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Convection thermo - vibrationnelle d'un système liquide à deux phases et stratifié 
 
Résumé : La réponse d'un système liquide à deux pahses et stratifié sujet à une vibration parallèle à un 

gradient de température imposé est analysée en utilisant une méthode hybride thermique Lattice-
Boltzmann (HTLB). Les vibrations considérées correspondent aux translations sinusoïdales 
d'une cavité rigide à une fréquence fixe. Les couches sont couplées thermiquement et 
mécaniquement. L'interaction entre la convection thermique causée par la gravité et les 
vibrations est étudiée. La capacité des vibrations à intensifier l'écoulement, le transfert de chaleur 
et la déformation de l'interface est étudié. Pour la gamme des paramètres considérés, les résultats 
indiquent que l'effet du nombre vibratoire de Rayleigh et de la fréquence vibratoire sur un 
système liquide à deux phases et stratifié est très différent que son effet sur un système liquide à 
une phase. La compraraison de ces deux systèmes et discutée. 
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Abstract : The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed 

temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The 
vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. 
The layers are thermally and mechanically coupled. Interaction between gravity-induced and 
vibration-induced thermal convection is studied. The ability of applied vibration to enhance the 
flow, heat transfer and interface distortion is investigated. For the range of conditions 
investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational 
frequency on a two-phase stratified fluid system is much different than that for a single-phase 
fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-
phase fluid system are discussed. 
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1. Introduction 

Thermal convection of a single-phase fluid system in an enclosure induced simultaneously by gravity and 
vibration has received a great deal of attention in the past because of its importance in material processing or 
in heat transfer under vibrational environment [1-4] The influence of various factors, such as vibrational 
direction, vibrational Rayleigh number and frequency etc. on structure of the convective flows and the heat 
transfer in the cavity have been investigated. Particular attention has been given to mean or 
thermovibrational convection of single component fluids in plane fluid layers and cylindrical cavities, and 
includes the effects of gravity or weightlessness (See Ref.1 and references therein.) 
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Studies of thermal convection in a two-layer fluid system with external vibration are important for 
evaluating the effect of the unavoidable vibrations of satellites and spacecraft mechanical structures on two-
phase fluid systems. The investigation of the behavior of two-layer fluid systems subject to vibration has 
mostly dealt with isothermal systems. Kenner [5] discussed theoretically the stability of the interface 
separating two immiscible incompressible fluids of different densities and viscosities in the case of fluids 
filling a cavity which performs horizontal harmonic oscillations. Duval et al. [6] focused on the interfacial 
dynamics of two-layer liquids under an oscillating gravitational field under isothermal conditions. They 
found that the interfacial region acts as a vortex source sheet and is susceptible to Kelvin-Helmholtz and 
Rayleigh-Taylor instabilities. The vortices produced along the interface can serve as a stirring mechanism to 
promote local mixing.  Ivanova et al. [7] examined interfaces between immiscible fluids under horizontal 
vibration. 

In this paper, results of a set of simulations of vibrational convection in a non-isothermal two-layer fluid 
system are reported. The effects of external high-frequency vibration on not only the flow characteristics and 
interfacial dynamics, but also the heat transfer process are examined.  

2. Numerical Model  
 
The physical model is shown in Fig. 1. A rigid cavity containing two different immiscible liquids and 
subject to a periodic lateral translation, cos( )b tω n  with fixed amplitude and frequency is examined. Here  
is the displacement amplitude,  is a unit vector parallel to the translation direction and 

b
n ω  is the angular 

frequency of vibration.  Fluid motion in the container is modeled using the two-phase thermal lattice 
Boltzmann model (TLBM) described in Refs. 8, and 9 with a straightforward modification to account for 
motion of the cavity. Additional details concerning modeling two-phase fluids using the lattice Boltzmann 
method are found in Ref. 10. In the TLBM the fluid motion is computed using a two-particle distribution 
function approach proposed by He et al. [11, 12].  The two distribution functions satisfy the following 
equations for distribution functions ( , , )tξ r e  and ( , , )f tφ r e  where e is a so-called microscopic velocity [8-
10,11], r is the position and t is time. 

The Boltzmann equation for ( , , )tξ r e  is [8-10]   
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The term  represents the macroscopic interfacial force between the phases which is associated 
with a steep density gradient. Bulk molecular interactions are accounted for through the 
potential

2
s κρ ρ= ∇∇F

2 2
0BRT Aψ ρ χ ρ= − , and the parameters A and B can be set so as to determine the degree of phase 

separation.  For fixed values of A and B the parameter κ  determines the magnitude of the interfacial 
tension. The pressure and momentum are computed from distribution function ( , , )tr e  as follows: ξ

 p dξ= ∫ e , (3) 
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where the integral is over the microscopic velocity space. To calculate the density it is convenient to define 
an index function φ  (which represents, in some sense the phase fraction) such that  

 f dφφ = ∫ e . (5) 

The distribution function, ( ), ,f fφ φ= r e t , for the index function φ  must be calculated as a function of time 
and position. This will be discussed below. The density is then calculated from the index function and is  
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Here a subscript  and h  denote the light and heavy fluid, respectively. Instead of setting transition values 
of the density 

l
ρ  at , the transition values of the index function 0 cr φ  are set to be 0.883 TT = 0.0403lφ =

0.2589
 and 

hφ = , respectively, for a given practical situation the proper density values are then determined by (6)
after setting hρ and lρ to the appropriate values. The dependence of density on temperature is introduced 

through , and .  The distribution function, ( )T ( )Tρ ρ=h hρ ρ= l l
φ , for the index function f φ  satisfies 

[12] 

 
( ) 0

( ) ( )( , , ) ( , , )
eq

eq
t

f ff t f t
RT

φ φ

fφ φ ψ φ
τ ϕ φ
− ∇ ⋅ −

∂ + ⋅∇ = − −r
e ur e e r e φ , (7) 

where 

 
2

/ 2
0 0

( )exp
(2 ) 2

eqf
RT RT

φ φ
π

⎡ ⎤−
= −⎢ ⎥

⎣ ⎦

e u
D

 . (8) 

In summary, to simulate Boussinesq-type incompressible multiphase flow, two distribution functions, ξ , 
φ  are employed. The index distribution function f f φ  is used to track the density distribution through 

equations (7), (5) and (6), while the auxiliary distribution function ξ  is used to obtain the pressure and 
momentum fields through equations (3) and (4).   The lattice Boltzmann equations are discretized and are 
coupled with a macroscopic energy equation that provides an updated temperature field which is used to 
calculate the density in the discretized body force term ( )tG .  

It is convenient to describe the fluid motion in a frame of reference that moves with the translational 
displacement of the cavity. Thus, the fluid velocity, relative to this moving frame, will be zero at cavity 
boundaries. As a consequence of this change of reference frame oscillatory translations of the container 
appear as a time-dependent acceleration ( ) 2 cos ( )t b tω ω= −g g n g

( )tg ( )

0 , where denotes the steady 
acceleration due to gravity at the earths surface. In the hybrid thermal lattice Boltzmann model (TLBM)   

appears in a body force term 

0

( ) ( )t tρ ϕ=G g in eq. (1). 
 
The aspect ratio, , of the cavity is set to be Ar 2Ar =  unless otherwise stated. The upper layer fluid II 
(silicone oil, 2cSt) is assumed to be a density-linear fluid while bottom layer fluid I (water) a density-
inversion fluid with a quadratic dependence of density on temperature. Each fluid is characterized by its 
thickness , thermal conductivity , specific heat at constant volume , volumetric mass density ih ik vic iρ , 
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kinematic viscosity iν , and thermal expansion coefficient iβ . Unless otherwise mentioned, the ratio of the 
physical properties of the fluid II to fluid I have been fixed as 0.9rρ = , 0.19rk = , , 0.4vrc = 1.27rν = . 
Initially, two layers of immiscible fluids at equal heights ( 1 2 0.5h h H= = ) fill the cavity and are at rest and 
heat transfer is by conduction (a linear horizontal temperature gradient in x ). The dimensionless variables 
for this problem are the Rayleigh numbers, 2 3

1 1 1 1/Ra g T Lλ Δ α= 2 3
2 2 2 2/Ra g T Lν , β Δ α ν=

c

 (here 
, where and  are, respectively, the hot and cold temperatures of the vertical walls), hT T TΔ = − hT cT

2
2

2

1

r

d
dT
ρβ

ρ
=  and 1λ  are related to the thermal expansion coefficient in the lower layer 

through 1 1( refT T )β λ= − .  The Prandtl number is 2 2Pr / ,ν α= and the capillary number is 

2 2 2 0/Ca Lρ ν α σ= ,  The Prandtl number is fixed at Pr 27.6= . Another important dimensionless parameter is 
the density inversion parameter that describes the location of the density inversion temperature with respect 
to the sidewall temperatures. It is given as 
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Note that, the dimensionless temperature θ  lies in the interval 0 1θ≤ ≤  while I−∞ ≤ ≤ +∞ . 
 
Two additional dimensionless parameters are necessary to characterize the vibration conditions. They are the 
vibrational Rayleigh number and dimensionless frequency and are given by 2

2 2( ) / 2Rav b TL 2β ω ν= Δ α and 
, respectively. The effect of translational vibration on two-phase fluid flow is examined for 

fixed , , 

2
2/LΩ ω α=

1 160Ra = 3
2 5 10Ra = × 33.2 10Ca −= × , 0.43I =  (thermocapillary forces are neglected).  

 
The local Nusselt number and the average value at vertical walls are 
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The Rayleigh numbers are kept constant at 1 160Ra = , , and , and . 3
2 5 10Ra = × 33.2 10Ca −= × 0.43I =

We first calculated thermal convection in both layers due to gravity alone and then examined the effects of 
vibration for a range of vibration amplitudes and frequencies. 
 
3. Results and Discussion 
 
3.1 Convection due to gravity alone 
 
In the upper density-linear fluid layer, because the density gradient is negative, / 0d dTρ < , the fluid with 
lower density rises near the hot sidewall while that with higher density descends near the cold sidewall, 
which produces a clockwise convective roll (also called “regular roll”). However, in the lower layer, 

 divides the fluid into two sections, the left and right sections. In the left section, the temperature is 
higher than the density inversion point and “regular roll” cell shown in Fig. 2(a) develops. In the right 
section, the temperature is lower than density inversion temperature and a second anticlockwise convective 
roll (so called “inversion roll”) cell forms.  However, this flow pattern is different with that in the single-
phase fluid with density inversion where both rolls extend from bottom to top of the liquid layer and can be 
symmetric [17].  Due to the strong viscous coupling between the top density-linear fluid layer and bottom 
density-inversion fluid layer, the convection in the top layer enhances the ”inversion roll” cell of the right 
section and squeezes and pushes the “regular roll” cell in the left section to the left-bottom corner. A density 
inversion plane can be assumed between these two sections where 

0.43I =

0.43I = as shown in Fig. 2(a). The 
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temperature profiles can also reflect the effect of different vorticity convection rolls. As show in Fig. 2 (c), 
the temperature distribution in the upper layer distort seriously because a strong clockwise convection.  

 
3.2  Convection induced by both gravity and vibration  
 
Vibration in a direction parallel to the temperature gradient imposed on the two-layer fluid system produces 
the response shown in Fig. 3. The vibrational Rayleigh number and frequency for this case are 5000Rav =  
and , respectively. Results are presented in terms of dimensionless variables. The quantities , 500Ω = L

2
2/L α ,  are taken to scale length, time and temperature, respectively. For a high frequency 

vibration, the velocity and temperature always oscillate with a single dominant frequency as shown in Figure 
3 and the phase difference with the driving force is either close to 

hT T TΔ = − c

π  or / 2π , for velocity or temperature, 
respectively. Figure 4 displays the time histories of the average Nusselt number at the vertical cold wall. In 
general, the average Nusselt number increases from zero to a steadily oscillating periodic value. 

 
Figure 5 (a) - (g) shows the streamlines at different times in one oscillation period after the flow field 
reaches a steady oscillation state. The periodic flow is established quickly after about 100 periods. Within 
contrast to the case of fluid flow without vibration (see Figure 2), only one oscillating convective roll is 
generated in the entire two-layer system, as shown in Figure 5 (a) - (g). The direction and intensity of the 
convection depend on time. To further study the effect of vibration on fluid flow, it is useful to examine the 
time average values of some variables, such as velocity, temperature etc.. The mean value of the velocity is  

 

 
1/ rt f

r t
f dt

+
= ∫u u  , (12) 

 
where rf  is vibrational frequency , and the mean stream function contours are derived from the 
time averaged velocity field at steady oscillation state. 

/ 2rf Ω π=

 
The mean stream function at the steady oscillation state is established and shown in Fig. 5 (h). Compared 
with that of fluid flow without vibration as shown in Fig. 2 (a), the roll cell located at the left-bottom corner 
moves up to the position near the interface while another anticlockwise roll cell is generated above it. Figure 
6 (a) - (c) shows evolution of the associated temperature field. The distortion of the isotherms during the 
oscillation is small, but measurable. The mean temperature contours are plotted in Fig. 6 (d). The isotherms 
have maximum distortion near the top of the cavity and straighten out near the interface. Compared with 
Figure 2 (c), the effect of vibration is that the mean temperature field has evolved toward a conduction-like 
profile.  This observation is consistent with the results in [1] and [4]. 

 
3.3 Effect of vibrational Rayleigh number Rav  
 
Figures 7 and 8 show the mean streamlines and isotherms at a fixed vibrational frequency 500Ω =  for 
different vibrational Rayleigh numbers Rav . In Fig.7, two convective rolls with different senses of rotation 
near the interface and the left boundary wall grow with increased vibrational Rayleigh number Rav  while the 
other two convective rolls are suppressed. The magnitude of the time-averaged velocity vector increases 
with larger values of Rav . A measure of the time-averaged velocity  is the average value of the mean 
velocity over all the nodes in the whole system 

avgU

 

 2 21 n

avg x y
i

U u
n

= +∑ u  . (13) 

 
Here is the total grid number, n xu , yu are the components of mean velocity vector u . The average velocity 

increases with increased vibrational Rayleigh number avgU Rav  at any constant frequency , although the Ω

5 



rate is very small at low frequency (~ 200Ω = ). The increased average velocity induced by vibration 
enhances heat transfer, and results in an increased Nusselt number Nu  (see Fig. 9).  
 
The instantaneous location of the interface also oscillates with the external vibrations, and has the 
appearance of a traveling wave. Larger values of the vibrational Rayleigh number Rav  accentuate the 
distortion of the interface, as shown in Figure 10. When the vibrational Rayleigh number Rav  is large 
enough, the interface can reach the top and/or bottom of cavity, and the two fluids start to mix, further 
investigation of this is beyond the scope of this paper. 
 
Previous studies have predicted that the thermal vibrational fluid flows of single-phase systems are very 
different from the behavior exhibited above. For a single-phase system with a vibration direction parallel to 
temperature gradient, increasing Rav  will generally decrease the mean velocity and the heat transfer rate 
(Nusselt number).  This is because the vibration acts as an effective gravity force that tries to reorient 
isopycnic surfaces to be perpendicular to the vibration direction [4]. The mechanism for this difference is 
very interesting and is discussed below.  

 
For a thermal vibrational convection in an enclosure filled with single-phase fluid system under 
weightlessness ( , 0g = 0Ra = ), no mean motion in the fluid is expected when the vibration direction is 
perpendicular to the isotherms for high frequency vibration [4], since there is no pre-existing gravity-
induced buoyancy flow. The situation is analogous to the unidirectional oscillatory translation of a simply 
supported rigid pendulum in a direction parallel to its length under zero gravity conditions. However, in a 
two-layer fluid system at the same conditions as above, the vibration-induced phase-buoyancy force causes 
the entire system to oscillate. This is simply because the interface separating the two different density phases 
is initially flat and parallel to the vibration direction; the density gradient across the interface is 
perpendicular to the vibration direction. Thus, the interface is an isopycnic surface and will tend to rotate to 
be perpendicular to the vibration direction. This is in contrast to thermally induced density variations within 
each phase for which the local density gradient is parallel to the vibration direction. As the direction of 
translation (corresponding to the vibration) of the cavity changes from left to right, the interface will change 
shape or sloshes back and forth, sustaining an oscillatory motion of the fluid. This flow will not occur for a 
similarly oriented single-phase fluid. Thus, in the single-phase case studied by Zhao [4] with vibration 
parallel to the applied thermal gradient the mean flow approaches zero as the vibrational Rayleigh number 
Rav  increases at a constant frequency .  In contrast, for the mean flow velocity in the two-phase case 
with vibration parallel to the applied thermal gradient, the mean velocity does not approach zero but in fact 
increases with increasing values of 

Ω

Rav . As a result, the heat transfer rate Nu  is enhanced by the vibration.  
 

Convection in this two-layer fluid system arises due to two sources (see Fig. 11); one is natural convection 
due to steady gravity oriented perpendicular to the applied temperature gradient, the second is vibration-
induced convection which for this two-phase situation involves thermovibrational buoyancy within each 
layer and interfacial buoyancy due to the density difference between the phases. The mean flow in a two-
layer system is enhanced by increasing the vibrational Rayleigh number Rav  due to buoyant flow caused by 
the sloshing of the interface. When Rav  is large enough, the mean flow induced by vibration will dominate 
the fluid flow and heat transfer in the two-layer fluid system. That is why, for the particular geometry 
studied here, a lager value of vibrational Rayleigh number intensifies the fluid flow in two-layer fluid system 
while suppresses flow in single-phase system.   

 
3.4 Effect of vibrational frequency  Ω
 
Figure 9 reveals the effect of vibrational frequency on the thermovibrational dynamics of a two-layer system 
on heat transfer rates. For the range of frequencies studied here 200 1000Ω< < , and at a fixed vibrational 
Rayleigh number Rav  the mean flow velocity continues to be enhanced as the frequency is increased.  
Hence, the heat transfer rate Nu  is increased even though the temporal and mean distortion of the interface 
is suppressed. This is because the rapid small amplitude interfacial oscillations generate a strong mean flow. 
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The interface is a vibrational buoyancy source activated by the vibration that is roughly parallel to the 
interface. In contrast, in a single-phase fluid system, the absence of the interface allows the isotherms to 
become almost parallel to the vertical walls. In this case, the mean flow velocity and heat transfer rate are 
independent of the vibrational frequency  [4].  Ω

 
4. Conclusions 
 
The effect of external vibration on the convective flow and heat transfer in a two-layer fluid system of 
immiscible liquids with density inversion was investigated using a hybrid thermal lattice Boltzmann method.  
Under the external vibration corresponding to an oscillatory uniform horizontal translation of the rigid 
cavity, oscillatory convection is established after a steady oscillation state is reached. For the range of 
conditions investigated, the results reveal that the effect of vibrational Rayleigh number Rav  and vibrational 
frequency on a two-layer fluid system is much different than that for a single-phase fluid system when 
the vibration direction is parallel to the temperature gradient. In a two- layer system consisting of immiscible 
liquids with a density inversion, the mean flow velocities and heat transfer rate increase as 

Ω

Rav  and Ω  
increase. This is because the mean fluid motion in a two-layer fluid system subject to translational vibration 
is not zero even under weightlessness. This is in contrast to a single-phase fluid system, where the natural 
convection is suppressed and the Nusselt number decreases and tends towards unity as Rav  and Ω are 
increased. The interface between two-layer fluids experiences larger distortion at larger values of Rav and 
smaller values of .  Ω

The effect of Rav  and  on a two-layer fluid system is much different than for a single-phase fluid system 
when the vibration direction is parallel to the temperature gradient. In a two-layer system consisting of 
immiscible liquids with a density inversion, the mean flow velocities and heat transfer rate increase as 

Ω

Rav
Ω

 
and  increase. This is because the mean fluid motion in a two-layer fluid system subject to translational 
vibration is not zero even under weightlessness. This is in contrast to a single-phase fluid system, where the 
natural convection is suppressed and the Nusselt number decreases and tends towards unity as Rav  is 
increased. The interface between two-layer fluids experiences larger distortion at larger values of Rav and 
smaller values of .  Ω
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Fig. 1 Schematic of a two-layer system heated from the side walls. 

Fig.1 Système à deux couches chauffé latéralement. 
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Fig. 2  Buoyant thermal convection with 0Rav = . 

Fig. 2 Convection thermique pour 0Rav = . 
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Fig. 3  Velocity ( xu ), temperature  (θ ) and  vibrational acceleration ( ) at node  
. , 

vg
(25, 65) 35 10Rav = × 500Ω = . 

Fig. 3  Vitesse ( xu ), température  (θ ) et  accélération vibrationnelle ( ) au nœud 
. , 

vg
(25, 65) 35 10Rav = × 500Ω = . 
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Fig. 4  Time history of the average Nusselt number at the cold vertical wall. , 
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Fig. 4  Évolution du nombre de Nusselt à la paroi froide. , . 35 10Rav = × 500Ω =
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Fig. 5 Streamlines at different phases of one vibrational cycle after a steady oscillation is 
established. , . 35 10Rav = × 500Ω =



Fig. 5 Lignes de courant à différentes phases d’un cycle vibrationnel après 
l’établissement d’un régime oscillatoire. , 35 10Rav = × 500Ω = . 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

     
 (a)             (b)         (c)               (d)  
 
Fig. 6. Isotherms at three different phases of a cycle during a period after a steady 
oscillation is established. , 35 10Rav = × 500Ω = . (a)  0, (b) π , (c) 1.5π , (d) time 
averaged. 
Fig. 6. Iothermes à trois phases d’un cycle durant une  période après l’établissement d’un 
régime oscillatoire. , 35 10Rav = × 500Ω = . (a)  0, (b) π , (c) 1.5π , (d) moyenne 
temporelle. 
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Fig. 7 Streamlines at  for different500Ω = Rav . (a) 0,  (b) 200, (c) , (d)  310 410
Fig. 7 Lignes de courant  pour différents500Ω = Rav . (a) 0,  (b) 200, (c) , (d)  310 410
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Fig.8 Time averaged isotherms at 500Ω =  for different Rav . 

Fig.8 Champ thermique moyen  pour 500Ω =  et différents Rav . 
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Fig. 9  Average Nusselt number at a vertical wall Nu  as a function of Rav for different 
frequencies . Ω
Fig. 9  Nombre de Nusselt moyen Nu  à la paroi verticale fonction du Rav pour 
différentes fréquences . Ω
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Fig. 10 Dimensionless interface fluctuation δ as a function of Rav  for different 
frequencies . Ω
Fig. 10 Fluctuation adimensionnelle δ  de l’interface fonction de Rav  pour différentes 
fréquences . Ω
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      (a) thermal vibrational                  (b) steady gravity               (c) vibration induced  
               convection                          induced convection                     convection   
 
Fig. 11 Decomposition of the thermal vibrational convection mechanism in the presence 

of a deformable interface between two immiscible liquids.  
 

Fig. 11 Décomposition du mécanisme thermo-vibrationnel en présence d’interface 
déformable entre deux liquides immiscibles.  

 


