
 

NASA/CR-2007-214862 
NIA Report No. 2007-05 
 

 
 

Distributed Saturation 
 
Ming-Ying Chung and Gianfranco Ciardo 
University of California, Riverside, California 
 
Radu I. Siminiceanu 
National Institute of Aerospace (NIA), Hampton, Virginia 
 
 
 
 
 
 
 
 
 

    

April 2007 

https://ntrs.nasa.gov/search.jsp?R=20070017995 2019-08-30T00:48:55+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10536657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

The NASA STI Program Office . . . in Profile 
 

 

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientific and Technical Information (STI) 
Program Office plays a key part in helping NASA 
maintain this important role. 

 
The NASA STI Program Office is operated by 
Langley Research Center, the lead center for NASA’s 
scientific and technical information. The NASA STI 
Program Office provides access to the NASA STI 
Database, the largest collection of aeronautical and 
space science STI in the world. The Program Office is 
also NASA’s institutional mechanism for 
disseminating the results of its research and 
development activities. These results are published by 
NASA in the NASA STI Report Series, which 
includes the following report types: 

 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase 
of research that present the results of NASA 
programs and include extensive data or 
theoretical analysis. Includes compilations of 
significant scientific and technical data and 
information deemed to be of continuing 
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having 
less stringent limitations on manuscript length 
and extent of graphic presentations. 

 
• TECHNICAL MEMORANDUM. Scientific 

and technical findings that are preliminary or of 
specialized interest, e.g., quick release reports, 
working papers, and bibliographies that contain 
minimal annotation. Does not contain extensive 
analysis. 

 
• CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored 
contractors and grantees. 

 
 
• CONFERENCE PUBLICATION. Collected 

papers from scientific and technical 
conferences, symposia, seminars, or other 
meetings sponsored or co-sponsored by NASA. 

 
• SPECIAL PUBLICATION. Scientific, 

technical, or historical information from NASA 
programs, projects, and missions, often 
concerned with subjects having substantial 
public interest. 

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and 
technical material pertinent to NASA’s mission. 

 
Specialized services that complement the STI 
Program Office’s diverse offerings include creating 
custom thesauri, building customized databases, 
organizing and publishing research results ... even 
providing videos. 
 
For more information about the NASA STI Program 
Office, see the following: 
 
• Access the NASA STI Program Home Page at 

http://www.sti.nasa.gov 
 
• E-mail your question via the Internet to 

help@sti.nasa.gov 
 
• Fax your question to the NASA STI Help Desk 

at (301) 621-0134 
 
• Phone the NASA STI Help Desk at  

(301) 621-0390 
 
• Write to: 

           NASA STI Help Desk 
           NASA Center for AeroSpace Information 
           7115 Standard Drive 
           Hanover, MD 21076-1320



 

NASA/CR-2007-214862 
NIA Report No. 2007-05 
 

 
 
 

Distributed Saturation 
 
Ming-Ying Chung and Gianfranco Ciardo 
University of California, Riverside, California 
 
Radu I. Siminiceanu 
National Institute of Aerospace (NIA), Hampton, Virginia 

 

 

 

 

National Aeronautics and  
Space Administration 
 
Langley Research Center  Prepared for Langley Research Center 
Hampton, Virginia 23681-2199 under Cooperative Agreement NCC1-02043 

    

April 2007 
 



 

 
 

Available from: 
 
NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS) 
7115 Standard Drive 5285 Port Royal Road 
Hanover, MD 21076-1320 Springfield, VA 22161-2171 
(301) 621-0390 (703) 605-6000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISTRIBUTED SATURATION

Ming-Ying Chung, ∗ Gianfranco Ciardo, † and Radu I. Siminiceanu ‡ §

ABSTRACT

The Saturation algorithm for symbolic state-space generation, has been a recent break-
through in the exhaustive verification of complex systems, in particular globally-asyn-
chronous/locally-synchronous systems. The algorithm uses a very compact Multiway
Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo-
rithm to date. The distributed version of Saturation uses the overall memory available
on a network of workstations (NOW) to efficiently spread the memory load during
the highly irregular exploration. A crucial factor in limiting the memory consumption
during the symbolic state-space generation is the ability to perform garbage collection

to free up the memory occupied by dead nodes. However, garbage collection over a
NOW requires a nontrivial communication overhead. In addition, operation cache poli-
cies become critical while analyzing large-scale systems using the symbolic approach.
In this technical report, we develop a garbage collection scheme and several opera-
tion cache policies to help on solving extremely complex systems. Experiments show
that our schemes improve the performance of the original distributed implementation,
SmArTN

ow, in terms of time and memory efficiency.

1 INTRODUCTION

Formal verification techniques such as model checking and theorem proving have become
widely used in industry for quality assurance, as they can be used to detect errors early in the
design lifecycle. State-space generation, also called reachability analysis, is an essential but
very memory-intensive step in model checking. The increasing complexity of system designs
stresses the limits of most model checkers. Even though symbolic state-space encodings
based on binary decision diagrams (BDDs) [2] and multiway decision diagrams (MDDs) [20]
help cope with the inherent state-space explosion of discrete-state systems, the analysis of
some industrial size models may still rely on the use of virtual memory. Our discussion
regarding state-space generation focuses on symbolic state-space generation.

A natural way to deal with the excessive memory consumption of reachability analysis is
using parallel and distributed approaches. Most of the research in this area has been focused
on vertical slicing schemes to parallelize BDD manipulations, by decomposing boolean func-
tions lines and distributing the computation over a NOW [18, 21, 25]. This scheme allows
algorithms to overlap the image computation (the application of the next-state function to a
set of states encoded by a decision diagram node), but the distributed state-space generation
is still synchronous, consisting of interleaved rounds of computation and communication, in
which the fastest or the most lightly loaded workstation must wait for the heavily loaded ones
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at the end of each round. Thus, the global synchronization required at the end of each round
is detrimental to this scheme in terms of scalability. To overcome this drawback, Grumberg
et al [17] introduced an asynchronous version of the vertical slicing approach which not only
performs image computation and message passing concurrently, but also incorporates an
adaptive mechanism taking into account the availability of free computational power to split
workload.

In [5], we instead use MDDs and partition them horizontally onto a NOW, so that each
workstation exclusively owns a contiguous range of MDD levels. Therefore, the memory re-
quired for state-space encoding is mutually exclusively partitioned onto workstations. Since
the horizontally distributed state-space generation does not create any redundant or du-
plicate work at all, synchronization is avoided. Furthermore, within the horizontal slicing
scheme, only peer-to-peer communication between neighboring workstations is used, so scal-
ability is not an issue. However, this approach comes with a severe tradeoff. Given the highly
optimized nature of saturation, which was designed as a sequential algorithm, only one work-
station is active at anytime, hence the distributed computation is virtually sequentialized.
This leaves only limited opportunities for speedup. To tackle this drawback, in [6, 7], we
introduced an idea to speedup distributed state-space generation by using workstations’ idle
time to speculatively perform image computations.

Also, during distributed state-space generation, performing garbage collection for dead
MDD nodes over a NOW requires a nontrivial communication overhead. In addition, MDD
cache policies become relatively critical in a large-scale symbolic reachability analysis. Thus,
in this paper, we develop a garbage collection scheme and several operation cache policies to
help on solving extremely complex systems. The paper is organized as follows. Sect. 2 gives
the necessary background on state-space generation, decision diagrams, Kronecker encoding,
and the evolution of saturation algorithm. Sect. 3 details our new garbage collection scheme
tailor-made for distributed state-space generation. Sect. 4 discusses several operation cache
policies which might help on solving complex systems. Sect. 5 shows experimental results.
Sect. 6 draws conclusions and discusses future research directions.

2 BACKGROUND

A discrete-state model is a triple (Ŝ, sinit,N ), where Ŝ is the set of potential states of the

model, sinit ∈ Ŝ is the initial state, and N : Ŝ → 2Ŝ is the next-state function specifying the
states reachable from each state in a single step. We assume that the model is composed
of K submodels. Thus, a (global) state i is a K-tuple (iK , ..., i1), where ik is the local state
of submodel k, K ≥ k ≥ 1, and Ŝ = SK × · · · × S1 is the cross-product of K local state
spaces. This allows us to use techniques targeted at exploiting system structure, in particular,
symbolic techniques to store the state space based on decision diagrams.

Since we target globally-asynchronous locally-synchronous systems, we decompose N
into a disjunction of next-state functions [4]: N (i) =

⋃
e∈E Ne(i), where E is a finite set of

events and Ne is the next-state function associated with event e. We then seek to build
the (reachable) state space S ⊆ Ŝ, the smallest set containing sinit and closed with respect
to N : S = {sinit}∪N (sinit)∪N (N (sinit))∪ · · · = N ∗(sinit), where “∗” denotes reflexive and
transitive closure and N (X ) =

⋃
i∈X N (i).
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2.1 Symbolic encoding of S

In the sequel, we assume that each Sk is known a priori. In practice, the local state
spaces Sk can actually be generated “on-the-fly” by interleaving symbolic global state-
space generation with explicit local state-space generation [12]. We then use the mappings
ψk : Sk → {0, 1, . . . , nk−1}, with nk = |Sk|, identify local state ik with its index ik = ψk(ik),
thus Sk with {0, 1, . . . , nk−1}, and encode any set X ⊆ Ŝ in a (quasi-reduced ordered) MDD
over Ŝ. Formally, an MDD is a directed acyclic edge-labeled multi-graph where:

• Each node p belongs to a level k ∈ {K, ..., 1, 0}, denoted p.lvl .

• There is a single root node r at level K.

• Level 0 can only contain the two terminal nodes Zero and One.

• A node p at level k > 0 has nk outgoing edges, labeled from 0 to nk−1. The edge
labeled by ik points to a node q at level k−1; we write p[ik] = q.

• Given nodes p and q at level k, if p[ik] = q[ik] for all ik ∈ Sk, then p = q, i.e., there are
no duplicates.

The MDD encodes a set of states B(r), defined by the recursive formula:

B(p) =





⋃
ik∈Sk

{ik} × B(p[ik]) if p.lvl = k > 1

{i1 : p[i1] = One} if p.lvl = 1
.

For example, box 10 at the bottom of Fig. 1 shows a five-node MDD with K = 3 encoding
four global states: (0,0,2), (0,1,1), (0,2,0), and (1,0,0). In our MDDs, arcs point down and
their label is written in a box in the node from where the arc originates; the terminal nodes
Zero and One and nodes p such that B(p) = ∅, as well as any arc pointing to them, are
omitted.

Compared with BDDs, MDDs have the disadvantage of resulting in larger and less share-
able nodes when the variable domains Sk are very large. On the other hand, MDDs have
several advantages. First, many real-world models (e.g., non-safe Petri nets and software
protocols) have variable domains with a priori unknown or very large upper bounds. These
bounds must then be discovered “on the fly” during the symbolic iterations [12, 14], and
MDDs are preferable to BDDs when using this approach, due to the ease with which MDD
nodes and variable domains can be extended. A second advantage, related to the present
paper, is that our chaining heuristics applied to the MDD state variables more closely reflect
structural information of the model behavior, which is instead spread on multiple levels in a
BDD.

2.2 Symbolic encoding of N

For N , we adopt a Kronecker representation inspired by work on Markov chains [3], possible if
the model is Kronecker consistent [10, 11]. Each Ne is conjunctively decomposed into K local
next-state functions Nk,e, for K ≥ k ≥ 1, satisfying, in any global state (iK , . . . , i1) ∈ Ŝ,
Ne(iK , . . . , i1) = NK,e(iK) × · · · × N1,e(i1). Using K · |E| matrices Nk,e ∈ {0, 1}nk×nk ,
with Nk,e[ik, jk] = 1 ⇔ jk ∈ Nk,e(ik), we encode Ne as a (boolean) Kronecker product:
j ∈ Ne(i) ⇔

⊗
K≥k≥1 Nk,e[ik, jk] = 1, where a state i is interpreted as a mixed-based index
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Figure 1: Reachability graph, Sx,Sy,Sz, and N , evolution of the MDD,

in Ŝ and
⊗

indicates the Kronecker product of matrices. The Nk,e matrices are extremely
sparse, for standard Petri nets, each row contains at most one nonzero entry.

For example, the middle of Fig. 1 shows the Kronecker encoding of N according to events
(a, b, c, d) and levels (x, y, z), listing only the nonzero entries, e.g.,

Ny,b =
{

1 → 0
2 → 1

}
means Ny,b =




0 0 0
1 0 0
0 1 0




and Ny,b[1, 0] = 1 indicates that if the local state at level y is 1, event b is locally enabled
and firing b, if globally possible, moves the local state from 1 to 0.

2.3 Saturation-based iteration strategy

In addition to efficiently representing N , the Kronecker encoding allows us to recognize event
locality [10, 22] and employ saturation algorithm [11]. We say that event e is independent
of level k if Nk,e = I, the identity matrix. Let Top(e) and Bot(e) denote the highest and
lowest levels for which Nk,e 6= I. An MDD node p at level k is said to be saturated if it is
a fixed point with respect to all Ne such that Top(e) ≤ k, i.e., SK × · · · × Sk+1 × B(p) ⊇
N≤k(SK ×· · ·×Sk+1 ×B(p)), where N≤k =

⋃
e:Top(e)≤k Ne. To saturate MDD node p once all

its descendants have been saturated, we update it in place so that it encodes also any state
in Nk,e × · · · ×N1,e(B(p)), for any event e such that Top(e) = k. This can create new MDD
nodes at levels below k, which are saturated immediately, prior to completing the saturation
of p.
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If we start with the MDD encoding the initial state sinit and saturate its nodes bottom
up, the root r will encode S = N ∗(sinit) at the end, because: (1) N ∗(sinit) ⊇ B(r) ⊇ {sinit},
since we only add states, and only through legal event firings, and (2) B(r) ⊇ N≤K(B(r)) =
N (B(r)), since r is saturated.

The reachability graph of a three-place Petri net is shown at the top of Fig. 1. A global
state is described by the local state of place x, y, and z, in that order, and we index local
states by the number of tokens in the corresponding place. Three global states, (0,1,1),
(0,0,2), and (0,2,0), are reachable from the initial state (1,0,0). The three local state spaces
and the Kronecker description of N are shown in the middle of Fig. 1. The list of nonzero
entries for matrix Ny,b, for example, indicates that firing event b decreases the number of
tokens in place y, either from 2 to 1 or from 1 to 0; it also indicates that b is disabled when
place y contains 0 tokens, as no transition is listed from local state 0. The saturation-based
state-space generation of this model is shown at the bottom of Fig. 1, where solid MDD
nodes are saturated and dashed MDD nodes are not.

1 Initial configuration : Set up the MDD encoding the initial global state (1,0,0).

2 Saturate node 0 at level z : No action is required, since there is no event with
Top(event) = z. The node is saturated by definition.

3 Saturate node 0 at level y : Top(b) = Top(c) = y, but neither b nor c are enabled
at both levels y and z, Thus, no firing is possible, and the node is saturated.

4 Saturate node 1 at level x : Top(a) = x and a is enabled for all levels, thus event
a must be fired on the node. Since, by firing event a, local state 1 is reachable from 0
for both levels y and z, node 1 at level y and node 1 at level z, are created (not yet
saturated), This also implies that a new global state, (0,1,1), is discovered.

5 Saturate node 1 at level z : Again, no action is required as the node is saturated
by definition.

6 Saturate node 1 at level y : Top(b) = y and b is enabled for all levels, thus event
b must be fired on the node. Since, by firing event b, local state 0 is reached from 1
at level y and local state 2 is reached from 1 at level z, node 1 at level y is extended

to 01 and node 2 at level z is created. This also implies that a new global state,
(0,0,2), is discovered.

7 Saturate node 2 at level z : Again, no action is required, as the node is saturated
by definition.

8 Saturate node 01 at level y : Top(c) = y and c is enabled for all levels, thus event
c must be fired on the node. Since, by firing event c, local state 2 is reachable from 1 at
level y and local state 0 is reachable from 1 at level z, node 01 at level y is extended

to 012 and node 0 at level z, which has been created and saturated previously, is
referenced. This also implies that a new global state, (0,2,0), is discovered.

9 Saturate node 012 at level y : After exploring all possible firings, the node is
saturated.

10 Saturate node 01 at level x : Since no firing can find new global states, the root
is saturated.
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Saturation consists of many “lightweight” nested “local” fixed-point image computations
and is completely different from the traditional breadth-first approach that employs a single
“heavyweight” global fixed-point image computation. No matter whether the chaining idea
is applied or not, results in [11, 12, 13, 14, 8] consistently show that the saturation ap-
proach outperforms the breadth-first approach of symbolic state-space generation by several
orders of magnitude in both memory and time, making it arguably the most efficient state-
space generation algorithm for globally-asynchronous locally-synchronous discrete event sys-
tems. Thus, it makes sense to attempt its parallelization, while parallelizing the less efficient
breadth-first approach would not offset the enormous speedups and memory reductions of
saturation approach.

2.4 Saturation NOW

[5] described a message-passing algorithm, Saturation NOW, that distributes the MDD nodes
encoding states over a NOW, to study large models where a single workstation would have
to rely on virtual memory to explore the state space. On a NOW with W ≤ K workstations
numbered from W down to 1, each workstation w has two neighbors : one “below”, w − 1
(unless w = 1), and one “above”, w + 1 (unless w = W ). Initially, we evenly allocate
the K MDD levels to the W workstations accordingly, by assigning the ownership of levels
bw·K/W c through b(w−1)·K/W c+1 to workstation w. Local variables mytopw and mybotw

indicate the highest- and lowest-numbered levels owned by workstation w, respectively.
For distributed state-space generation, each workstation w first generates the Kronecker

matrices Nk,e for those events and levels where Nk,e 6= I and mytopw ≥ k ≥ mybotw, without
any synchronization. Then, the sequential saturation algorithm begins, except that, when
workstation w > 1 would normally issue a recursive call to level mybotw − 1, it must instead
send a request to perform this operation in workstation w− 1 and wait for a reply. A linear
organization of the workstations suffices, since each workstation only needs to communicate
with its neighbors.

3 DISTRIBUTED GARBAGE COLLECTION

The implementation of garbage collection in SmArT follows the cleanup procedure based
on reference counts where each decision diagram node has a counter to record the number
of references: the number of the incoming arcs to the node. A node’s reference counter
decreases by one whenever one of its parents node dereferences it. Whenever the reference
counter of a node is becomes zero, any following cleanup invocation will delete the node and
remove it from the corresponding unique table. Then, a garbage collection call will recycle
the free space using level-based recycling pools. If the strict policy of garbage collection
is used in SmArT, any dereference may proceed recursively down to the bottom level of
decision diagrams. Although a deeper recursive dereference can contribute to freeing up
more memory, it can be much costly in terms of runtime as well. So, to relax this policy,
SmArT allows users to forbid the garbage collection to be triggered until the number of dead
nodes reaches some given threshold.

However, updating the reference counters within the decision diagram during distributed
state-space generation over a NOW requires a non-trivial amount of messages passing among
workstations. We therefore prefer to skip the costly bookkeeping effort on maintaining up-
to-date reference counters, in order to avoid the communication overhead. Yet, when the
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Figure 2: Garbage collection example

overall memory consumption reaches some given threshold, we perform distributed cleanup
by freezing state-space exploration temporarily to deal with the disconnected nodes at run-
time. Without the up-to-date reference counters, the distributed cleanup issued at the kth
level needs to perform a scan at the previous level, reading through all k+1th nodes’ outgoing
arcs, to determine the referencing information of the kth nodes. To overlap the distributed
cleanup and referencing information retrieval, it makes sense to clean up several consecutive
levels at a time in a top-down fashion. Thus, our distributed garbage collection triggers a
series of distributed cleanups starting at the kth level to recycle disconnected nodes at any
level equal to or lower than the kth. In general, the higher level the distributed cleanup is
invoked at, the more communication overhead may be introduced.

The left of Fig. 2 shows a runtime snapshot of a six-level decision diagram distributed
over three workstations where each workstation manages two levels of the MDD. The dashed
boxes and lines indicate the disconnected nodes. The middle of Fig. 2 shows the decision
diagram resulting when the two bottom workstations (w = 2 and 1) perform distributed
cleanup on the decision diagram shown in the left of Fig. 2 starting at level 2. In this case,
one node at level 2 and one node at level 1 have been cleaned out. The right of Fig. 2 shows
the decision diagrams resulting when three workstations perform distributed cleanup on the
same decision diagram but starting at level 4 instead. In this case, four nodes have been
removed.

4 OPERATION CACHE POLICIES

The main reason why symbolic model checking can outperform the explicit approach is that
the implicit state-space construction allows nodes to share not only their children roots of
isomorphic decision diagrams (memory efficient) but also the computation corresponding to
each of those children (time efficient). To efficiently share the computation during symbolic
state-space generation, hashing is considered to be one of the most effective way to cache
computed data dynamically. However, a good hashing can still create identical hash values
for distinct entries. To cope with this so-called hash-collision issue, we use collision-tolerating
hash tables: multiple entries having identical hash value are stored together using a linked
list.

In detail, in each collision-tolerating hash table, we use a singly linked list to store each
set of entries having identical hash value. For each level of decision diagrams, we use such

7
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a collision-tolerating hash table for each kind of operation (union, fire) and rehash each of
the tables whenever the projected number of collisions becomes too large. Fig. 3 shows
the data structure that we use to cache the results of union operation during distributed
state-space generation. The fourth column of Fig. 3 shows an example that caching a newly
computed result, the union of 〈k, 2〉〈k, 7〉 → 〈k, 9〉, having same hash value as the the union
of 〈k, 2〉〈k, 4〉 and the union of 〈k, 3〉〈k, 5〉. In this case, three entries are stored in the same
linked list.

Yet, during symbolic state-space generation, the collision toleration described previously
may hold up any cache-related operation and slowdown the overall computation, because
any hash table lookup might end up searching in a linked list. An alternative way to ease the
hash-collision issue is to perform rehashing: enlarging each hash table as needed to decrease
the chance of hash collision. Yet, excessive rehashing can be very memory consuming as
well. Thus, we tend to use a hybrid solution in our application.

4.1 Bounded-rehashing and bounded-collision caches

We develop a bounded-rehashing and bounded-collision cache policy to facilitate all cache-
related operations.

In detail, for each collision-tolerating hash table, we keep track of MaxCollision, the
maximal size of linked lists used in the table, indicating that the time to retrieve any entry
(might end up searching in a linked list) is O(MaxCollision). Whenever some hash table’s
MaxCollision exceed the given threshold, MaxAllowedCollision, we rehash the table by dou-
bling the size of the table. To prevent overusing memory for caching computed results,
we prohibit rehashing a table if the size of the table has exceeded another given threshold,
RehashThreshold . To preserve that the data retrieval time of the caches is asymptotically
bounded, we restrict MaxCollision ≤ MaxAllowedCollision: the size of linked lists used in
any hash table is limited to MaxAllowedCollision. In other words, the maximal number of
entries having identical hash value is always MaxAllowedCollision no matter whether the size
of the hash table has exceeded RehashThreshold or not. So, the time to retrieve a cached
entry is also O(MaxAllowedCollision).

After all, to bound the size of the linked lists once they are full, we always update linked
lists by inserting the new element at the front and removing the last one. Also, the maximal
values of MaxAllowedCollision and RehashThreshold allowed in a distributed program can
be much larger than those used in a sequential program.
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4.2 Policies of single-level caches

Since the number of elements allowed to be stored in each linked list is limited, deciding
how to sift out the less useful element is an issue. An entry is said to be a cache-hit if it is
retrieved by some hash table lookup. To take the usefulness of entries into account, we need
some cache policy to preserve those frequently cache-hit entry which means to keep them in
the first MaxAllowedCollision elements of the corresponding linked list.

LRU, a frequently used policy, treats any newly cache-hit entry the same as a newly
cached one: moving every newly retrieved element to the front of the corresponding linked
list. Yet, this policy treats every cache-hit entry equally no matter how often each of them
has been retrieved. So, another idea is to switch the newly cache-hit entry with its previous
one. The last two columns of Fig. 3 show how a linked list will be updated following
this two policies after the result of the union of 〈k, 3〉〈k, 5〉 → 〈k, 7〉 is cache-hit. After
all, while using either of these two policies, the time to retrieve each cached entry is still
O(MaxAllowedCollision).

5 RESULTS

5.1 Experiments of bounded rehashing scheme

We evaluated the rehashing heuristic by using the saturation algorithm to generate the state
space of the following parameterized models.

• Round robin mutex protocol (Robin) [16] models the round robin solution of a mutual
exclusion problem where N is the number of processes involved.

• Flexible manufacturing system (FMS) [22] models a manufacturing system with three
machines to process three different types of parts where N is the number of each type
of parts.

• Slotted ring network protocol (Slot) [23] models a local area network protocol where
N is the number of nodes in the network.

• Leader election protocol (Leader) [19] models a protocol for designating a unique
processor as the leader by sending messages along a unidirectional ring of N processors.

• Aloha network protocol (Aloha) [9] models a local area network protocol where N is
the number of nodes in the network.

• Kanban manufacturing system (Kanban) [26] models a manufacturing system autho-
rizing production based on the consumption at the downstream stations where N is
the admission threshold to each machine.

• Bounded open queuing network (BQ) [15] models an open queuing network where the
capacity of the queue is bounded by N .

• Knights problem (Knight) models the problem of determining how many non-attacking
knights can be placed on an N ×N chessboard.
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Model N Cache Time (sec) Memory (mgb) Rehash
init max HashI HashM DHash HashI HashM DHash (times)

Robin 600 100 50K 41 34 37 326 555 349 2677

FMS 250 100 100K 174 55 56 103 240 108 62

Slot 150 100 100K 122 97 104 210 324 233 1302

Leader 7 100 100K 123 12 15 147 205 172 684

Aloha 70 100 500K 85 12 16 227 502 255 699

Kanban 60 100 1M 124 16 16 60 175 69 143

BQ 40 100 1M 102 58 60 97 120 106 43

Knight 6 100 1M 160 9 12 69 336 123 370

Queen 12 1000 1M 22 10 11 65 149 72 35

RIPS 14444 1000 10M 567 113 127 168 854 516 124

Table 1: Experimental results of rehashing.

• Queens puzzle (Queen) models the game of placing 8 queens on an N ×N chessboard
so that none of them can hit any other in one move.

• Runway safety monitor (RIPS) [24] models an avionics system monitoring T targets
with S speeds on a grid represented as a X × Y × Z grid.

Table 1 shows the experimental study performed on a Pentium IV 3GHz workstations
with 1GB of RAM. The first two columns show the model names and the corresponding
parameters used for this evaluation. The third and fourth columns indicate the initial size
(init) of hash tables and the maximal size (max ) allowed for rehashing. The next six columns
present the time and memory consumption of three different approaches: fixed-size hashing
using init , fixed-size hashing using max , dynamic hashing using init and then allowing to
rehash until max is researched, denoted as HashI, HashM, and DHash respectively. The last
column shows the number of rehashing has been performed while experimenting DHash.

In Table 1, we can see that HashI is always the most memory efficient approach and
HashM is always the most time efficient one. However, in all cases, the memory consump-
tion of DHash can be as low as HashI ’s, while the runtime of DHash being very close to
HashM ’s Note that, the tradeoff in performing dynamical rehashing (shown in the last col-
umn of Table 1) is the runtime difference between HashM and DHash which is insignificant.
Additionally, the high memory consumption of DHash implies that excessive unbounded re-
hashing can be expensive and unrealistic. In conclusion, the experiment shows that rehashing
works well in many cases making the bounded rehashing idea more practical.

5.2 Experiments for the message-passing implementation

This experimental study of SmArT and SmArTN
ow on Robin and Slot was performed on Sci-

clone [1] cluster at the College of William and Mary consisting many different heterogeneous
subclusters. We used the Whirlwind (homogeneous) subcluster which consists of 64 single-
cpu Sun Fire V120 nodes (UltraSPARC IIi+ 650 MHz, 1 GB RAM) connecting by Myrinet
and running Solaris 9 with LAM/MPI on TCP/IP. Three parameters selected for both mod-
els represents the small, medium, and large cases of symbolic state-space generation, where
the sequential program requires ≈ 100MB, ≈ 500MB and ≈ 900MB to accomplish the tasks.
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Figure 4: Experiments on Robin

For each test case, we run SmArTN
ow on 1, 2, 4, 8, 16, 32, and 64 workstation(s) and record

the runtime (the pointed lines corresponding to the left axes) in seconds and the used and the
total NOW memory (filled and dashed boxes corresponding to the right axes) in megabytes
. To see the actual overhead of the distributed approach, we use the memory information
reported by the operating system (information retrieved from /proc). Also, we use fixed-size
hashing to test all cases, even though, in comparison to SmArT, running SmArTN

ow on a
NOW will have more memory for rehashing to accelerate the computation

Fig. 4 and 5 show that, when the RAM of a single workstation is sufficient to run the
test case, the runtime of SmArT is better than that of SmArTN

ow on multiple workstations.
The message-passing overhead, while not huge, is not trivial either. In the small test cases,
the runtime of SmArTN

ow is few times larger than that of SmArT. However, the difference
diminishes as the model size grows, even way before memory swapping becomes an issue.
Indeed, such huge differences arise even when comparing SmArTN

ow with itself using different
values of W . Considering the case of ROBIN N = 1000, the optimal number Wopt of
workstations to use is 4. In the right of Fig. 4, the runtime difference was indicated by red
solid-arrows and the memory consumption difference was indicated by pink dashed-arrows.
In detail, SmArT rarely triggers memory swapping where 862MB of memory was used in a
single machine and SmArTN

ow does not use virtual memory at all where 1026MB of NOW
memory was used over four network-connected machines.

In addition, while such Wopt cannot be known a priori, the results clearly show that using
too many workstations affects the runtime only by a small factor, while using too few, or just
one, results in very large penalties, if the algorithm completes at all. Considering the case of
ROBIN N = 1000 again, the runtime penalty of using W = 1 < Wopt is even higher than
that of using W = 32. Furthermore, even though the runtime penalty of using W > Wopt

is not trivial, the difference between the pinked shaded boxes and the blue dashed boxes
indicate the large amount of NOW memory leftover which can be used for model checking
or some anticipation for accelerating the computation.
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Figure 5: Experiments on Slot

After all, Robin and Slot are two of the average-case problems for our distributed
algorithm. However, the scalability of our current implementation of distributed saturation
is restricted by the number of partitions of the input model: the number of workstations we
used, W , cannot exceed the number of MDD levels, K. In the other words, the ownership of
each MDD level is exclusive among workstations, although these ownership can be transfered
between workstations. So, this two models are selected simply because they have more
than 64 MDD levels. Yet, this drawback can be resolved by allowing multiple workstations
managing the same MDD level but then additional communication overhead is required for
maintaining the canonicity of MDD nodes over workstations. In the end, the experiment
of the two cache policies merely show a small improvement in comparison to our original
implementation.

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We designed and implemented a new version of the distributed symbolic state-space genera-
tor, SmArTN

ow, whose level-based node allocation scheme achieves excellent memory distribu-
tion and scalability over NOWs. Thanks to the ever increasing network speed, our approach
effectively provides the large amounts of memory needed when studying large systems, al-
though it offers no theoretical speedup. Also, the cache heuristics speed up our algorithm
and make the performance of the distributed approach more convincing.

Some future research directions are discussed below.

6.1 Two-level cache policies

Since the single-level cache policy mixes up the newly cached entries and the cache-hit entries,
it might offset the idea of distinguishing the usefulness of each entry. In detail, the cache
policy to distinguish the entries according to how frequent each of them has been retrieved
makes more sense if the comparison is only among those cache-hit ones. Also, heavy element
insertion might cancel out the usefulness of bookkeeping corresponding to some key. Thus,
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Figure 6: 2-levels union caches

we suggest a two-level operation cache (L1 and L2) : L1 cache is used to store cache-hit
entries; L2 cache is used to store newly cached entries. A newly computed result will be
cached in L2 initially. Once some L2-cached entry is cache-hit, it will be moved to L1 cache.
If an entry stored in L1 cache is cache-hit, its position will be changed. Fig. 6 shows the
new structure we use to cache union operations. The three examples shown in the last three
columns of Fig. 6 are: caching a newly computed result, the union of 〈k, 2〉〈k, 7〉 is 〈k, 9〉,
sharing a key with the union of 〈k, 2〉〈k, 4〉 and the union of 〈k, 3〉〈k, 5〉; the update following
an L2 cache hit on the result of the union of 〈k, 3〉〈k, 5〉; the update following an L1 cache
hit on the result of the union of 〈k, 1〉〈k, 4〉. After all, the time to access each entry stored
in this new hash table is still O(MaxAllowedCollision).

6.2 Parallel version of SmArTN
ow

In [6], we introduced the idea of utilizing idle workstation time by firing events e with
Top(e) > k on saturated MDD nodes at level k a priori. Since we cannot know in advance
whether such an event will need to be fired on p, and a näıve speculative scheme asking each
idle workstation to compute all possible firings may require excessive memory, we introduce
the idea that workstations recognize event firing patterns, namely sequences of events that
have been fired on MDD nodes so far, then speculatively explore only firings conforming to
these patterns to prevent unrestrained speculation from squandering the overall NOW mem-
ory. Also, in [7], we explore how to encode the evolution of each firing pattern implicitly,
so that MDD nodes can share the encoding of the same patterns. The implicit method for
pattern encoding is not only for reducing the memory overhead of this prediction scheme but
also for tuning the accuracy of speculation. In the near future, we plan to apply this specu-
lative image computation idea to speedup the distributed reachability analysis on large scale
systems on heterogeneous cluster (Myrinet connected single-chip multi-processing machines)
using the combination of message passing (MPI) and shared memory (OpenMP) libraries.
A preliminary experiment of an OpenMP implementation of parallel saturation shows that,
in the best case, the speculation idea decreases the runtime of (sequential) saturation by a
factor of 3 while using 4 threads. However, in this method, there is one thread assigned only
for managing the history of event firing patterns, so only three threads were doing the real
computation (either saturation or speculation). Then, we can see that a linear speedup is
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almost achieved. Now, we are trying the same experiment on a SGI SMP machine which
has 32 dual-core processors to see whether this idea is scalable or not.

REFERENCES

[1] Sciclone cluster project. http://www.compsci.wm.edu/sciclone/.

[2] Randy E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comp., 35(8):677–691, August 1986.

[3] Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Peter Kemper. Complexity
of memory-efficient Kronecker operations with applications to the solution of Markov
models. INFORMS J. Comp., 12(3):203–222, 2000.

[4] Jerry R. Burch, Edmund M. Clarke, and David E. Long. Symbolic model checking with
partitioned transition relations. In A. Halaas and P.B. Denyer, editors, Int. Conference
on Very Large Scale Integration, pages 49–58, Edinburgh, Scotland, August 1991. IFIP
Transactions, North-Holland.

[5] Ming-Ying Chung and Gianfranco Ciardo. Saturation NOW. In Proc. QEST, pages
272–281, Enschede, The Netherlands, September 2004. IEEE Comp. Soc. Press.

[6] Ming-Ying Chung and Gianfranco Ciardo. A pattern recognition approach for specula-
tive firing prediction in distributed saturation state-space generation. In Leucker Martin
and Jaco van de Pol, editors, Workshop on Parallel and Distributed Model Checking
(PDMC), ENTCS, pages 65–79, Lisbon, Portugal, July 2005. Elsevier.

[7] Ming-Ying Chung and Gianfranco Ciardo. A dynamic firing speculation to speedup dis-
tributed symbolic state-space generation. In Proc. International Parallel & Distributed
Processing Symposium (IPDPS), Rhodes, Greece, April 2006. IEEE Computer Society.

[8] Ming-Ying Chung, Gianfranco Ciardo, and Andy Jinqing Yu. A fine-grained fullness-
guided chaining heuristic for symbolic reachability analysis. In Proc. International Sym-
posium on Automated Technology for Verification and Analysis (ATVA), LNCS, Beijing,
China, October 2006. Springer-Verlag.

[9] Gianfranco Ciardo and Yingjie Lan. Faster discrete-event simulation through structural
caching. In Proc. Sixth Int. Workshop on Performability Modeling of Computer and
Communication Systems (PMCCS-6), pages 11–14, Monticello, IL, USA, September
2003.
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