 experiment
using NASA’s push broom microwave radiometer (PBMR). As mentioned, the PBMR has been
used extensively for measmﬁxg soil moisture across arid and semi-arid regions. Flights taken
during the Monsoon *90 experiment are deseribed in detail in Schmugge et al. (M90; 1994), and
during the Hydrologic Atmespheric Pilot Experiment in 1992 (HAPEX-Sahel; Hollenbeck et al.
1996). From this dataset, six daily estimates of near-surface soil moisture are available both
before (DOY 212) and after (DOY 214, 216, 217, 220, and 221) the onset of precipitation. The
PBMR data was resampled to 40 m resolution and mapped to a UTM grid that covers a subset of
the WGEW that includes all 8 Metflux sites. Schmugge et al. (1994) showed that brightness
temperature measurements correlated well with both rainfall and 0-5 em soil moisture measured
at the sites. Figure 2 shows the PBMR and gravimetric estimates of soil moisture at the Kendall
and LH sites along with gauge-interpolated precipitation during the M90 period. These plo-’és
highlight the desiceated soil conditions before the first and meost intense ramnfall event on DOY
213, and more importantly how the PBMR images captures the period of rapid seil drying

thereafter.

14




For the 2002-4 period active, or radar, microwave remote sensing (C band; 5.6em)
measurements were acquired from RADARSAT-1 imagery. A reference (dry) image was taken
on 19 January 2003 and combined with images during the monsoon period (29 July, 22 August,
and 15 September 2003) to derive soil moisture using the delta index approach (Egn. 1). The
three resulting 0-5 em soil moisture estimates eover a 6 week period spanning an extended
(seasonal) drydown period immediately following rainfall. The nominal resolution of
RADARSAT-1 is 7 meters and covers the entire WGEW domain, but the raw backseatter data
was further processed and filtered as discussed by Thoma et al. (2006) to 210 and 280 meter
resolution to reduce the effeets of speckle.

d. LSM

4The Noah land surface model (Chen et al. 1996) was originally developed from the land
component of the Oregon State University 1-D planetary boundary layer model (OSU; Mahrt
and Ek 1984), and is currently employed as the land surface scheme in NCEP’s operational
version of the Weather Research and Forecasting nonhydrostatic Mesoscale Model (WRF-
NMM). Extensive evaluations and discussion of the Noah physies and comparisons to other
LSMs has been performed by Robeck et al. (2003) among others. The hydroelogy within the
Neoah model is handled by a Richard’s equation formulation governed by the Campbell functions
(1974). Hydraulic parameters are typically estimated from preseribed soil types based on the
lookup tables and regression results of Cosby et al. (1984). Noah is typically used across a wide
range of scales offline and for meso- to global-scale meteorological applications when coupled
with atmospheric meodels. |

The offline version (2.6) of Noah was configured to run at 40 m resolution over the WGEW.

Foreing data was acquired from the LH site and applied uniformly to each pixel within the
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domain including downward shortwave and longwave radiation, air temperature, specific
humidity, and wind speed at a specified reference height (6 m), and surface pressure. As
suggested by Houser et al. (1998), the impacts of using of a single forcing dataset applied to the
entire watershed are minimal so long as spatially distributed precipitation is accounted for, which
is the case here. Indeed, simulations were performed using the Kendall forcing data in place of
LH, and resulted in changes in swrfaces fluxes that were less than the instrument error. To
ensure that the most detailed precipitation data was included, rainfall from 84 of the 98-gauge
network was broken down and interpolatéd in time and space at 20-minute and 40-meter
resolution. Gareia et al. (2006) provide a detailed deseription and evaluation of two methods of
interpolating raingauge data over the WGEW, and for the large number of gauges available here
both the inverse distance weighting (IDW) and multi-quadric biharmeoniec (MQ-B) schemes work
equally well for precipitation interpolation.

In Neah, vegetation parameters for each grid cell are derived from land cover maps (using
lookup tables). In a similar manner, ten soil parameters are typically derived at each grid cell
from soil texture maps from the Food and Agricultural Organization of the United Nations
(FAO; FAO-UNESCO 1984), State Soil Geographic Database (STATSGO; USDA 1994), or
Seil Survey Geographic Database (SSURGO; USDA 2002) datasets. Mocko et al. (2006)
performed a thorough evaluation of the impacts of varying inputs of land cover, soil type, and
precipitation on seil moist&re simulations. In this study, We use the best available land cover
data (UMD; Hansen et al. 2000), climatologically-derived values of albedo and vegetation
fraction, and MQ-B precipitation foreing as input to the Noah model. |

A standard 4-layer soil profile was used in Noah with a top layer of 5 em that matched the

repfesentativeidepth of in-situ and remeote sensing soil moisture measurements. The sensitivity
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of Noah to varying numbers (up to 20) and depths of soil layers was examined in detail, énd
results showed that adding additional layers and adjustment of vegetation rooting depth did not
significantly alter or improve results for this semi-arid region. Also, after careful calibration
with observed soil moisture values in the WGEW and the results of previous studies (Scott et al.
2000), the prescribed minimum value of soil moisture in Noah (i.e. wilting point) was lowered
from ©0.05 to 0.02 m’m™.

In aﬁ effort to ensure consistency and add flexibility within seil types and hydraulic
parameters, PTFs were incorporated into Noah for this study. Specifically, the PTFs derived by
Cosby et al. (1984) require only percentages of sand and clay to derive the hydraulic parameters,
which are then independent of soil texture classes or averaging. As discussed, previous studies
have pointed to the potential advantages of PTF approaches over discrete soil types and lookup
tabl‘es in LSMs. Though based on the identical soil samples and data of the default Noah lookup
tables, these PTFs ensure that a full range of soil parameter values based on soil composition are
dérived in a realistic and consistent manner.

e. Parameter Estimation

The Parameter Estimation model (PEST; Doherty 2004) is a widely-used tool for examining
sensitivities and estimating parameters in models spanning a wide range of applications. In
particular, the ability of PEST as a model-independent estimation technique to link with any type
of LSM using flexible parameter, observation, and convergence criieria make it optimal for use
in this study. Here, PEST was configured to run as a parent model to Noah (PEST-Neah), where
it evaluates and minimizes an objective function based on the differences between simulated and
observed soil moisture as follows
| M 05
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where N, is the number of PBMR observations used in the calibration and 6;ys., and 6, ppyr are
Noah simulated and PBMR observed 0-5 cm soil moisture at each observation time. Until the
convergence criteria are met, PEST iterates and adjusts the Noah parameters (sand, silt, and clay
percentages), evaluates if this decreases the model error, and adjusts the parameters accordingly.
Extensive testing of PEST-Noah has shown that there can be on the order of 2-20 optimizations
requiring up to 200 model runs before PEST converges in some cases, depending on how far
apart the initial parameters are from their optimal values.

To ensure the accuracy and repeatability of PEST-Neah simulations, synthetic twin
experiments were conducted. A single (control case) Noah simulation of the M90 period with
prescribed sand, silt, and clay values was performed, from which the 0-5 em soil moisture output
was extracted on six dates corresponding to the PBMR observations. PEST-Noah was then run
using Noah soil meisture output (in place of PBMR) as observations until the optimized sand,
silt, and clay percentages were found. This process was repeated at the Kendall and LH sites
using vastly different soil textures and moisture contents, and in each ease PEST-Noah returned
the precise sand, silt, and clay values prescribed in the control case. This gives confidence that
PEST-Noah can be run for a variety of conditions at WGEW and that the results are unique.

4. Results

a. M90 Calibration Fxperiments

Simulations were performed during the M90 period from 23 July — 9 August 1990 that
encompasses the 6 PBMR overpasses. This period allows ample time for the médel to
equilibrate to the very dry initial conditions leading up to the first PBMR image (31 July), and

before the onset of the monsoon and the first significant f}reeipitation event of the season (2
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August). The model was run using a 20-minute timestep, and output was generated 6\'161')’ Six
hours.

i. Metflux Sites

PEST-Noah was run at each of the 8§ Metflux sites using the closest 40m PBMR pixel to
each site on the 6 observation dates. Figure 3 shows the simulated soil moisture at the Kendéll
and LH sites before (FAO soils) and after (PEST) calibration of sand, silt, and clay along with
corresponding PBMR and in-situ gravimetric measurements. Despite the differences in
magnitude and drydown patterns exhibited between the sites, PEST is able to fit the simulated
soil moisture to the observations. Also evident is the significant improvement in simulations
using calibrated soil properties compared with those from default lookup table approach.

The RMSE and bias in simulated versus observed (PBMR) soil moisture for all 8 Metflux
sites are shown in Figure 4. The ARMS requirement of 5 percent (volumetric} aceuracy in soil
moisture prediction is easily satisfied at all the Metflux sites when using the PEST-Noah
calibration, with everall RMSE and bias values less than 2 percent. In particular, the bias in the
default Noah simulation using FAO seils has been greatly reduced using PEST to near zereo for
most locations. Examination of each individual site’s improvement in simulated soil moisture
(similar to that shown in Figure 3) makes it clear that PEST-Noah primarily acts to reduce the
bias by adjusting the overall magnitude and dynamic range (using seil texture) to match
observations.

Given the accuracy of the calibrated soil moisture at each site, it is useful to assess the
potential utility and aceuracy of optimized soil textures as well. Figure 5 shows a comparison of
the optimized sand, silt, and clay percentages at each site versus those measured during the M90

experiment by Schmugge et al. (1994). The optimized soil textures suggest a primarily sandy

19




soil, and are similar to the observed soils with greater than 65 pereent sand and less than 10
pereent clay content. Optimized values of silt content are lower than those observed, but this is
likely due to the setup of PEST-Noah where silt is actually a dummy variable and, more
impeortantly, that the PTFs are only a function of sand and clay content. Therefore, adjusting silt
in the simulations had zero impact on the soil moisture and value of the objective function
evaluated by PEST.

It is alse importént to consider the range and magnitude of hydraulic properties resulting
from the different soil textures. Table la presents the optimized values of sand, silt, and clay for
the Metflux sites and corresponding bydraulic properties derived from the PTFs in Noah. For
comparison, Table 1b lists observed soil textures from Schmugge et al. (1994) and the Nerth
American Monsoon Experiment (NAME; Higgins et al. 2006) (sites 1 and 5 only), and hydraulic
properties estimated using the Noah PTFs. Overall, there is relatively little variation in
properties estimated from PEST-Noah across the sites despite variation in sand content (73-100
pereent). Siﬁ}ilarly, hydraulic properties derived from observed textures exhibit a small range,
although their magnitude differs slightly from the PEST-Noah values due to the lower sand
petreentage (66-80 percent).

PEST-Noah suggests a slightly more sandy soil over the region than observed, but the
differences in the parameters that control thé soil moisture dynamics are not as significant as the
soil textures might indicate. Plausible values are estimated by PEST-Neah for each parameter
when compared with ebservations (even at site 7 where an estimate of 100 percent sand may not
appear physically realistic, bﬁt the resulting properties are within measured values). This is due
to the slowly varying relationships between soil texture and hydraulic propetties for high sand

contents governed by the PTFs.
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Evidence that the spatial differences in soil texture from PEST-Noah alse have physical
meaning is present in Fig. 5 and Table 1. For example, sites 2 and 7 are the extremes in
optimized soil textures from léwest (72 percent) to highest (100 percent) sand percentage.
Measurements at these sites also support that site 7 is sandiest, and site 2 has the highest mixture
of silt and clay. PEST-Noah follows the same trend at site 2, estimating a significant silt
percentage which, in effect, allows the sand percentage to be lower. Inspection of the soil drying
patterns observed at these sites during M90 confirms that at site 2 there is higher overall seil
moisture and a more consistent but slow drydown compared with site 7. These characteristics
and subtle differences in the drying curves are responsible for PEST-Noah estimating a less
sandy soil at site 2, which is representative of the observed local soils.

To get a better feel for the physical applicability of the parameters themselves, Table 2
preseﬁts hydraulic parameters derived from FAO, STATSGO, and SSURGO soil lookup tables,
a neural network-based PTF (ROSETTA; Schaap et al. 1998), PEST-Noah using PTFs, and
measurements made during 2002 (Schaap and Shouse, 2004) and 2004 (NAME). The FAO soil
type for all 8 Metflux sites is sandy loam, STATSGO is loamy sand, and the finer resolution
SSURGO data indicates 3 different soil types across the Metflux sites. As a result, there is
significant disagreement in hydraulie properties amongst these lookup tables alone. |

The PEST-Noah parameters fall within the range of established datasets and measurements,
yet there remain significant differences between lookup table and calibrated hydraulic properties.
This is due to the ability of the PTF approach in Noah to result in a unique (but realistic) soil
type that rigid lookup tables cannot deseribe. The ROSETTA PTF model suggests parameters
that are inconsistent for a sandy seil and with observations, and indicate this particular PTF may

noet be appropriate for this region. Based on the improvements in simulated soil moisture
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exhibited by PEST-Noéh presented earlier, the PEST-Noah seil textures and PTFs appear to be
the most accurate.

It is also important to note that the large spread of hydraulie properties across data sources in
Table 2 is a function of differences in way each property is estimated and what each represents.
For example, Ky, values of 250 em d' (NAME 2004) are estimated from soil samples under
laboratory conditions, even though actual precipitation rates could never be high enough to
observe similar saturation values in the field. Further, while the ROSETTA meodel suggests
values for K, that are an order of magnitude lower than those calculated in the laboratory (and
may be closer to a true saturated value observed in nature), such values result in inaccurate
simulations of soil meisture when employed in Noah. Overall, it is the combination of an
aceurate soil type fepresentation that ereates the range and scaling of hydraulic properties and the
physics of the LSM that determines the most appropriate parameters in this case.

PEST-Noah suggests a unique soil type that also corresponds well with observations (Table
2; Ko and 6,). Although the model is not perféct, the limitations of the Noah soil physies are not
significant enough to deter estimates of physically meaningful soil properties. On the contrary,
previous attempts at model calibration in the region have yielded parameter values that lie well
outside measured values, and as such could only be interpreted as ‘effective values’ that absorb
significantly more inherent model or forcing data deficiencies than they do represent real soil
properties. F or‘example, Scott et al., (2000).f0und values of 2.5 x 10 and 3.7 x 107 ms™ for K.
and 0.25 and 0.23 m’m’ for porosity at Kendall and LH, using a model calibration approach.
Using the PTFs, these K, values correspond to a soil texture of 39 percent sand, and the poresity

values are so low that a seil type cannet even be derived.
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From a broader perspective, it is important to assess whether PEST-derived soil parameters
can be employed in Noah and represent conditions at WGEW over longer timescales. Therefore,
the soil textures optimized from the M90 period were used to run Noah at Kendall and LH over
the 2002-4 evaluation period. Figure 6 shows the soil moisture simulated by PEST-Neah over a
54-day period in the summer of 2003 compared with in-situ observations from Vitel probes
surrounding LH and Kendall. Simulations with optimized parameters (RMSE =2.4/2.7, Bias = -
0.7/-1.9 percent for LH and Kendall) perform remarkably well compared to those using FAO
soils (RMSE = 5.7/13.9, Bias = 5.6/13.3 percent) over the extended period encompassing
numerous precipitation and drydown events. Once again, this highlights the ability of PEST to
adjust the dynamic range of soil moisture simulated' by Noah and effectively respond to
precipitation events, and supperts the use of optimized soil properties across this watershed for
seasonal (and longer) durations.

b. Temporal Sampling of PBMR Images

The high temporal resolution of the PBMR imagery eaptures a complete soil drying cyclé
for this region. To assess the broader applicability of the methodology déscribed above, it is
useful to look at precisely how many and which PBMR images are needed for accurate
calibration. The sensitivity of PEST-Neah to the number of PBMR observations was tested by
testing at all possible combinations of image in the ealibration process. Figure 6a shows the
eFror in simulated versus observed soﬁ moisture at Kendall for each of the image combinations
used in PEST-Noah. Kendall was chosen as a representative site because it exhibits the largest
range of soil moisture throughout the period and also was more difficult to calibrate due to 2

significant precipitation events and a strong drydown in between.
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These results show that there is a significant reduction in RMSE (and standard deviation)
once three or more images are used in the calibration. There are fewer naumber of data points for
single images because many éf these simulations were unable to converge with only one
observation. What is also evident is there is a large amount of scatter or variability when using
one or two images, but for three or greater all the points collapse indicating that it does not
matter which images are included. Note that the error using Noah with FAO seils is over 2 times
larger than even the worst PEST-Noah simulations using a single PBMR image.

The other main factor in the success of PEST-Noah is what portion of the soil drying curve
(i.e. dynamic range) is captured by the PBMR images. Figure 6b shows the error in simulated
soil moisture against the range n soil moisture captured by the image combinations described
above. The results look similar to Fig. 6a, and suggest that errors are significantly reduced if the
images used capture at least 5 percent (volumetric) variability in soil moisture during a drydown
period. When the full dynamic range in soil moisture is captured by the PBMR images, the
RMSE and bias (not shown) in PEST-Noah simulations are minimized, and are ~5 times lower
than using FAO soils.

Analyses also indicate that the second PBMR image (day 214) is the meost critical
observation to include in the calibration. This image was acquired immediately following a
rainfall event (Fig. 1a) and represents the maximum value of soil moisture during the period.
Out of the 7 simulations when PEST-Noah was unable to converge on a solution (i.e. not enough
information was coming from the observations), all occurred when day 214 was not included.
More importantly, out of the simulations using 5 out of 6 images, the only one unable to
converge was with day 214 omitted. Error analyses (not shown) alse support the importance of

including day 214, and the improvement in calibrations when this ‘wet’ image is included.

24




An independent test of the sensitivity of PEST-Noah to the choice of PBMR images was also
conducted. PEST-Neoah calibrations wére performed for the early part of the M90 period using
only the first 2 or 3 PBMR images, then evaluating Noah over the remainder of the period with
the optimized soil texture as input. The RMSE in simulated soil moisture using this approach are
plotted alongside the dependent results in Fig. 7, and are below 2 percent and similar to those
from calibrating and evaluating the whole M90 period. This suggests that on very short temporal
scales, PEST-Noah could be used with a few images early in the period to calibrate and estimate
soil texture, which could then be used to improve simulations going forward without requiring
additional images. This type of approach mimics that of an operational and data-limited
approach such as that of the ARMS project.

Overall, these results demonstrate thét the majority of the improvement using PEST comes
from calibrating the overall magnitude and dynamic range of soil moisture by adjusting the sanéi
and clay contents. Also, PEST-Neah significantly reduces errors in simulated soil moisture
regardless of the number and which images used. However, the calibration is most accurate
when you include more than two images in the calibration process, or at least one or two images
that capture and represent the observed range of soil moisture during a drying cycle.

¢. 2003 Calibration Experiments

The development of the delta index allows us to test the PEST-Noah approach using active
radar imagery. RADARSAT-1 images were acquired over the WGEW during July, August, and
September 2003 that cover a larger temporal and spatial extent than the PBMR images during the
M90 period (Fig. 8). As described earlier, the Delta Index data had to be aggregated from 40 to
210 and 280 meter resolutién to reduce the impact of speckle (amplified by the high rock content

of the soils in this region) on the soil meisture retrievals. PEST-Noah was still run with
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precipitation and land cover data at 40 meter resolution, and therefore required experiments to be
conducted to confirm the appropriateness of applying 210 and 280 meter resolution data from
active radar to that of a 40 meter pixel.

Analyses showed that the maximum differences in observed PBMR soil moisture within a
280 m” pixel surrounding each Metflux site were less than 2 percent andrwell within instrument
error (= 5 percent). PEST-Neah was then run individually over 7x7 points (to match the
resolution of the delta index) surrounding the Kendall site during the MO0 period using the 40
meter PBMR data to calibrate. Even at the site with the largest precipitation, land cover, and soil
moisture gradients (Kendall), the degree of spatial heterogeneity on the scale of 280 m’ does not
lead to significant differences in soil properties estimated by PEST-Noah. The remaining sites?
are even more uniform in nature, which therefore gives confidence to using the 210 and 280
meter delta index for LH and other sites in 40 meter PEST-Noah calibrations.

To cover the extended period between active radar overpasses, PEST-Noah was run from 30
June — 15 September 2003 using the interpolated precipitation and Kendall forcing data as for the
2003 evaluations deseribed previously. For the Kendall site, PEST-Noah converged on a
solution of 100 percent sandy soil for both the 210 and 280 meter images (compared with 89
percent sand; 11 percent clay in M90). At LH, the optimized values for sand, clay, and silt were
28, 72, and 0 percent using 210 meter data, and 20, 45, and 35 percent using 280 meter data
(compared with 99 percent sand in M90). |

Figure 9a shows that results from Kendall are comparable to the in-situ soil moisture
observations, and although this calibration suggests a slightly sandier soil than M90, the
differences in soil moisture and hydraulic properties are negligible as discussed in Seetion 3a.

Following the discussion in Section 3b, the differences in the M90 and 2003 period calibrations
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are primarily due to the lower magnitude range of soil moisture captured by the delta index
(0.153 max, 0.032 min) compared to the PBMR (0.169 max, 0.075 min). That the first image
coincides with a rainfall event means the soil type is less relevant or sensitive to calibration on
this date, and actually reflects the need toidry out to match the very low soil moistures given Ain
the next two images.

The PEST-Noah results for LH (Fig. 9b) suggest considerable differences in ealibrations
using the delta index compared with observations and the PBMR calibrations, with a much more
clayey soil and higher soil moisture throughout the period. Closer inspection of the in-situ
observations of soil moisture over the period shows a comparable range to Kendall. However,
the first delta index image (at both 210 and 280 meters) gives a rather wet soil moisture estimate
compared to observations, while the latter 2 images are relatively dry and alone would suggest a -
sandy soil aé in previous calibrations. In order to match the high moisture content of the first
image, PEST-Neah is forced to simulate a high‘ clay content which ha; a higher holding capacity
and strength.

The first radar overpass is more than 4 days after the last significant rainfall, which means
the soil has had significant time to dry out particularly for this region. In fact, studies have
shown that the typical response time to rainfall and complete drydown occurs within 2-3 days (or
less, depending on ground cover) in WGEW due to the shallow moisture reservoir and high bare
soil evaporation rates (Shamir et al. 2005; Kurc and Small 2004). That previous studies, M90
observations (PBMR and in-situ), and in-situ observations all depict a much more rapidly drying
soil at the site suggests that the delta index data may not be accurate on this date.

High frequency (active) microwave retrievals are difficult to obtain in regions with high

rock content due to increased backscatter and a weaker relationship with soil moisture (Jackson
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1992) even when aggregated to 280 meter resolution, and thus remains an issue. Clearly, if there
were ‘more images available, particularly during and immediately following rainfall events,
PEST-Noah would be able to perform better as for the M90 case. Houser et al. (1998) made
similar recommendations for data assimilation in this region, suggesting that soil moisture
observations are required at minimum once every storm event. For the 2003 experiments, it is
likely a combination of insufficient temporal sampling and the limited spétial resolution of active
remote sensing (through the signal-to-noise ratio) in the soil moisture retrieval process that
resulted in poor calibration at LH.
5. Discussion

As detailed point or regional surface characteristics are not always available, it is useful to
examine the calibration technique at lower spatial resolution. Figure 10 shows simulated soil
moisture from default (FAO) Noah and PEST-Noah simulations compared with the PBMR data
for the entire PBMR domain on DOY 221. In effect, PEST-Noah is minimizing the mean error
in simulated versus observed soil moisture across this region. The last PBMR date was chosen
because it represents the cumulative effect of calibrated parameters on improving soil moisture
throughout the M90 period, lowering both RMSE and bias from ~10 to 3 percent. While there is
only one set of optimized soil texture and hydraulic parameters estimated for the entire domain
(92 percent sand), the significant improvements indicate that on watershed scales with coarser
inputs the calibration process can still successful and potentially useful for deriving meaningful
soils data.

Overall, PEST-Noah is able to identify the dominating soil texture and hydraulic properties
of the WGEW. Ii is also important to emphasize that the calibration approach was designed to

focus on calibrating a consistent set of hydraulic parameters that would retain the physical
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characteristics of the region in question. Sophisticated technigues hﬁve been successful in
calibrating complex models, but yield ‘effective’ parameters that have lost physical meaning.
This practice is troubling for the future development and utilization of complex LSMs with
respect to the applicability of new and improved parameter data that are likely to be available
from remote sensing fechniques. As LSMs become increasingly complex, the ability to retain
physically meaningful and measurable parameters needs to be addressed in parallel, in a manner
similar to this study.

However, it is accepted that some of the errors in model physics, forcing, and
parameterizations are accounted for in PEST—Noah calibrations as well, and should be addressed
(Scott et al. 2000). While the approach taken here is rather simple compared to complex data
assimilatién or multi-objective parameter estimation techniques, it is easier to identify errors in
the model. One deficiency in the Noah model was identified, where the bare soil evaporation
factor should be adjusted (lowered) to allow for greater evaporation rates and soil drying for
semi-arid regions with sparse vegetation. The original value, when combined with FAOQ,
STATSGO, and SSURGO parameters in the default simulations led to soils that were
consistently too wet for this region (as shown in the results).‘

It has been noted in numerous studies of the WGEW that there is an unusually high rock
fragment content of the upper soil layers (and is not typically accounted for in categorical lookup
tables or PTFs). The unique soil type estimated by PEST-Noah at the Metflux sites is a primarily
sandy soil that is slightly less porous and more conductive than that observed. In fact, this may
be an attempt to indirectly account for the high rock content in Noah by adjusting the parameters

to match that of a rocky, yet sandy, soil (i.e. less pore space and increasing flow paths in the soil
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volume). A simple formulation to account for rock content in calculating hydraulic parameters is
currently being implemented into Noah to fest the sensitivity of the calibrations.

These issues demonstrates the potential for remote sensing data to also offer information on
model errors and biases (although small in this case), and advanced techniques such as those
offered by Bach and Mauser (2003) and Ines and Droogers (2002) to find and quantify
systematic errors in LSM physics. In particular, the recent and ongoing work of Amramowitz et
al. (2006) and the Model Parameter Estimation Experiment (MOPEX; Duan et al. 2006) are
promising new avenues of research that are working to determine the applicability of studies
such as this one to be applied to other LSMs and locations.

6. Conclusiohs

This paper has examined a straightforward method of using microwave remote sensing of
near-surface soil moisture to calibrate an offline land surface model, and in the process infer soil
texture and hydraulic properties at high spatial resolutions. This approach expands and improves
upon a wide body of previous work by incorporating pedotransfer functions into the LSM to
ensure consistent and physically meaningful soil parameters, and by addressing the temporal
sampling of remote sensing imagery needed for successful calibration. As a testbed for the
ARMS project, this research was able to retrieve soil texture and property estimates that
correspond well with observed soils over the WGEW. Once estimated for this region, these
parameters were also used to simulate soil moisture over seasonal time scales with a great deal of
accuracy compared to simulations with default soils and soil properties based on lookup tables.

Specific results of this study include the following:

1) Limited microwave retrievals of near-surface soil moisture can be used to calibrate a

LSM to within .02 m*m™ accuracy at high temporal and spatial resolutions.
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2) Optimizing soil hydraulic properties using PTFs gives better and more physically
meaningful results than a one-at-a-time parameter estimation approach.

3) Errors in the calibration process are minimized when there are at least 3 images included
that represent the typical range of moisture exhibited by the soil type during a drydown
period.

4) Independent tests indicate that this methodlogy can be successful in calibrating LSMs
over seasonal and longer timescales for use in specialized prediction systems.

Overall, these results suggest that ARMS could be applied at remote locations to simulate
soil moisture in a semi-operational context with limited remote sensing inputs. Simulations that
expand the 8 Metflux sites tested here to the full WGEW at 40m resolution of PEST-Noah are
ongoing, from which fully distributed maps of soil texture and hydraulic properties will be
produced. Alternatively, one could use the PEST-Noah approach after stratifying the watershed
using high resolution soils, land cover, or similar data to further examine the spatial distribution
of soil properties. Distributed soil property information can then be compared with existing soils
maps and the approach repeated and applied to other LSMs and regions.

Finally, the ability of active remote sensing and the delta index technique to retrieve soil
moisture on less than watershed scales needs to be investigated further before incorporated in an
ARMS-type of approach. While results heré have shown that 3 images are sufficient to calibrate
and obtain soils information, the soil moisture estimates must be accurate (within ~3-5 percent)
and capture a typical dynamic range of soil moisture for the region in question. The spatial
resolution of currently orbiting active remote sensing, determined in part by the signal-to-noise
ratio of the measurement, may be a limiting issue for this application. Also, the accuracy of soil

moisture retrieval from active remote sensing through approaches like the delta index or other
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retrieval methods (e.g. Alvarez-Mozos et al., 2005) ﬁeeds further investigation before it can be
incorporated with confidence. Future work on theb ARMS project will include testing the
methodology and evaluating the delta index at cold land, high relief, and highly coupled regions
of the U.S., where the calibration process should yield new insight [about?] the images and

accuracy required and influence of model physics for diverse surface conditions.

Acknowledgments

This work was supported by the Army Remote Moisture System project (Grant #?). Special

thanks go to Sujay Kumar and the LIS support team at NASA-GSFC.

32




REFERENCES

Abramowitz, G., Gupta, H., Pitman, A., Wang, Y., Leuning, R., Cleugh, H., & Hsu, K.-L.
(2006). Neural Error Regression Diagnosis (NERD): A Tool for Model Bias Identification
and Prognostic Data Assimilation. J. Hydrometeorol., 7, 160-177.

Ahuja, L. R., O. Wendroth, and D. R. Nielsen (1993). Relationship between initial drainage of
surface soil and average profile saturated conductivity. Soil Sci. Soc. Amer. J., 57, 19-25.

Alvarez-Mozos, J., J. Casali, M. Gonzalez-Audicana, and N. E. C. Verhoest (2005). Correlation
between Ground Measured Soil Moisture and RADARSAT-1 derived Backscattering
Coefficient over an Agricultural Catchment of Navarre (North of Spain). Biosystems
Engineering, 92, 119-133.

Bach, H. and W. Mauser (2003). Methods and Examples for Remote Sensing Data Assimilation
in Land Surface Process Modeling. IEEE Trans. Geosci. Rem. Sens., 41, 1629-1637.

Berbery, E. H.,, Y. Luo, K. E. Mitchell; and A. K Betts (2003). Eta model estimated
land surface processes and the hydrologic cycle of the Mississippi basin. J. Geophys. Res.,
108, 8852. -

Betts, A. K. (2000). Idealized model for equilibrium boundary layer over land. J.
Hydrometeor., 1, 507-523.

Betts, A. K., J. H. Ball, M. Bosilovich, P. Viterbo, Y. Zhang, and W. B. Rossow
(2003). Intercomparison of water and energy budgets for five Mississippi subbasins between
ECMWEF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990-1999.
J. Geophys. Res., 108, 8618.

Braun, F. J. and G. Schadler (2005). Comparison of Soil Hydraulic Parameterizations for
Mesoscale Meteorological Models. J. Appl. Meterol., 44, 1116.

Burke, E. J., R. J. Gurney, L. P. Simmonds, and T. J. Jackson (1997). Calibrating a soil water
and energy budget model with remotely sensed data to obtain quantitative information about
the soil. Water Resour. Res., 33, 1689-1697.

Burke, E. J., R. J. Gurney, L. P. Simmonds, and P. E. O'Neill (1998). Using a modeling
approach to predict soil hydraulic properties from passive microwave measurements. IEEE

Transactions on Geoscience and Remote Sensing, 36, 454-462.

Camillo, P. I, P. E. O’Neill, and R. J. Gurney (1986). Estimating Soil Hydraulic Parameters
Using Passive Microwave Data. IEEE Trans. Geosci. Rem. Sens., GE-24, 930-936.

Carlson, T. N, R. R. Gillies, and T. J. Shmugge (1995). An interpretation of methodologies for
indirect measurement of soil water content. Agric. Forest. Meteorol., 77, 191-205.

33




Chen, F., K. Mitchell, J. Schaake, Y. Xue, H. Pan, V. Koren, Y. Duan, M. Ek, and A. Betts
(1996). Modeling of land-surface evaporation by four schemes and comparison with FIFE
observations. J. Geophys. Res., 101, 7251-7268.

Cuenca, R. H., M. Ek, and L. Mahrt (1996). Impact of soil water property parameterization on
atmospheric boundary layer simulation. J. Geophys. Res. Atmos., 101, T269-7277.

Doherty, J. (2004). PEST: Model Independent Parameter Estimation. Fifth edition of user
manual. Watermark Numerical Computing, Brisbane, Australia.

Duan, Q., J. Schaake, V. Andreassian, S. Franks, G. Goteti, H. V. Gupta, Y. M. Gusev, F.
Habets, A. Hall, L. Hay, T. Hogue, M. Huang, G. Leavesley, X. Liang, O. N. Nasnonova, J.
Noilhan, L. Oudin, S. Sorooshian, T. Wagener, E. F. Wood (2006). Model Parameter
Estimation Experiment (MOPEX): An overview of science strategy and major results from
the second and third workshops. J. Hydrology, 320, 3-17.

Ek, M. and R. H. Cuenca (1994). Variation in soil parameters: Implications for modeling surface
fluxes and atmospheric boundary-layer development. Bound.-Layer Meteorol., 70, 369-383.

Ek., M. B, and A. A. M. Holtslag (2003). Influence of Soil Moisture on Boundary Layer Cloud
Development. J. Hydrometeorol., 5, 86-99.

Entekhabi, D. et al. (1999). An Agenda for Land Surface Hydrology Research and a
Call for the Second International Hydrological Decade. Bull. Amer. Meteor. Soc., 79, 27743-

2746.

FAO-UNESCO, 1981, Soil Map of the World, Ten Volumes, Food and Agriculture
Organization, Rome.

Feddes, R. A., M. Menenti, P. Kabat, W. G. M. Bastiaanssen (1993). Is Large-Scale Inverse
Modelling of Unsaturated Flow with Areal Average Evaporation and Surface Soil Moisture
as Estimated from Remote Sensing Feasible? J. Hydrology, 143, 125-152.

Findell, K. L. and E. A. B. Eltahir (2003a,b). Atmospheric Controls on Soil
Moisture-Boundary Layer Interactions. Part I Framework Development and Part II:
Feedbacks within the Continental United States. J. Hydrometeorol., 4, 552-583.

Garcia, M., C. D. Peters-Lidard, and D. C. Goodrich (2006). Spatial interpolation of
precipitation in a dense gauge network for monsoon storm events in the southwestern U. S.

Water Resour. Res., under review.

Gupta, H.V., L. A. Bastidas, L., S. Sorooshian, W.J. Shuttleworth, and Z.L.. Yang (1999).
Parameter Estimation of a Land Surface Scheme using Multi-Criteria Methods. J. Geophys.
Res., 104, 19,491-19,504.

Gutmann, E. D. and E. E. Small (2005). The effect of soil hydraulic properties vs. soil texture in

34



land surface models. Geophys. Res. Letters, 32, 1L02402.

Hansen, M. C., R. S. Defties, J. R. G. Townshend, and R. Sohlberg (2000). Global land cover
classification at 1km spatial resolution using a classification tree approach. JInt. Jour.
Remote Sens., 21, 1331-1364.

Hess, R. (2001). Assimilation of screen-level observations by variational soil moisture
analyses. Meteorol. Atmos. Phys., 77, 145-154.

Higgins W., D. Ahijevych, J. Amador, A. Barros, E. H. Berbery , E. Caetano, R. Carbone , P.
Ciesielski , R. Cifelli , M. Cortez-Vazquez , A. Douglas , M. Douglas , G. Emmanuel, C.
Fairall , D. Gochis, D. Gutzler, T. Jackson, R. Johnson, C. King, T. Lang, M. L Lee, D.
Lettenmaier, R. Lobato, V. Magana, J. Meiten, K. Mo, S. Nesbitt, F. Ocampo-Torres, E.
Pytlak, P. Rogers, S. Rutledge, J. Schemm, S. Schubert , A. White, C. Williams, A. Wood,
R. Zamora, C. D. Zhang (2006). The NAME 2004 field campaign and modelling strategy.
Bull. Amer. Meteorol. Soc., 87, 79-94.

Hogue, T. S., L. Bastidas, H. Gupta, S. Sorooshian, K. Mitchell, and W.
Emmerich (2005). Evaluation and Transferability of the Noah Land Surface Model in
Semiarid Environments. J. Hydrometeorol., 6, 68-84.

Hollenbeck, K.J., T.J. Schmugge, G.M. Hornberger, and J.R. Wang (1996). Identifying soil
hydraulic heterogeneity by detection of relative change in passive microwave remote
sensing observations, Water Resour. Res., 32, 139-148.

Houser, P. R., W. J. Shuttleworth, J. S. Famiglietti, H. V. Gupta, K. H. Syed, and D. C. Goodrich
(1998). Integration of soil moisture remote sensing and hydrologic modeling using data
assimilation. Water Resour. Res., 34, 3405-3420.

Ines, A. V. M. and P. Droogers (2002). Inverse Modelling in Estimation Soil Hydraulic
Functions: A Genetic Algorithm Approach. Hydrology and Earth System Sciences, 6, 49-

65.

Jacobs, C. M. J., and H. A. R. Debruin (1992). The sensitivity of regional transpiration to land-
surface characteristics — significance of feedback. J. Climate, 5, 683-698.

Jackson, T. J. (1992). Rock fraction effects on the interpretation of microwave emission from
soils, IEEE Trans. Geosci. Rem. Sens., 30, 610-616.

Koster, R. D. ete al. (2004). Regions of Strong Coupling Between Soil Moisture and
Precipitation. Science, 305, 1138-1140.

Kure, S. A., and E. E. Small (2004). Dynamics of evapotranspiration in semiarid grassland and

shrubland ecosystem during the summer monsoon season, central New Mexico. Water
Resour. Res., 40, W09305.

35



Kustas, W.P., D. C. Goodrich, M. S. Moran, S. A. Amer, L. B. Bach, J. H. Blanford, A.
Chehbouni, H. Claassen, W. E. Clements, P. C. Doraiswamy, P. Dubois, T. R. Clarke, C. S.
T. Daughtry, D. I. Gellman, T. A. Grant, L. E. Hipps, A. R. Huete, K. S. Humes, T. J.
Jackson, T. O. Keefer, W. D. Nichols, R. Parry, E. M. Perry, R. T. Pinker, P. J. Pinter, Jr., .
Qi, A. C. Riggs, T. J. Schumgge, A. M. Shutko, D. I. Stannard, E. Swiatek, J. D. van
Leeuwen, J. van Zyl, A. Vidal, J. Washburne, and M. A. Weltz (1991). An Interdisciplinary
Field Study of the Energy and Water Fluxes in the Atmosphere-Biosphere System over the
Semiarid Rangelands: Description and Some Preliminary Results. Bull. Amer. Meteor.
Soc., 72, 1683-1705.

Liu, Y., L. A. Bastidas, H. V. Gupta, and S. Sorooshian (2003). Impacts of a Parameterization
Deficiency on Offline and Coupled Land Surface Model Simulations. J. Hydrometeorol, 4,

901-914.

Liu, Y., H. V. Gupta, S. Sorooshian, L. A. Bastidas, and W. J. Shuttleworth (2004). Exploring
Parameter Sensitivities of the Land Surface Using a Locally Coupled Land-Atmosphere
Model. J. Geophys. Res., 109, 21101-21114.

Lin, Y., H. V. Gupta, S. Sorooshian, L. A. Bastidas, and W. J. Shuttleworth (2005).
Constraining Land Surface and Atmospheric Parameters of a Locally Coupled Model Using
Observational Data. J. Hydrometeorol., 6, 156-172.

-Mattikalli, N. M, E. T. Engman, L. R. Ahuja, and T. J. Jackson (1998). Microwave Remote
Sensing of Soil Moisture for Estimation of Profile Soil Property. Int. J. Remote Sensing, 19,
1751-1767.

Mocko, D. M., C. D. Peters-Lidard, M. A. Tischler, Y. Wu, M. E. Garcia, and J. A. Santanello,
Jr. (2006). The Relative Roles of Soil, Land Cover, and Precipitation Uncertainty for
Watershed-scale Soil Moisture Prediction in a Semi-arid Environment. Water Resour. Res.,

in prep.

Mohanty, B. P, P. J. Shouse, D. A. Miller, and M. T. van Genuchten (2002). Soil property
database: Southern Great Plains 1997 Hydrology Experiment. Water Resour. Res., 38,
#1047.

Moran, M. S., C. D. Peters-Lidard, J. M. Watts, and S. McElroy (2004). Estimating soil
moisture at the watershed scale with satellite-based radar and land surface models. Can. J.
Remote Sens., 30, 805-826.

Pitman, A. J. (2003). The Evolution of, and Revolution in, Land Surface Schemes Designed for
Climate Models. Int. J. Climatol., 23, 479-510.

Rawls, W. T, D. L. Brakensiek, and K. E. Saxton (1982). Estimation of Soil Water Properties.
Trans. of the A.S.A.E., 1316-1320.

Rhodin, A., F. Kucharski, U. Callies, D. P. Eppel, and W. Wergen (1999).

36



Variational analysis of effective soil moisture from screen-level atmospheric parameters:
Application to a short-range weather forecast model. Q. J. R Meteorol. Soc., 125, 2427-

2448.

Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. J. Appl.
Phys., 1,318-333.

Robock, A., L. F. Luo, E. F. Wood, F. H. Wen, K. E. Mitchell, P. R. Houser, J. C. Schaake, D.
Lohmann, B. Cosgrove, J. Sheffield, Q. Y. Duan, R. W. Higgins, R. T. Pinker, J. D. Tarpley,
J. B. Basara, and K. C. Crawford (2003). Evaluation of the North American Land Data
Assimilation System over the southern Great Plains during the warm season. J. Geophys.
Res., 108, No. 8846.

Santanello, J. A. and T. N. Carlson (2001). Mesoscale Simulation of Rapid Soil Drying and its
Implications for Predicting Daytime Temperature. J. Hydrometeorol., 2, 71-88.

Schaap, M. G., F. J. Leij, and M. T. van Genuchten (1998). Neural network analysis for
hierarchical prediction for soil hydraulic properties. Soil Sci. Soc. Am. J., 62, 847-855.

Schaap, M. G., and P. J. Shouse (2004). Hydraulic data were collected and analyzed by Marcel
G. Schaap, Univ. California at Riverside (SAHRA Science and Technology Center, NSF
EAR-9876800) and Peter J. Shouse, GEBJ Salinity Laboratory (USDA-ARS), Riverside.

Schmugge, T., Jackson, T. J., Kustas, W. P., Roberts, R., Parry, R., Goodrich, D. C., Amer, S.
A., & Weliz, M. A. (1994). Push broom microwave radiometer observations of surface soil
moisture in Monsoon *90. Water Resour. Res., 30, 1321-1327.

Schmugge, T. (1998). Applications of passive microwave observations of surface soil moisture.
J. Hydrology, 213, 188-197. '

Scott, R. L., W. J. Shuttleworth, T. O. Keefer, and A. W. Warrick (2000). Modeling multiyear
observations of soil moisture recharge in the semiarid American Southwest. Water Resour.

Res., 36, 2233-2247.

Shamir, E., Imam, B., Gupta, H. V., and Sorooshian, S. (2005). Application of temporal
streamflow descriptors in hydrologic model parameter estimation. Water Resour. Res., 41,

WO06021.

Sobieraj, J. A., H. Elsenbeer, and R. A. Vertessy (2001). Pedotransfer functions for estimating
saturated hydraulic conductivity: implications for modeling storms flow generation. J.
Hydrology, 251, 202-220.

Soet, M., and J. N. M. Stricker (2003). Functional behaviour of pedotransfer functions in soil
water flow simulation. Hydrol. Proc., 17, 1659-1670.

Sun, W. Y., and M. G. Bosilovich (1996). Planetary boundary layer and surface layer sensitivity

37



to land surface parameters. Boundary-Layer Meteorol., 77, 353-378.

Tischler, M., M. Garcia, C. Peters-Lidard, M. S. Moran, S. Miller, D. Thoma, S. Kumar, and J.
Geiger (2006). A GIS framework for surface-layer soil moisture estimation combining
satellite radar measurements and land surface modeling with soil physical property
estimation. Environ. Modeling and Software, in press.

Thoma, D. P., M. S. Moran, R. Bryant, M. Rahman, C. D. Holifield-Collins, S. Skirvin, E. E.
Sano, and K. Slocum (2006). Comparison of Four Models to Determine Surface Soil
Moisture from C-band Radar Imagery in a Sparsely Vegetated Semiarid Landscape. Water
Resour. Res., 42, W01418.

Troen, I. B., and L. Mahrt (1984). A simple model of the atmospheric boundary layer;
sensitivity to surface evaporation. Boundary-Layer Meteorol., 37, 129-148.

U.S. Department of Agriculture, Natural Resources Conservation Service, 1994, State Soil

Geographic (STATSGO) database for Arizona,
http://www.essc.psu.edu/soil info/index.cgi?soil data&statsgo, Penn State University Earth

Systems Science Center, State College, PA.

U.S. Department of Agriculture, Natural Resources Conservation Service, 2002, Soil Survey
Geographic (SSURGO) Database for Cochise County, Arizona, Douglas-Tombstone Part,
http://www.ncgc.nres.usda.gov/branch/ssb/products/ssurgo/, National Cartography and
Geospatial Center, Ft. Worth, TX.

Vandegriend, A. A. and P. E. O’Neill (1986). Discrimination of soil hydraulic properties by
combined thermal infrared and microwave remote sensing. ESA Proceedings of the 1986
International Geoscience and Remote Sensing Symposium (IGARSS '86) on Remote Sensing:
Today's Solutions for Tomorrow's Information Needs, 2, 839-845.

38




LIST OF TABLES

Table 1: Optimizéd sand, silt, and clay percentages estimated from a) PEST-Noah simulations at
the eight Metflux sites compared with b) those observed by Schmugge et al. (1994) and during
the NAME (Higgins et al. 2006) in 2004, and associated hydraulic properties computed for each

using the PTFs employed in Noah (Cosby et al. 1984).

Table 2: Soil hydraulic parameters used in the Noah model at the a) Kendall and b) Lucky Hills
sites derived from default lookup tables based on FAO, STATSGO, and SSURGO classifications
and those computed from PEST-Noah estimates of sand, silt, and clay percentages at each site
using the PTFs in Noah. For comparison, soil properties estimated by Scott et al. (2000) from a
neural network PTF (ROSETTA; Schaap et al. 1998) are shown along with site-specific
estimates of hydraulic parameters based on soil samples taken during 2002 (Schaap and Shouse

2004) and NAME (Higgins et al. 2006) in 2004.
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LIST OF FIGURES

Figure 1: The Walnut Gulch Experimental Watershed in southeastern Arizona (outlined in
black) covers 148 km® and is heavily instrumented with meteorological, flux, and rain gauge
data. The M90 experiment included 8 Metflux sites (=) of which Lucky Hills (Site 1) and
Kendéﬂ (Site 5) were supersitgs. Overlain are estimates of volumetric soil moisture (m’> m™

*100) derived from Push Broom Microwave Radiometer measurements on DOY 214.

Figure 2: Soil moisture in the 0-5 cm layer at the a) Kendall and b) Lucky Hills sites during the
Monsoon ’90 study period from (m) PBMR retrievals (Schmugge et al. 1994) and (A)
gravimetric measurements with standard deviations of the 3 measurements made at each site.
Also plotted are the 6-hourly precipitation totals during the period at each site as derived from

the 84-gange interpolated dataset over WGEW (Garcia et al. 2006)

Figure 3: Simulated 0-5 cm soil moisture from default and PEST-calibrated Noah simulations
for the a) Kendall and b) Lucky Hills sites during the M90 period. Measurements of soil

moisture from PBMR and gravimetric sensors on the 6 optimization dates are also shown.

Figure 4: Bias and RMSE in simulated versus observed (PBMR) 0-5 cm soil moisture during the
M90 period using default (FAO; gray) and optimized (PEST; black) soil properties at each

Metflux site.

Figure 5: Percentages of sand, silt, and clay estimated by PEST-Noah at the eight Metflux sites

compared with in-situ measurements from Schmugge et al. (1994).
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Figure 6: Near-surface soil moisture simulated by Noah using PEST-derived soil properties and
default soil parameters (FAQO) compared against Vitel probe observations at the a) Kendall and

b) Lucky Hills sites during summer 2003.

Figure 7: Errors in simulated versus observed 0-5 cm soil moisture at the Kendall site for
varying a) numbers of PBMR images used in PEST-Noah and b) ranges of soil moisture covered
by these images. The lightly shaded points indicate simulations that were calibrated using only

the first two and three PBMR images.

Figure 8  Soil moisture (m3 m™) estimated from RADARSAT-1 active microwave
measurements over the WGEW on a) 29 July, b) 22 August, and c) 15 September 2003.
Backscatter was aggregated from 7 to 280 meters to reduce the effects of speckle and converted

to soil moisture using the delta index image differencing technique (Thoma et al. 2006).

Figure 9: Near-surface soil moisture simulated by PEST-Noah using 210 and 280 meter Delta
Index as observations at the a) Kendall and b) Lucky Hills sites during summer 2003. Also

shown are observations of soil moisture from Vitel probes surrounding each location.
Figure 10: RMSE and bias in simulated versus observed 0-5 cm soil moisture using a) default

(FAOQ) soils and b) soil properties optimized using PEST-Noah on DOY 221. A single set of

parameters were optimized for the entire PBMR domain.
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Tables

a)
PESTSite |%9aND| %St | % LAY [ st [y emat)] w0 | @) |
1 (LH) 99 0 1 3.01x10° | 260.1 3.1 0.364 0.0383
2 73 22 5 1.20x10° ) 1037 3.7 0.397 0.0839
3 91 0 9 227x10° 196.1 43 0.374 0.0487
4 86 0 13 1.91 x10° 165.0 49 0.381 0.0567
5 (Kendall) 89 0 3 212x10° 183.2 47 0.376 0.0518
6 90 0 10 2.19x10° 189.2 45 0.376 0.0502
7 100 0 0 3.12x10° 269.6 2.9 0.363 0.0372
8 98 0 2 2.91x10° 251.4 3.2 0.366 0.0395
1 66 10 24 9.42x10° 81.4 45 0.406
1 (NAME) 68 21 11 1.01 x10° 87.2 4.7 0.400
2 69 11 20 1.05x10° 90.7 4.7 0.402
3 71 9 20 1.12x 107 96.8 43 0.399
4 73 5 22 1.21x10° 104.5 3.7 0.397
5 69 11 20 1.05x10° 90.7 47 0.402
5 (NAME) 67 17 16 9.76 x10° 84.3 55 0.400
6 67 8 25 9.76 x 10° 84.3 42 0.405
7 80 6 14 1.54 x 107 133.1 3.9 0.388
8 72 8 20 1.16x 107 100.2 42 0.398

Table 1: Optimized sand, silt, and clay percentages estimated from a) PEST-Noah
simulations at the eight Metflux sites compared with b) those observed by Schmugge et
al. (1994) and during the NAME (Higgins et al. 2006) in 2004, and associated hydraulic
properties computed for each using the PTFs employed in Noah (Cosby et al. 1984).
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Figures

PBMR observed on Day 214
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Figure 1: The Walnut Gulch Experimental Watershed in southeastern Arizona (outlined
in black) covers 148 km” and is heavily instrumented with meteorological, flux, and rain
gauge data. The M90 experiment included 8§ Metflux sites (=) of which Lucky Hills (Site
1) and Kendall (Site 5) were supersites. Overlain are estimates of volumetric soil
moisture (m® m™ *100) derived from Push Broom Microwave Radiometer measurements

on DOY 214.
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Figure 2: Soil moisture in the 0-5 cm layer at the a) Kendall and b) Lucky Hills sites
during the Monsoon *90 study period from (&) PBMR retrievals (Schmugge et al. 1994)
and (A) gravimetric measurements with standard deviations of the 3 measurements made
at each site. Also plotted are the 6-hourly precipitation totals during the period at each
site as derived from the 84-gauge interpolated dataset over WGEW (Garcia et al. 2006)
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Figure 3: Simulated 0-5 cm soil moisture from default and PEST-calibrated Noah
simulations for the a) Kendall and b) Lucky Hills sites during the M90 period.
Measurements of soil moisture from PBMR and gravimetric sensors on the 6

optimization dates are also shown.
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Figure 4: Bias and RMSE in simulated versus observed (PBMR) 0-5 c¢m soil moisture
during the M90 period using default (FAO; gray) and optimized (PEST; black) soil
properties at each Metflux site.
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Figure 5: Percentages of sand, silt, and clay estimated by PEST-Noah at the eight
Metflux sites compared with in-situ measurements from Schmugge et al. (1994).
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Figure 6: Near-surface soil moisture simulated by Noah using PEST-derived soil
properties and default soil parameters (FAO) compared against Vitel probe observations
at the a) Kendall and b) Lucky Hills sites during summer 2003.
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Figure 7: Errors in simulated versus observed 0-5 cm soil moisture at the Kendall site for
varying a) numbers of PBMR images used in PEST-Noah and b) ranges of soil moisture
covered by these images. The lightly shaded points indicate simulations that were
calibrated using only the first two and three PBMR images.
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Figure 8: Soil moisture (m3 m™) estimated from RADARSAT-1 active microwave
measurements over the WGEW on a) 29 July, b) 22 August, and ¢) 15 September 2003.
Backscatter was aggregated from 7 to 280 meters to reduce the effects of speckle and
converted to soil moisture using the delta index image differencing technique (Thoma et
al. 2006). "
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Figure 9: Near-surface soil moisture simulated by PEST-Noah using 210 and 280 meter _
Delta Index as observations at the a) Kendall and b) Lucky Hills sites during summer
2003. Also shown are observations of soil moisture from Vitel probes surrounding each

location.
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Figure 10: RMSE and bias in simulated versus observed 0-5 cm soil moisture using a)
default (FAO) soils and b) soil properties optimized using PEST-Noah on DOY 221. A
single set of parameters were optimized for the entire PBMR domain.






