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ABSTRACT 

High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt 
alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of 
ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling 
under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With 
increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from 
each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and 
low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength 
between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source 
of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic 
deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling 
under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed 
by the strain recovery and monotonic tension tests. 
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1.0 INTRODUCTION 
The shape memory effect was first discovered in the Au-Cd system in 1951 [1] and later in the Ni-Ti system in 1961 [2]. 
Since then, NiTi has become widely used in the medical field and is receiving increased attention in the aerospace, 
automotive, and power generation industries because of its extraordinary properties, such as superelasticity, high work 
output, stable microstructure, and corrosion resistance [3, 4]. For example, when transformed under load, NiTi can do 
work equivalent to 10-20 J/cm3 [5, 6], and when unconstrained, it is capable of recoverable strains of up to eight percent 
[7]. However, the maximum working temperature for NiTi is approximately 70°C [8], restricting its use to near room 
temperature applications. 

It has been long known that alloying NiTi with Pd, Pt, Au, Hf, or Zr at greater than 10 at.% ternary addition can be used 
to increase the transformation temperatures [9-16]. While the amount of research on these ternary high-temperature 
shape memory alloys (HTSMA’s) has increased dramatically in the last decade, the majority of the work performed on 
these alloys has been limited to determining transformation temperature, tensile properties, and unconstrained shape 
recovery behavior. Very little effort has been focused on actuator-type behavior, for which constrained tests such as 
thermal cycling under a constant load are more appropriate indicators of performance. Even more surprising is the lack 
of understanding in ternary and even binary alloys regarding active deformation mechanisms responsible for recoverable 
and non-recoverable behaviors. For example, it is widely accepted that recoverable detwinning of martensite during a 
monotonic tensile test begins at an obvious yield point (the deviation from a linear σ-ε response), but there is little 
agreement as to exactly where dislocation processes in the martensite begin to occur resulting in non-recoverable strain. 
The onset of slip has been assumed to occur anywhere from the end of the primary detwinning plateau [17], to the end of 
the second “elastic” modulus curve and the beginning of the secondary plateau [18, 19]. In this investigation, we have 
used uniaxial tensile tests and unconstrained shape memory recovery data to try to understand the load-biased thermal 
cyclic response of a series of high-temperature shape memory alloys based on the NiTiPd system. The goal is to begin to 
understand the recoverable and non-recoverable components of deformation during test conditions similar to those 
encountered during use in actuator type applications, and thus develop improved alloys. 
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2.0 MATERIALS AND PROCEDURES 
2.1 Material processing and characterization 

Five alloys with titanium-rich target compositions Ni49.5-XTi50.5PdX (X = 15, 20, 25, 30, and 46 at.%) were vacuum 
induction melted in graphite crucibles under a protective argon atmosphere using high purity elemental constituents 
(99.98 wt.% Ni, 99.995 Pd, 99.95 Ti) and cast into a 25.4 mm diameter by 102 mm long copper mold with a conical hot 
top section to accommodate shrinkage within the casting. The resulting ingots were vacuum homogenized for 72 hours 
at 1050°C and furnace cooled. After homogenization, the ingots were sealed in mild steel cans and extruded at 900°C at 
an area reduction of 7:1. 

Each extrusion was sectioned into 50.8 mm long cylindrical blanks using a wire electrical discharge machine (EDM). 
Blanks were center drilled on each end and rough turned on a computer numerically controlled (CNC) lathe. Final 
machining of the samples on the CNC lathe produced cylindrical dog-bone shaped tensile samples with 3.81 mm 
diameter by 16.4 mm long gage sections and threaded button ends. To relieve any possible residual stresses from the 
machining operation, all of the samples were annealed at 400°C for one hour and furnace cooled. At this point, the 
samples were considered as being in the as-extruded or “virgin” state. 

Chemical compositions of each alloy were quantitatively measured while in this stress relieved state. Metallic elements 
were measured using inductively coupled plasma emission spectroscopy, while LECO N/O and C/S determinators were 
used to measure nitrogen, oxygen, carbon, and sulfur contents. Each alloy was mounted, polished, and imaged in a JEOL 
840 SEM and Hitachi 4700 FE-SEM to determine the basic microstructure of the alloys and the relative volume fractions 
and compositions of any minority phases and particles. All phases in the Ni19.5Pd30Ti50.5 alloy were positively identified 
using TEM and EDS analysis. This information was then utilized to identify and quantify the phases present in the 
remaining four alloys. 

2.2 Mechanical testing 

All mechanical testing was performed on an MTS 810 servo-hydraulic load frame managed with an MTS FlexTest SE 
digital controller allowing operation and triggering of multiple control channels simultaneously. Samples were held by 
threaded inserts, which were screwed into hot grip extension rods held by water cooled hydraulic collet grips. Load was 
measured with a 100 kN/22 kip load cell. Strain within the gage section was measured with a high-temperature water-
cooled extensometer having a 12.7 mm gage length and -10/+20% strain range using alumina extension rods with v-
chisel tips held in contact with the sample surface by a frictionless knife edge holding fixture. A GC Controls 
temperature controller with remote setpoint was coupled with an Ameritherm Novastar 7.5 kW induction heater to heat 
the samples, while cooling was aided by a muffin fan attached to one side of the load frame. One type K thermocouple 
was spot welded to each threaded insert and monitored temperature at the sample extents. Temperature at the middle of 
the gage section was measured by a type K thermocouple spot welded in series to thin 0.127 mm diameter type K 
thermocouple wire. This thin wire was then spot welded directly to the sample surface using a very low power setting to 
minimize surface damage from the welding process. 

Load-bias tests were conducted in tension by straining the sample at a rate of 1x10-4sec-1 until the desired stress was 
reached. While at constant stress, the sample was thermally cycled twice from the martensitic state through the 
transformation to the austenitic state, and back again. Samples were stressed in successive steps to 0, 99, 197, 295, 393, 
and 517 MPa, or until failure occurred. Transformation temperatures (As, Af, Ms, and Mf) were measured from the 
second thermal cycle at each stress level using the intersection of fit lines through the transformation and the linear 
coefficient of thermal expansion (CTE) regions of the curves (Figure 1). Transformation strain was measured as the 
difference between the strains at the austenite finish and austenite start intersections. Work output at each stress level 
was calculated by multiplying the transformation strain by the applied stress. Permanent deformation was measured as 
the strain difference between the beginning of the heating curve and the end of the cooling curve. All of these measured 
values are clearly defined in Figure 1. 

Monotonic isothermal tension tests were performed on as-extruded, or “virgin” specimens at temperatures 50°C below 
the martensite finish (Mf) and 50°C above the austenite finish temperature (Af) to ensure the samples were in the 
martensite and austenite conditions during testing. Samples were heated in stress control at 0 MPa, to prevent load 
buildup from thermal expansion, and allowed to soak at temperature for approximately five minutes. After this period, 



 
 

 
 

the samples were strained to failure at a rate of 1x10-4sec-1. While there was a definite linear elastic portion to the 
austenitic stress-strain curves, the elastic portion of the martensitic curves was nonlinear, making it difficult to measure 
the onset of yielding. Consequently, yield for all tests was determined by the 0.2% offset yield stress method. 

The “step test” discussed in this paper is a modification of the well known strain recovery test used for shape memory 
alloys. Here, a sample was loaded in the martensite state at a temperature of Mf-50°C in increasing increments of 0.1% 
strain, between which, the sample was unloaded, heated to approximately 100°C above the austenite finish (Af+100°C), 
cooled below the original test temperature and then reheated to the test temperature where the next loading step began 
(Figure 2). Loading and unloading were performed at a strain rate of 1x10-4sec-1. The maximum stress and maximum 
applied strain were measured at the end of each loading step, just prior to unloading (Figure 2). Residual strain from 
each load/unload step was measured at the end of the unloading curve (Figure 2), and permanent strain was measured as 
the strain remaining after the thermal cycle was completed and just prior to reloading (Figure 2). The critical stress for 
dislocation slip in the martensite was estimated by taking the 0.02% offset “yield stress” of the curve formed by plotting 
the maximum stress for each cycle versus the permanent strain at the end of that cycle. The fraction of the residual strain 
recovered as a function of the maximum applied strain was also determined using Equation 1. 
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3.0  RESULTS 
3.1 Material characterization 

The measured compositions, within the error of the analytical technique, were consistent with the original aim 
compositions. Nickel was on target with a maximum measured deviation of ±0.08 at.%, Pd deviated by a maximum of 
0.2 at.% Pd above target, and titanium compositions averaged 49.6±0.3 at.%. Quantitative chemical analysis revealed 
that the impurity contents of the alloys were 0.4±0.1 at.% C, 0.014±0.009 at.% N, and 0.25±0.15 at.% O, with the carbon 
coming from the graphite crucible used for melting. 

Chemical analysis of the extruded and heat treated alloys indicated that all the alloys were essentially stoichiometric, 
with measured Ti:(Ni+Pd) ratios ranging from 49.9:49.6 to 49.4:49.7. However, microstructural analysis indicated that 
the alloys were slightly Ti-rich, consistent with their target composition. Scanning electron microscopy revealed a 
predominantly single phase martensitic matrix with a low density distribution of two types of second phase particles in 
all five alloys. A representative micrograph for the Ni19.5Ti50.5Pd30 alloy is shown in Figure 3. In order to identify 
different phases, a detailed microstructural analysis was conducted on the Ni19.5Ti50.5Pd30 alloy using SEM, TEM and 
XRD techniques. These analyses revealed a B19 orthorhombic martensite, as expected for ternary NiTiPd alloys 
containing more than 10 at.% Pd [20,21]. The second phase particles consisted of a Ti-rich phase containing 
predominantly carbon, but also some oxygen, and an intermetallic phase containing Ti, Ni, and Pd. Electron diffraction 
and EDS analysis of the former phase indicated that it was an fcc-structured Ti(C,O), while the intermetallic phase was a 
Ti2(Ni,Pd) phase isostructural with the face-centered-cubic Ti2Ni phase found in binary titanium-rich NiTi alloys [22]. It 
should be mentioned that the presence of O has been shown to stabilize a Ti4Ni2Ox phase in NiTi alloys [23, 24]. This 
phase has the same lattice parameter and the crystal structure as the Ti2Ni phase since O resides interstitially in the 
Ti4Ni2Ox phase, which also makes it hard to detect. Thus, it is likely that the Ti2(Ni,Pd) phase in our alloys is also an O-
stabilized Ti4(Ni,Pd)2Ox phase. The blocky morphology of this phase suggests that it formed interdendritically during 
solidification and then broke up during extrusion. 

Room temperature analysis of the other four alloys (Pd = 15, 20, 25, 46 at.%) by SEM and EDS revealed that they too 
were made up of a martensitic matrix interspersed with a small volume fraction of Ti(C,O) and Ti2(Ni,Pd)/Ti4(Ni,Pd)2Ox. 
In all five alloys, the average particle sizes of the two phases were ~1.1 and 1.5 μm for the Ti(C,O) and Ti2(Ni,Pd)/ 
Ti4(Ni,Pd)2Ox respectively, with the total particle volume fraction being less than 4%. 

 

 



 
 

 
 

Transformation temperatures of the alloys were determined via unconstrained thermal cycling as described in the 
previous section. The samples were thermally cycled under zero load from 50°C to at least 100°C above where the 
transformation was seen to finish and then cooled back to 50°C (Figure 4). These temperatures as well as the hysteresis 
measurements (Af-Ms) are shown in Table 1. There is a linear increase in all transformation temperatures with increasing 
Pd content, but the hysteresis remains constant at ~10°C for all alloys except Ni3.5Ti50.5Pd46 where it grows to 28°C. 

 

 

 

 

 

 

 

 

 

3.2 Constant-load strain-temperature behavior 

Our primary interest in high-temperature shape memory alloys is in their potential to be used as solid state actuators and 
as major components in adaptive structures, primarily for aeronautic applications. Consequently, constant-load strain-
temperature (load-biased) tests were performed on each of the alloys as a method for evaluating the work output and 
dimensional stability under various constant loads. In the embodiment presented here, a single sample was used to 
effectively screen an alloy to determine its potential as an actuator material by loading it to increasing stress levels (in 
our case 0, 99, 197, 295, 393, and 517 MPa or until failure occurs), and thermally cycling the alloy twice through the 
transformation regime at each stress level to determine the transformation strain, work output, and permanent 
deformation. 

Figure 5 depicts the second thermal cycle at each stress level for a standard load-biased test performed on the 
Ni19.5Ti50.5Pd30 alloy. Above each curve, the applied stress and resulting work output are shown. While the load-biased 
strain-temperature curves for the other alloys are not shown due to space limitations, the transformation strain, work 
output, and permanent deformation strain for each alloy were compiled and are shown in Figures 6, 7, and 8, 
respectively. None of these plots report data from the Ni3.5Ti50.5Pd46 alloy since the alloy produced no work output even 
at 99 MPa, but instead, when cycled through the transformation to the austenite state, simply elongated to failure.  

In general, the transformation strain increased with increasing stress up to a certain point (197 MPa for the alloy with 15 
at.% Pd, and 295 MPa for the alloys with 25 and 30 at.% Pd) (Fig. 6). At stresses below this maximum, the 
transformation strain increased with stress, because the higher stresses were able to cause more of the martensite twins to 
reorient in an orientation that favored the applied strain during cooling, and therefore there was more strain available to 
be recovered during the transition to austenite. At higher stress levels, this reorientation effect is maximized, but the 
stresses (internal and external) become high enough to prevent full recovery of all the reoriented martensite [25, 26, 27], 
and so the transformation strain level begins to decrease. Work output, being the mathematical product of the 
transformation strain and the applied stress, increased with applied stress for all of the stress levels reached, but would be 
expected to decrease at higher stress levels if they were attained, as our previous work in compression has shown [28]. 

The permanent deformation that occurred during each cycle (Figure 8) increased with both increasing Pd content and 
increasing stress level. However, some permanent deformation was observed at every stress level tested, indicating poor 
dimensional stability of the NiTiPd alloys regardless of Pd content. This result was somewhat unexpected given the low 
temperatures and stresses that were involved in testing, for example in the case of the Ni34.5Ti50.5Pd15 alloy, and given 
previous results for other HTSMA’s such as Ni30Ti50Pt20 [29]. Consequently, additional testing was performed to gain 
insight into possible causes of this plastic deformation and the behavior of this group of alloys in general. 

 

Table 1: Unconstrained transformation temperatures and hysteresis  
Composition 

(at.%) 
Transformation Temperature 

(°C) 
Hysteresis 

(°C) 
Ni Ti Pd 

Extrusion 
MF MS AS AF AF-MS 

34.5 50.5 15 36 65 73 75 83 10 
29.5 50.5 20 37 123 132 133 143 11 
24.5 50.5 25 38 178 190 193 197 7 
19.5 50.5 30 24 233 249 250 259 10 
3.5 50.5 46 50 469 485 509 513 28 
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Figure 1: Schematic of a load-biased strain temperature 

cycle with measured values defined. 
Figure 2: Schematic of an unconstrained strain recovery 

step test showing measurement points 1-5. 
Undercooling and reheating are omitted for clarity. 
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Figure 3: Room temperature backscattered electron image 

of the microstructure of the Ni19.5Ti50.5Pd30 alloy 
showing secondary phases in a B19 martensite matrix. 

Figure 4: No-load transformation curves for all five alloys 
showing increasing transformation temperatures with 
increasing Pd content. 
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Figure 5: Load-biased strain-temperature curves for the 

Ni19.5Ti50.5Pd30 alloy showing the second cycle at each 
stress level. 

Figure 6: Transformation strain as a function of applied 
stress for NiTiPd alloys of varying Pd content. 



 
 

 
 

3.3 Monotonic isothermal stress-strain behavior 

As a first step in determining the reason for significant plastic deformation at every stress level in these alloys, the 
strength of the martensite and austenite phases was determined. Monotonic tensile curves at temperatures of Mf-50°C 
and Af+50°C for alloys tested in the virgin state (extruded and heat treated at 400°C/1hr) are shown in Figures 9 and 10 
and represent the basic tensile properties of the martensite and austenite states, respectively. 

In the martensite state, all of the alloys except Ni3.5Ti50.5Pd46 displayed tensile curves having three distinct segments: an 
initial non-linear elastic section, a stress plateau or region of low work hardening, followed by a final region of higher 
work hardening. Despite all of the tests being 50°C below the Mf and at approximately the same normalized temperature 
(TMf-50/TMf) with respect to absolute zero, the plateau region starts at a higher stress and can be seen to increase in slope 
and decrease in length with increasing Pd content. 

The monotonic tensile curves in the austenite range display steep linear elastic behavior and also exhibit a short plateau 
after yielding. In the lower Pd alloys, the plateau is likely due to a stress induced transformation of martensite which is 
followed closely by a change in slope and deformation of the austenite. In the alloy with 46 at.% Pd, the elastic-plastic 
nature of the stress-strain curve is due to dynamic recovery during deformation of the austenite. In the lower Pd alloys, 
the plateau in the austenite is very short compared to that in the martensite, suggesting that very little austenite is being 
transformed to martensite, and thus the yielding behavior is very close to that of pure austenite, where deformation 
occurs by dislocation processes. 

Yield stresses were determined by the 0.2% offset method and are shown as a function of Pd content in Figure 11. 
Yielding in the martensite phase is due to the onset of twin boundary motion or detwinning, while yielding of the 
austenite phase is shown as being due to the onset of typical dislocation processes or slip. It can be seen that the critical 
stress for twin boundary movement or reorientation increases with increasing Pd content from 97 to 365 MPa, while the 
critical stress for slip decreases with increasing Pd content from 437 to 98 MPa. 

A minimum condition for good work output, or strain recovery under load, in a shape memory alloy is that the material 
must have a higher yield stress in the austenite phase than in the martensite phase [29]. This explains the very poor 
performance of the Ni3.5Ti50.5Pd46 alloy and its inability to produce any meaningful work output. However, this does not 
explain the poor dimensional stability or significant permanent deformation observed in the alloys with lower Pd 
content. Ideally, when shape memory alloys are thermally cycled under a constant stress one would expect strain by 
detwinning of the martensite, which will be fully recovered as the material is thermally cycled into the austenite state, 
leaving only an elastically strained austenite. But, in reality, not all of the strain is recovered during the thermal cycling 
of any of the NiTiPd alloys, resulting in permanent deformation (Figure 8), even when the austenite phase is 
considerably stronger than the martensite (Figure 11). Therefore, additional factors critical to the performance of these 
high-temperature shape memory alloy must be involved. 

3.4 Shape memory behavior and plastic deformation of the martensite 

As mentioned previously, very little is actually known about the deformation mechanisms operating along the stress-
strain curve in shape memory alloys, particularly in the high-temperature ternary systems, where the behavior may differ 
significantly from that of binary alloys. In this study, an unconstrained strain recovery “step test” was used to determine 
the approximate stress along the monotonic tensile stress-strain curve where slip processes begin to operate, following 
the procedures described in Figure 2. In Figure 12, the loading, residual strain, and permanent strain curves from the step 
test performed on the Ni19.5Ti50.5Pd30 alloy are shown. The residual strain is the amount of strain remaining in the sample 
after loading to a particular strain and then unloading back to zero stress at a constant temperature. The permanent strain 
is the amount of this residual strain remaining after the sample is then thermally cycled at zero stress through the 
transformation and back to the test temperature. If all the residual strain is recovered during heating then there will be no 
permanent or plastic strain left in the sample. The residual strain and permanent strain as a function of the maximum 
stress reached in each cycle of the step test is shown superimposed in Figure 12. To correctly use and understand this 
plot, it is necessary to refer to the various curves on an equal stress basis. As an example, for the loading curve where a 
maximum stress of 400 MPa was reached, the maximum applied strain was 3.2%, the residual strain after unloading was 
2.4%, and the permanent strain after thermal cycling was 0.87%. Using Equation 1, we can calculate the fraction of 
strain recovered to be 63%.  
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Figure 7: Work output as a function of applied stress for 

NiTiPd alloys of varying Pd content. 
Figure 8: Permanent deformation during thermal cycling at 

different stress levels for NiTiPd alloys of varying Pd 
content. 
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Figure 9: Monotonic tensile behavior of the alloys in the 

martensite state – test temperature of Mf-50°C. 
Figure 10: Monotonic tensile behavior of the alloys in the 

austenite state – test temperature of Af+50°C. 
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Figure 11: Critical stress data for NiTiPd alloys 

determined from monotonic tensile tests and strain 
recovery behavior. 

Figure 12: Incremental stress-strain loading curves and 
resulting residual strain and permanent strain as a 
function of stress for Ni19.5Ti50.5Pd30. 



 
 

 
 

Figure 13 shows for all five alloys the fraction of the residual strain that was recovered by heating the sample into the 
austenite state and then cooling it back to the test temperature. Because only two of the alloys ever attained 100% 
recovery of the residual strain (meaning that all the residual strain was thermally recovered), the 90% recovery level was 
arbitrarily chosen as a defining fraction for the alloys. It can be seen that for the Ni34.5Ti50.5Pd15 alloy, 90% or more strain 
was recovered when the alloy was strained to a maximum of 2.2% strain. For the alloys with 20, 25, and 30 at.% Pd, the 
maximum strain the alloy could experience with 90% recovery or more was 1.5, 1, and 0.4%, respectively. The 
Ni3.5Ti50.5Pd46 alloy never got above 45% recovery at any strain level, due to extensive non-recoverable slip that occurred 
prior to inducing any recoverable deformation by twinning during the straining process. 

While the recovery fractions may appear low compared to the results of other authors [30, 31], it must be noted again 
that the materials were in the as-extruded, or “virgin”, state, which means that they had not been strengthened by any 
method. Our materials would be more closely related to the arc melted, homogenized, and hot rolled baseline 
Ni20Ti50Pd30 alloy tested at 200°C by Shimizu et al. [31]. Comparing the data from Shimizu’s alloy to the Ni19.5Ti50.5Pd30 
alloy tested here, one can see that the data is fairly comparable up to a maximum applied strain of 2%. The differences 
after this may be due to material properties, calculation method (Shimizu et al. use the strain at Af+100°C as the 
permanent strain), or the difference in step size (0.1% for this study and 0.5 to 1% by Shimizu et al.) The additional 
steps needed to achieve the same strain levels may have led to the diminished recovery as the samples were cycled a 
larger number of times into the high temperature austenite state. 

Figure 14 is a plot of the permanent or plastic strain versus maximum applied strain for all five alloys. In the alloys 
containing lower levels of Pd, the permanent strain at a specific maximum applied strain is much lower than that of the 
alloys with high Pd contents. This means that those with lower Pd contents, such as Ni34.5Ti50.5Pd15, exhibit a higher ratio 
of recoverable twin boundary motion or reorientation to non-recoverable slip deformation at a given strain level than 
those alloys containing more Pd.  

Figure 15 shows the maximum stress versus permanent strain data from the step tests on all five alloys at Mf-50°C. 
These curves essentially represent the permanent deformation behavior of the martensite with recoverable strain 
processes factored out. Consistent with previous stress-strain curves, a “yield point” for slip in the martensite of each 
data set was determined using the 0.02% offset method and plotted along with the yield data from the monotonic tensile 
curves from Figure 11. Even though this permanent strain may be representative of more than just dislocation motion, 
i.e. non-recoverable martensite twins [25, 26, 27], the “yield” points from the step tests in Figure 15 are labeled in Figure 
11 as being representative of the critical stress for slip in the martensite. It can be seen that while the critical stress for 
detwinning in the martensite increases with increasing Pd content, the difference between it and the critical stress for slip 
in the martensite decreases until in the Ni3.5Ti50.5Pd46 alloy the critical stress for detwinning is 84 MPa higher than the 
critical stress for slip. These critical stresses (for detwinning and slip) are superimposed on the monotonic isothermal 
tensile curves in Figure 16 to make it easier to visualize where detwinning and gross slip processes begin to operate. The 
detwinning yield stresses all lie approximately at the beginning of the stress plateau. In the alloys with lower Pd content, 
detwinning operates alone for approximately 1/5th of the distance along the plateau before dislocation slip occurs. After 
slip begins, slip and detwinning occur simultaneously until all of the mobile martensite twins have been reoriented or 
pinned in place. In the alloy with 46 at.% Pd, slip occurs well before detwinning can operate. 

 

4.0 DISCUSSION 
As a minimum condition, alloys with large relative differences in the critical stress for slip in the austenite and critical 
stress for detwinning or twin formation in the martensite, σy

A>σy
M, have the potential to generate significant work 

during load-biased thermal cycling, while alloys with low or negative relative stresses have no chance of exhibiting 
properties useful for actuator-type applications. However, this condition is not sufficient to ensure reasonable work 
output with good dimensional stability. In NiTiPd, the difference between the critical stress for slip and the critical stress 
for detwinning in the martensite also plays a role in the work output and permanent deformation behavior of shape 
memory alloys thermally cycled under load. 

Figure 17 shows that the work output at 295 MPa decreases slightly with Pd content between 15 and 30 at.% Pd, but at 
46 at.% Pd, the work output catastrophically drops to zero. This is consistent with the findings from both the monotonic 
tensile tests and strain-recovery tests on these alloys. These tests showed that the relative yield stress between σy

A and 



 
 

 
 

σy
M decreases from 341 MPa in Ni34.5Ti50.5Pd15 to 159 MPa in Ni19.5Ti50.5Pd30, and then to -267 MPa for the 

Ni3.5Ti50.5Pd46 alloy (Figure 11). Also, the difference between the critical stress for slip and the critical stress for twin 
motion in the martensite σc slip

M-σy
M decreases overall from 23 to 17 MPa with the increase from 15 to 30 at.% Pd, and 

at 46 at.% Pd is -84 MPa. At some point between 30 and 46 at.% Pd, probably around 37 at.% Pd, the relative yield 
stress between the martensite and austenite and the difference in critical stresses for slip and detwinning in the martensite 
equal zero. At lower Pd contents than this crossover composition, work is possible because an applied stress results 
predominantly in detwinning before slip occurs, or concurrent with slip processes. At the highest Pd content, any stress 
high enough to cause detwinning in the martensite also produces slip in the martensite, and subsequently a much greater 
amount of slip in the austenite when the alloy is cycled through the transformation. 

In all of the studied alloys, some amount of permanent deformation occurs at every stress level, even in the alloy with 
the lowest Pd content, though the amount of permanent deformation increases in an approximately linear fashion with 
increasing Pd content between 15 and 30 at.% Pd. For example, permanent deformation after thermal cycling under 295 
MPa (constant stress) increases from 0.23 at 15 at.% Pd to 0.48% at 30 at.% Pd (Figure 18). This result is consistent with 
the estimates for the onset of twin boundary movement or detwinning and slip of the martensite performed in this study, 
which occur at essentially the same stress levels for alloys containing 15 to 30 at.% Pd, especially given the use of an 
offset method for determination of the critical stresses (so that actual slip processes are operating at some extent at lower 
stresses). The data is also consistent with the earlier results discussed in Figures 13, 14, and 16, which indicated that a 
higher percentage of the strain applied to the lower Pd alloys is recoverable, and therefore less of the applied strain ends 
up as permanent deformation. Therefore, some plastic deformation is unavoidable in all alloys, with improved behavior 
inversely proportional to the Pd level. In alloys with high Pd content (>~37 at.%), slip occurs well before detwinning; 
therefore there is little to no recoverable deformation that can occur to produce work, and thus the alloy exhibits large 
amounts of non-recoverable permanent deformation when thermally cycled under load. 

The data in total is also very useful in revealing the critical factors that would lead to the development of superior alloys 
for actuator-type applications: a low stress for detwinning of the martensite and a high stress for yielding by any type of 
slip processes in both the austenite and martensite. Thus the key to developing dimensionally stable, high-temperature 
shape memory alloys with good work output is to prevent the operation of all dislocation-mediated deformation 
processes while not greatly affecting detwinning. 

 

5.0 SUMMARY AND CONCLUSION 
Monotonic isothermal tensile tests and no-load strain recovery step tests were used to explain the behavior of high-
temperature NiTiPd shape-memory alloys in actuator-type constant-load thermal cycling tests (load-biased tests). With 
increasing Pd content, the critical stress for slip in the austenite state decreased while the critical stress for detwinning 
and the critical stress for slip in the martensite increased, all of which lead to a decrease in work output. While the 
critical stress for slip in the martensite phase increased with increasing Pd content, the difference between it and the 
critical stress for detwinning decreased until in the alloy with 46 at.% Pd, slip occurs in the alloy well before any 
recoverable twinning processes. Therefore, both increasing stress and increasing Pd content result in an increase in 
permanent deformation strain in the alloys. Also, the fraction of strain that can be recovered in an alloy decreases with 
increasing Pd content. 
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Figure 13: Fraction of residual strain recovered by thermal 

cycling the alloys through the transformation to the 
austenite state and back to the test temperature. 

Figure 14: Permanent strain as a function of maximum 
applied strain for the five alloys studied. 
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Figure 15: Permanent strain data from the five alloys. 

 

Figure 16: Yield data determined from the monotonic 
tensile tests and strain-recovery step tests superimposed 
on the monotonic tensile curves of the martensite. 
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Figure 17: Work output determined from transformation 

strain in load-biased tests performed at 295 MPa. 
Figure 18: Permanent deformation strain in load-biased 

tests performed at 295 MPa. 
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