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Abstract

A three-dimensional aerothermodynamic model of the shuttle orbiter’s tile overlay repair
(TOR) sub-assembly is presented. This sub-assembly, which is an overlay that covers the
damaged tiles, is modeled as a protuberance with a constant thickness. The washers and
augers that serve as the overlay fasteners are modeled as cylindrical protuberances with
constant thicknesses. Entry aerothermodynamic cases are studied to provide necessary
inputs for future thermal analyses and to support the space-shuttle return-to-flight effort.
The NASA Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used
to calculate heat transfer rate on the surfaces of the tile overlay repair and augers. Gas flow
is modeled as non-equilibrium, five species air in thermal equilibrium. Heat transfer rate
and surface temperatures are analyzed and studied for a shuttle orbiter trajectory point at
Mach 17.85. Computational results show that the average heat transfer rate normalized
with respect to its value at body point 1800 is about BF=1.9 for the auger head. It is also
shown that the average BF for the auger and washer heads is about BF=2.0.

Nomenclature

(i, j, k) Grid points indices in curvilinear
computational coordinates

(x, y, z) Reference coordinate system

α Angle of attack

δ Boundary layer thickness

ε Emissivity

d Protuberance diameter

d Spacer diameter

dauger Auger head diameter

H Altitude

h Spacer height

k Tile overlay thickness

M Mach number

T Temperature

U Velocity

BF Normalized heat transfer rate, Bump
Factor

BPt Body Point

CAIB Columbia Accident Investigation
Board

ISS-HVFW International Space Station
Heavy Vehicle Forward Weight

LAURA Langley Aerothermodynamic Up-
wind Relaxation Algorithm

RCG Reaction Cured Glass

RTF Return to Flight

SiC Silicon Carbide

STS Space Transportation System

TOR Tile Overlay Repair

TPS Thermal Protection System
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1 Introduction

This report, prepared at the request of the Orbiter Tile Overlay Repair project, represents
a formal delivery of analysis results from NASA Langley Research Center to Johnson Space
Center.

A description of the process utilized to perform Orbiter tile damage assessment is re-
ported by Campbell et al. [2]. In that report, individual aeroheating tools with nominal
re-entry heating environment characterizations are emphasized, where Orbiter aeroheating
environment is defined by nominal smooth body heating. Smooth body refers to an un-
damaged Thermal Protection System (TPS). Accordingly, critical damage to the TPS is
characterized by three different damage scenarios. These scenarios are damage that 1) does
not generate a catastrophic situation but may create a sequence of significant damage propa-
gations which leads to an unsafe situation, 2) does not generate a catastrophic situation but
minimal damage propagation may lead to an unsafe situation, 3) does generate an unsafe
situation due to a severe damage. In this report, only the tile damage that is considered
as a second category problem out of these scenarios is addressed. The current tile-repair
option is a thin shell outer surface barrier, which is referred to as the Tile Overlay. This tile
overlay is a thin Carbon Silicon Carbide plate that is being placed on a damaged surface
of the orbiter and attached with several screws and washers. These screws and washers
are known as augers and spacers, respectively. Figure (1) shows the tile overlay, cavity
insulation, gasket, and fasteners. Aerothermodynamic analyses of the tile overlay repair are
reported by Lessard [7]. In his study, effects of the overlay fasteners on surface heat fluxes
were not included.

Auger
(monolithic ceramic)

Spacers
(Carbon SiC with CBS coating)

Insulation

Overlay Plate

(Carbon SiC with CBS coating)

Gasket

(Saffil Blanket)

Tiles

Orbiter structure

Figure 1. Schematic of the tile overlay including fasteners, gasket, and saffil batting on the
damaged shuttle orbiter surface.

In this study, the effects of tile-repair augers on surface heat transfer rate are investigated.
To minimize computational time, smooth body Orbiter CFD data is used as a baseline
solution. Laminar, five-species gas is assumed, with non-equilibrium, non-ionizing air flow.
Thermal radiation is assumed to be at equilibrium on all surfaces with constant emissivity
of 0.89.

This report is organized as follows: the nominal surface heat transfer rate on the smooth
body shuttle orbiter is given in Section 2. Section 3 presents descriptions of the TOR and
physical properties of the augers and spacers used in the analyses. Results of the tile-repair
auger analyses are presented in Section 4. Finally, a brief summary of the results is provided
in Section 5.
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2 Smooth Body Shuttle Orbiter

A shuttle orbiter STS-107 trajectory point is considered with a free-stream velocity
U = 5536.49 m/s [18164.34 ft/s], density ρ = 0.26069× 10−3 kg/m3 [1.63× 10−5 lb/ft3],
temperature T =238.48 K [429.26 R], and angle of attack α = 39.02◦. The corresponding
Mach number is M = 17.85. Free-stream flow conditions, including the shuttle altitude, are
tabulated in Table (1). These flow conditions are essentially the same for both STS and
ISS-HVFW trajectories at Mach 17.85 (see Lessard [7]).

Table 1. Free-Stream Flow Conditions.
H T U M ρ α

(km) (K) (m
s ) ( kg

m3 ) degrees
60 238.48 5536.49 17.85 0.26069× 10−3 39.02

In the TOR computational aeroheating analyses, the solution of the smooth body shuttle
orbiter is imposed as an initial condition. Due to the hypersonic nature of the flow field
surrounding the damaged area, the flow condition upstream of the tile remains unchanged
and therefore is not simulated; thus, only a small portion of the shuttle around the damaged
site is modeled.

Figure (2) shows the heat transfer rate on the surface of the shuttle orbiter, normalized
to the nominal heat transfer rate located at BPt1800 ( (x, y, z) = (32.13 m [1265 in], 0,
6.63 m [261 in]), with respect to the orbiter’s reference coordinate system). This normalized
heat transfer rate is referred to as the Bump Factor (BF ). Surface heat transfer rate at the
damage site is computed as 5.63 W/cm2 [4.96 BTU/ft2.sec].

Figure 2. Contour variations of bump factor based on the BPt1800 on the surface of the
smooth body shuttle orbiter at Mach = 17.85 and α = 39.02◦.

Note that the boundary layer thickness at BPt1800 is δ = 5.13 cm [2.02 in], which is
thicker than the tile overlay by a factor of about 20. Therefore, it is less likely that the
boundary layer transition occurs at this small k/δ ratio.
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3 Tile Overlay Repair

As previously described, the tile overlay, which is an on-orbit patch for thermal protection
of the damaged site, is considered for the tile repair aerothermodynamic analysis. In this
analysis the overlay plate central bulge that is due primarily to the presence of insulation
materials underneath the TOR is not included. The gasket location is schematically shown
in Figure (1). The tile overlay is modeled as a protuberance of 38.1 cm×63.5 cm×0.254 cm
[15 in×25 in× 0.1 in] with rounded edges of 8.9 cm [3.5 in] radii. The aerothermodynamic
results of the tile overlay will be used as a baseline solution for analysis of the augers and
spacers. Discussion of the tile-repair auger analyses are given in subsequent sections.

Figure (3) shows the overlay with structured surface grid used in aeroheating analyses
of the tile overlay. The grid is carefully generated near the edges of the overlay to preserve
the viscous boundary layer. Using the orbiter Atlantis tile layout, the overlay is parallel to
the tile edges, which lie at a 45◦ angle with respect to the orbiter centerline. A schematic of
the damaged site, orientation of the tile overlay repair, and location of BPt1800 are shown
in Figure (4).

Figure 3. The tile overlay with the surface grid, and the reference point BPt1800.

3.1 Tile Overlay Fasteners (Spacers & Augers)

Several augers are used to patch the tile overlay repair to the shuttle surface. Due to the
high conductivity of these augers and spacers, heat may conduct to the layer underneath
the tiles, leading to a significant increase in temperature of the tile bond line and aluminum
substructure of the orbiter.

In this study, spacers are approximated as protuberances with diameter d = 2.16 cm
[0.85 inch] and height of h = 0.14 cm [0.055 in]. (The auger head is a circle with diameter
dauger = 1.37 cm [0.54 in] in the center of the spacer cylinder. The top of the auger head
and the spacer head are on the same surface.)

4 Entry Aeroheating Computations

Entry aeroheating computations are performed to investigate the effects of tile overlay pro-
tuberance on surface heat transfer rate. The Langley Aerothermodynamic Upwind Relax-
ation Algorithm (LAURA) [3,4] was employed for the entire study. LAURA is a hypersonic,
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multi-species, chemical reacting code developed for re-entry arothermodynamic analyses. In
this study, a non-equilibrium, non-ionizing, five-species air model is considered under the
laminar flow condition. Non-equilibrium processes occur when the time required for a pro-
cess to accommodate itself to local conditions within a region is of the same order as the
transit time within the same region. Since the particle time relaxation-pressure correlation
is not precisely known, and there is no evidence that at this flow condition gas is at thermal
non-equilibrium [5], thermal equilibrium is assumed. Note that ionization does not occur
until the temperature reaches 9000K. Based on the trajectory point considered here, and
according to the velocity-altitude map reported by Anderson [1] and Koppenwallner [6], the
air is not ionized at this point.

Radiative equilibrium wall temperature with constant emissivity of ε = 0.89 and Reaction
Cured Glass (RCG) catalycity are assumed. Note that engineering approximations can be
made for different emissivity and catalycity conditions by multiplying the emissivity ratio
with the normalized heat transfer rate, or bump factor. Hence, higher emissivity leads to
higher heat fluxes.

Again, the computational result of the smooth body shuttle orbiter is used as an initial
condition. The computational domain considered to study the effects of protuberances on
aeroheating is about five times larger than the tile overlay surface area. This relatively small
computational domain is chosen because any flow disturbance due to overlay and/or augers
rapidly diffuses within the viscous region.

Only spacers and augers thought to be the most critical are analyzed. The augers are
chosen according to predicted surface heat transfer rate on the overlay protuberance. Results
for these critical spacers and augers will be used in future structural thermal analyses and
tile overlay failure assessment studies.

4.1 Tile Overlay Aerothermodynamic Analysis

The tile overlay placed on the damage site is shown schematically in Figure (4). This overlay
alignment is referred to as Overlay Placement number 3. The tile overlay is discretized using
a multi-block structured grid with dimensions (i, j, k) = (16, 74, 64). Figure (3) shows the
tile overlay surface grid. The computational domain with appropriate boundary conditions
is shown in Figure (5).

The computations were performed for a free-stream Mach number M = 17.85 and Tem-
perature T = 238.48 K [429.26 R], at 39.02◦ angle of attack α. Convergence was achieved
after nearly 20,000 iterations and until no further significant changes were observed. Figure
(6) shows Mach contour variations at a section perpendicular to the tile overlay. This figure
shows that the flow field remained supersonic, which further verifies the assumptions made.

Variations of tile overlay surface temperature are shown in Figure (7). Note that flow is
in the positive x direction. Figure (7) shows a jump in surface temperature at the upstream
edge of the overlay. This jump is due to the high kinetic energy of the gas, and the fact
that the overlay edges are modeled as sharp rather than rounded edges.

The surface heat transfer rate distribution, normalized with respect to BPt1800, is shown
in Figure (8). This figure shows approximately 2.5 times higher heat transfer rate on the
upstream edge of the overlay when compared with BPt1800. A relatively uniform surface
heat transfer rate is predicted for the rest of the overlay with slightly higher values than
BPt1800.

The result of a more detailed analysis of overlay surface BF variation is shown in Figure
(9). Figure (9a) shows tile surface BF variation, with distance measured from the most
upstream corner and along the flow direction. The surface heat transfer rate decreases
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CFD tile overlay on the Atlantis tile layout 

matches the so called Replacement No.3 

Damage site

Figure 4. Schematic of the CFD tile overlay repair and its location with the Atlantis tile
layout on the damage site. (View from outside of the Orbiter, with its nose toward top of
the page.)

Figure 5. Schematic of the computational domain and boundary conditions used for
aerothermodynamic analysis of the tile overlay. (The view is looking from the inside of
the Orbiter structure out into the flowfield.)
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Figure 6. Mach contour variations at a section perpendicular to the tile overlay surface at
Mach number M = 17.85 and α = 39.02◦.

Figure 7. Tile overlay surface temperature variations at Mach number M = 17.85 and
α = 39.02◦.
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Figure 8. Variations of bump factor with respect to Body Point 1800 (BPt1800) on the
surface of the tile overlay at M = 17.85 and α = 39.02◦.

sharply from BF=2.4 to about BF=1.2 as flow moves away from the tile overlay corner.
An inset of the figure shows the surface bump factor variation near the upstream TOR edge.
This close-up figure shows a minimum BF of about 1.0 at a distance of about 10 inches
from the upstream TOR edge.

Figure (9b) shows the tile overlay surface bump factor, normalized with respect to
BPt1800, across the overlay width as shown with the arrow. Figure (9b) shows that the
BF decreases quickly from about 1.5 at the tile edge to about 1.0 on downstream of the tile
edge. The BF continues to decrease until the flow reaches approximately 80% of the tile’s
width. The BF then increases to 1.20 at the other side of the tile overlay.

(a) (b)

Figure 9. Variations of the tile overlay surface bump factor with a) distance from the
upstream corner of the overlay along the flow direction, and b) distance across the tile
overlay.
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4.2 Augers & Spacers Aeroheating Analysis

According to aeroheating analyses of the tile overlay, shown in Figures (7)-(9), the augers
located on the upstream edge of the overlay are critical to the aerothermal analysis. There-
fore, these augers are considered for areohermodynamic analyses. The spacers and augers
are approximated as protuberances with heights of 0.14 cm [0.0552 in] and diameters of d
= 2.16 cm [0.85 in]. (Note again that the auger head is in the central region of the spacer
with a diameter of dauger = 1.37 cm [0.54 in].) The center of the first auger considered here
is located at (x, y, z) = (31.75 m, 0.24 m, 6.61 m)[1250.58 in, -9.48 in, 260.44 in]. Figure
(10) shows schematically the location of this auger on the tile overlay.

Figure 10. Schematic of the location of the auger/spacer on the tile overlay.

Parametric studies were conducted for grid sensitivity analyses. Computational grids
with four different resolutions were generated as shown in Figure (11). Computational
entry aeroheating analyses were performed for all four cases to determine auger surface
heat transfer rate distributions. Figure (12) shows heat transfer rate variation on the auger
surface. Flow is in the positive x direction. Figure (12) shows that the surface heat transfer
predictions are in good agreement for all cases.

To better examine the aeroheating results, surface heat transfer rates were normalized
with respect to BPt1800. Figure (13) shows BF contour variation on auger, spacer, and
overlay surfaces. This figure shows that the computed results are insensitive to grid resolu-
tions. Figure (13) shows a BF of about 3.0 at the edges of the spacer. The actual spacer
geometry is approximated as a protuberance with sharp edges as opposed to rounded edges.
Thus, the edge BF may not reflect an actual value.

A more detailed surface BF distribution on auger and spacer heads is shown in Figure
(14). This figure shows variations of the surface BF with two distances; one from the
upstream edge of the spacer along the flow direction (shown with longer arrow) and the
other perpendicular to the flow direction and across the spacer (shown with shorter arrow).
The distance between the edges of the overlay and the spacer is marked upstream with
negative values on the x axis. The second part of the graph belongs to the auger and spacer

9



(a) (b) (c) (d)

Figure 11. Computational grids for the auger and spacer with different resolutions; a) four
blocks for the spacer surface and one block for the auger surface, b) five blocks for both
spacer and auger surfaces, c)six blocks for spacer surface and two grid blocks for auger
surface, d)ten blocks for the spacer surface and four grid blocks for the auger surface.

heads. Part of the graph that corresponds to the auger head is also marked for clarification.
Figure (14) shows the BF decreases from 2.4 at the upstream edge of the overlay to about
0.5 just upstream of the spacer edge. As the gas flow sees an immediate increase in surface
height, the surface heat transfer jumps to a maximum value of BF=3.9 at the edge of the
spacer. The BF then dissipates as the flow moves toward the other side of the spacer.

The spacer surface BF on a plane perpendicular to the flow direction is shown in Figure
(14). BF variation is shown with a dark line in this figure, which shows a relatively uniform
surface heat flux with nominal value of about BF=2.0.

To estimate the overall BF on the surfaces of the auger and spacer, BF values are
integrated over the surface area. These results are tabulated in Table (2), which shows an
overall BF of about 2 for auger and spacer surfaces. The numerical results were almost
exactly the same for all different grid resolutions.

Table 2. Normalized heat transfer rate, BF , for auger and spacer surfaces with different
grid resolutions.

Bump Factor (BF ) with respect to BPt1800
Auger Surface Auger + Spacer Surfaces

Grid Resolution

a 1.91 2.02
b 1.93 2.02
c 1.93 2.02
d 1.91 2.02

4.2.1 Spacer Aeroheating Analysis (with larger computational domain)

To assure that such a small computational domain was sufficient in the aeroheating analysis,
a larger computational domain was considered and compared with previous results. Figure
(15) shows a multi-block surface grid for this larger domain. In this case, grid resolution (b)
was adapted for the spacer and auger. A total of 119 blocks was generated for this case.

Flow conditions with identical thermodynamic properties were employed. Figure (16)
shows the computed aeroheating results of normalized surface heat transfer rate, BF , for the
spacer, auger, and tile overlay. Figure (16a) shows the corresponding BF contour variations
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(a) (b)

(c) (d)

Figure 12. Contour variations of heat transfer rate [ BTU
ft2.sec ] with grid resolution (a), (b),

(c), and (d). flow conditions are at M = 17.85 and α = 39.02◦.
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(a) (b)

(c) (d)

Figure 13. Contour variations of normalized surface heat transfer rate (Bump Factor) with
grid resolution (a), (b), (c), and (d). Flow conditions are at M = 17.85 and α = 39.02◦.
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Figure 14. Variations of the auger and spacer surfaces bump factor with distances a) from
the upstream edge of the tile overlay, along the direction, and b) across the spacer and
auger, perpendicular to the flow direction.

and a very high surface heat flux with BF of about 3.3 on the upstream edge of the spacer.
This high BF was primarily due to the fact that the spacer was modeled as a protuberance
with sharp edges. Variations of the auger/spacer surface BF with distance are shown in
Figure (16b). The distance is measured from the upstream edge of the spacer and along the
flow direction. Figure (16b) shows a maximum BF of about 3.3 at the most upstream corner
of the spacer. This BF then decreases to a minimum value of about BF=2.0 on the most
downstream location of the spacer. The surface BF on the tile overlay repair downstream
of the spacer and along the flow direction is shown in Figure (16c). This figure shows a
low BF of about 0.4 just downstream of the spacer. This value increases quickly to about
BF=1.2 afterward, and monotonically increases to a maximum of about BF=1.6 on the
downstream edge of the tile.

In order to compare the results, average surface bump factors on the spacer and auger
surfaces were evaluated. The average surface BF for the combined auger and spacer surfaces
was about 2.05, in close agreement with that reported in Table (2) using a smaller com-
putational domain. This justified the small-domain consideration in aeroheating analysis.
Note, however, that computational aerothermodynamic analyses of the spacer and auger on
the tile overlay using a larger domain provided a more in-depth understanding of the tile
overlay surface heat fluxes.

4.3 Tandem Auger & Spacer Aeroheating Analysis

Effects of tandem auger and spacer on the aeroheating were investigated. Location of the
tandem auger is schematically shown in Figure (17). In this case, grid resolution (a) of
Figure (11) was adapted for each one of the augers and spacers. Both spacers were included
in the aeroheating calculations; the single spacer solution was not reused during this analysis
to allow for possible interference effects.

Computational aeroheating analysis was performed and surface heat transfer rate and
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Figure 15. Surface grid used for the spacer seroheating analysis using larger computational
domain.

bump factor were calculated. Figure (18) shows variations of heat transfer rate for the
tandem. It is seen from this figure that only a small portion of the tandem surface is
exposed to high temperature gas flow. Based on the computational studies, no significant
effects of upstream spacer on downstream spacer surface heat transfer rate was observed.
Also, flow-channeling did not occur between these spacers. There is, however, a possibility
that the flow regime may be transient and/or turbulent downstream of the spacers. This
possibility is not considered here.

Figure (19) shows the surface bump factor, BF , for the tandem auger. Similar to the
graph shown in Figure (14), a line-cut through downstream spacer and auger is shown
in this figure for comparison. This figure shows that the normalized auger surface heat
transfer rate remains unchanged with BF of about 1.91. However, the upstream spacer
surface BF is increased with the combined auger and spacer BF of 2.07. Note that based
on the aeroheating results of the individual auger and spacer on the tile overlay, BF is 2.02.
Figure (19) shows a decrease in surface BF from the leading edge of the tile overlay and
a sudden increase in its value at the upstream edge of the spacer to a maximum value of
about BF=3.0. This high surface heat transfer rate drops quickly and reaches a minimum
value of BF=1.6 downstream of the spacer. These results are tabulated in Table (3). This
table indicates that the downstream auger surface BF is 1.77, which is less than that for
the upstream one. The combined auger and spacer BF for the downstream one is, however,
1.91. A comparison was made with the previous study where only the upstream auger was
modeled. Table (3) shows that the auger BF located on the most upstream edge of the tile
overlay is not affected by the downstream auger.

Table 3. Tabulated data of normalized heat transfer rate, BF , for auger and spacer surfaces
for different modeling types.

Modeling Type Bump Factor (BF) with respect to BPt1800
Auger Surface Auger + Spacer Surfaces

Tandem Upstream 1.91 2.07
Downstream 1.77 1.91

Individual (from Table 2) 1.91 2.02
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(a) (b)
(c)

Figure 17. Location of the tandem auger and spacer on the tile overlay, b) geometries and
boundaries of the tandem auger and spacer, and c) the tandem multi-block structured grids.

Figure 18. Variations of the tandem auger and spacer surfaces heat transfer rate [ BTU
ft2.sec ]

with flow conditions at M = 17.85 and α = 39.02◦.
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Figure 19. Variations of the normalized surface heat transfer rate, BF , for the tandem auger
and spacer surfaces with flow conditions at M = 17.85 and α = 39.02◦.

5 Conclusions

In this investigation shuttle orbiter return to flight entry aeroheating analyses were con-
ducted. Aerothermodynamic properties of a specific Tile Overlay Repair, including fasteners
(spacers and augers), were numerically analyzed using the Langley Aerothermodynamics Up-
wind Relaxation Algorithm (LAURA) for a Mach 17.85 trajectory point. Non-equilibrium,
non-ionizing five species gas was assumed, and the surface temperature and heat trans-
fer rate distributions were computed. On the basis of the presented results, the following
conclusions may be drawn:

• The upstream edge of the Tile Overlay Repair is exposed to the highest gas temper-
ature of about 1300K at the Mach 17.85 trajectory point, and a heat transfer rate
equivalent to Bump Factor of about 2.4.

• The aeroheating analyses are insensitive to grid resolutions studied in this investiga-
tion.

• In modeling the individual auger on the tile overlay, the average normalized surface
heat transfer rate with respect to BPt1800 is BF=1.9. The combined auger and spacer
BF is 2.02, however.

• In analysis of the tandem auger, the upstream spacer did not significantly affect the
aeroheating properties of the downstream auger. The average downstream auger sur-
face BF is 1.77, while the combined auger and spacer surface BF is 1.91.
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