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ABSTRACT 
 
A computational simulation method is presented to evaluate the deterministic and non-
deterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid 
composite mechanics, finite element computer codes, and probabilistic analysis enable the 
effective assessment of the dynamic buckling load of smart composite shells. A universal plot is 
generated to estimate the dynamic buckling load of composite shells at various load rates and 
probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right 
next to the outer plies. The results show that, on the average, the use of smart fibers improved the 
shell buckling resistance by about 10% at different probabilities and delayed the buckling 
occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber 
volume ratio and ply thickness have major effects on the buckling load while uncertainties in the 
electric field strength and smart material volume fraction have moderate effects. For the specific 
shell considered in this evaluation, the use of smart composite material is not recommended 
because the shell buckling resistance can be improved by simply re-arranging the orientation of 
the outer plies, as shown in the dynamic buckling analysis results presented in this report. 
 
INTRODUCTION 

 
Shell structures are in general capable of resisting combined loading conditions. They are widely 
used in aircrafts, submarines, transportation and storage industries. Thin composite shells are 
susceptible to instabilities (buckling) when subjected to compressive static loads. In more 
aggressive loading environments, they may also be subjected to dynamic or time dependent 
loads. Predicting the resistance of thin shells to buckling is a rather difficult task because of the 
assumptions that need to be made in order to obtain results that are representative of the physical 
situation. Advances in the area of structural finite element analysis enabled the evaluation of the 
buckling load of thin smart composite shells under dynamic loading. Evaluation of the dynamic 
buckling of composite shells has been performed as described in reference [1]. However, 
evaluation of the dynamic buckling of smart or adaptive composite shells has not been performed 
as of this writing. Therefore, the work presented here describes a formal approach for the 
evaluation of the deterministic and non-deterministic buckling of smart/adaptive composite 
shells. The adaptive structure considered here integrates smart fibers in the composite shell by 
using the intraply hybrid composite in order to enhance its structural performance.  
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Recent developments in the application of smart structures concepts, using sensor/control 
materials, show the potential to enhance structural performance as well as durability and 
reliability [2]. Briefly, sensor/control devices consist of the following: (1) an electronically 
polarized material, (2) an electric field parallel to the direction of polarization, and (3) expansion 
and contraction effects of the polarized material exerted on the structure. When control voltages 
are applied in the direction of polarization during normal operation, the sensor/control material 
expands in the same direction so that the structural behavior is altered by a desired amount; thus, 
its reliability is enhanced. These control voltages can be readily integrated into a smart 
composite structure by using combinations of intraply and interply hybrid composites. It is then 
possible to ensure that smart structures will operate in the design-specified range. The objective 
of this paper is to describe one computational simulation procedure for simulating the dynamic 
buckling load of thin smart composite shells. The fundamentals associated with the prediction of 
the dynamic buckling load of composite shells are discussed in the next section.  
 
FUNDAMENTALS 
 
The dynamic buckling load obtained from the use of smart fibers is assessed using a 
computational simulation system that combines composite mechanics (ICAN) [3] and finite 
element analysis (MHOST) [4] computer codes. The integrated composite analyzer computer 
code ICAN performs all the essential aspects of mechanics/analysis/design of multilayered fiber 
composites. Modular, open-ended and user friendly, the program can handle a variety of 
composite systems having one type of fiber and one matrix as constituents as well as intraply and 
interply hybrid [5] composite systems. It can also simulate isotropic layers by considering a 
primary composite system with negligible fiber volume content. This feature is specifically 
useful in modeling thin interply matrix layers. Hygrothermal conditions and various 
combinations of in-plane and bending loads can also be considered. Some key features of output 
are stress concentration factors around a circular hole, locations of probable delamination, a 
summary of the laminate failure stress analysis, free edge stresses, microstresses and ply 
stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to 
analyze/design fiber composite structures and components. MHOST is a structural analysis 
program based on mixed finite element technology, and is specifically designed for three-
dimensional inelastic analysis. A family of two- and three-dimensional continuum elements 
along with beam and shell structural elements can be utilized.  
 
The effects of uncertainties in the material properties, fabrication, and smart composite primitive 
variables on the dynamic buckling load of the composite shell are assessed through the IPACS 
[6] computer code. IPACS combines composite mechanics with finite element analysis and 
probabilistic methods. Given the probability distributions for the primitive variables, and an 
estimated relationship between the structural response and the primitive variables, a 
computationally efficient method is used to obtain accurate probability and response predictions 
by using formal methods for computationally evaluating probability or structural reliability.  
 
The technical approach used in the dynamic buckling evaluation of conventional composite 
shells is described subsequently. It includes an explanation of a universal plot constructed for a 
graphite epoxy shell subjected to dynamic axial compressive loading. This is followed by an 
explanation of the concept that adapts intraply hybrid composite to smart shell structures. Then a 
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discussion of the deterministic results obtained with the use of smart fibers in the outer –45° 
plies is presented. After that, probabilistic evaluation of the dynamic buckling load for the 
graphite epoxy smart composite shell is discussed. The probabilistic analysis includes an 
evaluation of the sensitivities where the effect of the primitive variables on the dynamic buckling 
load is assessed. Dynamic buckling analysis of the composite shell performed after re-arranging 
the orientation of plies 1 and 30 shows that improvement in buckling resistance can be attained 
without resorting to complicated material systems (such as those of piezoelectric fibers).  
 
DYNAMIC BUCKLING OF A CONVENTIONAL COMPOSITE SHELL 
 
The estimation of the dynamic buckling load of a conventional graphite epoxy composite shell is 
based on the governing equation for dynamic structural response in matrix form: 
 
[ ]{ } [ ]{ } [ ]{ } { })(u tFuKuCM =++ &&&   (1) 
 
where M is the mass; C is the damping; K is the stiffness and F is the forcing function; u&&  is the 
acceleration, u&  is the velocity and u  is the displacement. Equation (1) is of generic form and 
represents the single or multi-degrees of freedom structures. Dynamic buckling is obtained by 
solving equation (1) as a linear eigen value problem or as a large displacement amplitude 
problem by using the updated Lagrangian method. Available structural analysis finite element 
computer codes/programs have both options [7]. In this approach, updates for material 
properties, temperature changes, geometric deformations, adaptive structure corrective actions, 
and structural damage are readily incorporated as they occur in time. The dynamic buckling load 
is obtained at each time step by first satisfying equation (1), including iteration when necessary, 
and then solve for the buckling load from the equation: 
 

[ ] [ ]{ }( ) { }uutFK λ=− 2)(  (2) 
 
The specific shell evaluated is depicted schematically in figure 1 where the material and loading 
conditions are also shown. It is assumed to be made from AS graphite-fiber/epoxy-matrix 
composite with the laminate configuration: [(45,–45,0,90)7, –45,45]. The buckling load predicted 
by using equation (2) versus incremented dynamic load is shown in figure 2. As can be seen, the 
dynamic buckling load decreases monotonically approaching asymptotically a value that is about 
30% of the static value (at t = 0). As illustrated in figure 2, superimposing the increasing 
dynamic force in the same graph with the dynamic buckling load, the dynamic buckling load can 
be determined from the intersection of the two curves. The authors consider the results in figure 
2 as demonstration of a straightforward procedure to evaluate dynamic buckling loads of 
composite shell structures by using available general purpose structural analysis, finite element 
and composite mechanics computer codes. The approach is not limited to linearly incremented 
dynamic loads, although the authors have not checked it for nonlinearly incremented loads or for 
“suddenly” (t≈0) applied loads. The method presented here is generic and not restricted to any 
special class of shells and/or loading conditions. A description of the approach used in the 
intraply hybrid composite adaptation to the smart composite shell is presented in the next 
section.  
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ADAPTATION OF HYBRID COMPOSITES TO SMART SHELLS 
 
The adaptation of the intraply hybrid composite concept to the smart shell composite structure is 
depicted schematically in figure 3. The configuration of the intraply hybrid composite is shown 
in figure 3(a). Its adaptation to smart composite system is shown in figure 3(b). Note that the 
intraply hybrid composite consists of plies that have strips of a regular (host) composite material 
and interspersed strips of material for sensor/control devices. Actuators, made of control 
materials such as piezoelectric ceramic fiber, are used to control the behavior of the composite 
structure by expanding (positive-induced strain) or contracting (negative-induced strain) the 
sensor/control strips to achieve the requisite design and operational goals. The strains induced by 
the actuator are affected by uncertainties in several factors that can only be quantified 
probabilistically. These include the following: (1) inaccurate measurements made by the sensors, 
(2) uncertainties in the electric field, (3) uncertain induced strain-electric field strength 
relationship, (4) uncertain material properties for the sensor/control materials, (5) uncertain 
electric filed strength, and (6) improper location of the sensor/control materials. Because of these 
factors, the use of sensor/control devices increases the uncertainty in the already uncertain 
composite structural behavior.  
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The mean properties for the smart (piezoelectric) fiber are tabulated in figure 4. The properties 
include the moduli, strain coefficient, field strength, and material volume fraction. The smart 
fiber is embedded in the outer –45° ply (right below the outer 45° ply). The smart composite 
shell is assumed to be made from graphite epoxy with piezoelectric fibers embedded in plies 2 
and 29 as shown in figure 4. To properly quantify the benefits of introduced strain, a 
comprehensive probabilistic assessment is needed. Table 1 summarizes the mean constituent 
material properties and fabrication variables, their assumed probabilistic distribution, and the 
range of the scatter. Table 1 also lists the corresponding smart (sensor/control) composite 
variables. Those variables include the field strength, field strain coefficient, smart material 
volume fraction, and thickness of smart ply. The computational procedure used in assessing the 
smart composite shell consists of the following: (1) the control strains are simulated using 
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equivalent variables principles. The thermal strain is computed from uncertain temperature 
(representing the electric field strength) and uncertain thermal expansion coefficients 
(representing the sensor/control strain coefficients); these thermal strains are in addition to those 
from thermal loads; and (2) the scatter in the primitive variables, which describes the composite, 
can be presented by known probabilistic distributions. The results obtained from the 
deterministic evaluation of the dynamic buckling load of the smart composite shell are presented 
next. 
 
 

Table 1. Probabilistic Dynamic Buckling of a Smart Composite Shell 
Primitive Variables, Scatter, Standard Deviation and Distribution 

Primitive variable Mean % Scatter Standard 
deviation 

Probabilistic 
distribution 

Graphite epoxy     

Fiber modulus Ef11 (msi) 31 ±5% 1.55 Normal 

Fiber shear modulus Gf12 (msi) 2 ±10% 0.2 Normal 

Matrix modulus Em (msi) 0.50 ±10% 0.05 Normal 

Fiber density (lb/in.3) 0.0630 ±10% 0.0063 LogNormal 

Matrix density (lb/in.3) 0.0443 ±10% 0.00443 LogNormal 

Fiber volume ratio 0.65 ±10% 0.065 Normal 

Void volume ratio 0.050 ±15% 0.0075 LogNormal 

Outer ply angle (45°) 45.0 ±6.66% 3.0 Normal 

Ply thickness (in.) 0.005 ±5% 0.00025 LogNormal 

     

Smart material     

Fiber modulus Ef11 (msi) 11.9 ±5% 0.595 Normal 

Fiber shear modulus Gf12 (msi) 4.5 ±10% 0.45 Normal 

Fiber volume ratio 0.65 ±10% 0.065 Normal 

Volume fraction 0.50 ±10% 0.05 LogNormal 

Ply angle (–45°) –45.0 ±6.66% 3.0 Normal 

Ply thickness (in.) 0.005 ±5% 0.00025 LogNormal 

Electric field strength (V/in.) 1.0E06 ±10% 1.0E05 Normal 

Field strain coefficient (in./V) 4.8E-09 ±10% 4.0E-10 LogNormal 
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DETERMINISTIC DYNAMIC BUCKLING OF SMART COMPOSITE SHELLS  
 
The dynamic buckling load of the smart composite shell is assessed using the configuration 
shown in figure 4. As mentioned previously, induced control strains are simulated using 
equivalent variables principles. Temperature loads representing the electric field strength are 
applied to the plies that include smart fibers. The thermal expansion coefficients are used to 
represent the strain coefficients. At the end of each time step, buckling analysis is performed by 
satisfying equation (1). The smart shell geometry is updated at the end of each time step to 
include time dependent deformations. The results obtained from the dynamic buckling analysis 
are presented in figure 5. The dynamic buckling load of the smart composite shell is 1671 kips 
compared to 1540 kips for the conventional composite shell. The 8.5% improvement in the 
dynamic buckling load for the shell that comprises the smart material is resulting from field 
strength of 1 million V/in., a strain coefficient of 4.8×10–9 in./V, smart fiber volume ratio of 
0.65, and a smart material volume fraction of 50%. As depicted in figure 5, for any time t, the 
buckling load of the smart shell is consistently higher than the one of the conventional composite 
shell. Also, the dynamic buckling of the smart composite shell requires longer time before it 
occurs. Weight analysis of the smart and conventional composite shells indicates that the smart 
shell is about 9% heavier than the conventional one. The weight of the smart shell is estimated at 
51 lb compared to 47 lb for the conventional graphite epoxy shell. The IPACS computer code 
used to perform the non-deterministic analysis of the dynamic buckling load of the smart 
composite shell is described next. 
 
DESCRIPTION OF THE IPACS COMPUTER CODE  
 
The probabilistic structural analysis is performed using the integrated probabilistic assessment of 
composite structures computer code IPACS. With the direct coupling of composite mechanics, 
including interply and intraply hybrids using ICAN, finite element structural analysis (MHOST), 
and probabilistic methods, IPACS is capable of simulating uncertainties in all inherent scales of 
the composite, from constituent materials to the composite structure and its loading conditions. 
The evaluation process starts with the identification of the primitive variables at the micro and 
macro composites scales including fabrication. These variables are selectively perturbed in order 
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to generate a database for the determination of the relationships between the desired materials 
behavior and/or structural response and the primitive variables.  
 
The composite micro-mechanics is used to carry over the scatter in the primitive variables to the 
ply and laminate scales (steps A and B in figure 6). Laminate theory is then used to determine 
the scatter in the material behavior at the laminate scale (step C). This step leads to the perturbed 
resultant force/moment-displacement/curvature relationships used in the structural analysis. 
Next, the finite element analysis is performed to determine the perturbed structural responses 
corresponding to the selectively perturbed primitive variables (step D). This completes the 
description of the hierarchical composite material/structure synthesis shown on the left side of 
figure 6. The multi scale progressive decomposition of the structural response to the laminate, 
ply, and fiber-matrix constituent scales is shown on the right side of figure 6 (steps E to G). After 
the decomposition, the perturbed fiber, matrix, and ply stresses can be determined. An important 
feature of IPACS, depicted at the bottom of figure 6, is the nonlinear multifactor interaction 
model for computing the fiber-matrix constituent material properties, including the effects of the 
prevailing service environments.  
 
Next, the fast probability integrator (FPI) [8] code is used to determine the functional 
relationship between the response and the primitive variables. The cumulative distribution 
function of the response is then calculated with the numerically determined functional 
relationship and the known probability density functions of the primitive variables. The 
sensitivity factors of the primitive variables to each response’s cumulative probability are also 
determined. This information is crucial for the reliability assessment.  
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NON-DETERMINISTIC DYNAMIC BUCKLING OF SMART COMPOSITE SHELLS  
 
The non-deterministic evaluation of the dynamic buckling load for the smart composite shell is 
performed based on the scatter in the fiber and matrix material properties, fabrication variables, 
and smart composite field and material properties. The following scatter is assumed for the 
various primitive variables: (±5%) for the graphite fiber and smart fiber longitudinal moduli, and 
ply thickness; (±6.67%) for the ply angle; (±10%) for the graphite fiber and smart fiber moduli, 
fiber and matrix density, matrix modulus, fiber volume ratio, smart material volume fraction, 
electric field strength, and strain coefficient; and (±15%) for the void volume ratio. Table 1 lists 
the probabilistic distributions and standard deviations for all primitive variables. Note that the 
perturbations are performed in the probabilistic analysis module for the properties and 
fabrication variables of the graphite epoxy laminates, and for the laminates that contain the 
graphite epoxy (primary material system) and smart composite (secondary material system). The 
probabilistic dynamic buckling load for the all graphite epoxy composite and smart composite 
(graphite epoxy and smart material) is presented in figure 7. For a probability of occurrence of 
1/1000, the smart composite dynamic buckling load is 9.7% higher than that of the all graphite 
epoxy composite shell. The same trend is observed for the 0.5 and 0.999 probabilities where the 
smart composite buckling resistance is enhanced by about 10%. Note the parallel shift in the 
cumulative distribution function curve to the right in the case of the smart composite shell, which 
indicates a uniform improvement in the probabilistic dynamic buckling load.  
 
The probabilistic sensitivities of the dynamic buckling load for the smart composite shell are 
presented in figure 8. The material properties primitive variables include: fiber modulus in 
longitudinal direction, fiber shear modulus, fiber density, matrix modulus, and matrix density. 
The fabrication primitive variables considered are: fiber volume ratio, void volume ratio, fiber 
orientation and ply thickness. Note that the material properties and fabrication primitive 
variables apply to the graphite epoxy and smart fiber and epoxy matrix of the smart composite 
shell structure. The primitive variables specific to the smart fiber are: electric field strength, 
strain coefficient, and volume fraction of the smart material. The sensitivity analysis shows that 
the dominant uncertainties are the ply thickness and fiber volume ratio for the whole composite 
system (primary and secondary). The smart material sensitivity analysis indicates that the electric 
field strength and volume fraction are the dominant uncertainties followed in that order by the 
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strain coefficient. Information obtained from sensitivity analysis can be very useful in altering 
the design to meet specific service requirements. That is done by controlling the scatter in critical 
primitive variables which have dominant effect on the structural response. In addition to 
sensitivity analysis, the 0.001 and 0.999 probabilities buckling loads are plotted as a function of 
time and the applied load in figures 9 and 10, respectively. The advantage of using smart 
material is assessed by noting the upward shift in the buckling load curve. The smart structure 
probabilistic buckling load is higher than that of the conventional shell probabilistic load by 
about 10%. Also, the time at which the dynamic buckling occurs is delayed as a result of the use 
of smart material. The probabilistic dynamic buckling load evaluation is unique because it allows 
the construction of a universal plot for evaluating the dynamic buckling load at any probability 
taking into account the effect of time and load on the structural response. In the next section, 
results are presented and discussed for the dynamic buckling analysis that is performed after the 
simple re-arrangement of the orientation of the outer plies of the composite shell. The analysis is 
performed twice: without and with smart material. 
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BENEFITS OF RE-ARRANGING THE PLIES ON THE OUTER SURFACES 
 
The dynamic buckling load is assessed for the conventional graphite epoxy shell with 
rearranged outer fiber orientation. The analysis is carried out based on orienting the fibers in 
plies 1 and 30 at 0° and 90°, respectively. This simple re-arrangement leads to an improvement 
of 15% in the buckling load (fig. 11). The shell now buckles under a dynamic load of 1770 kips, 
compared to 1540 kips with +45° outer plies. Figure 12 shows the dynamic buckling results for 
another fiber orientation arrangement: ply 1 and ply 30 are now oriented at 90°. With such an 
arrangement, the dynamic buckling load improved 16%. In addition to improving the buckling 
resistance of the composite shell, the time at which dynamic buckling takes place is delayed. The 
results in figures 11 and 12 show that for the specific shell, fiber orientation re-arrangement is 
more beneficial than using smart material. Dependent on the loading, one must ensure that 
proposed changes in the fiber orientation, especially on the inside and outside surfaces, do not 
pose other structural risks such as premature fracture. Proper engineering judgment is always 
needed to justify changes in the layout of a composite structure.  
 
The composite shell structure, with ply 1 and ply 30 oriented at 0° and 90°, is analyzed with 
smart fibers embedded in plies 2 and 29 (as depicted in figure 4). The dynamic buckling analysis 
results show that the use of smart materials lowered the buckling load of the composite shell 
about 6.7% (fig. 13). When the composite shell ply 1 and ply 30 are oriented at 90° and smart 
fibers are embedded in plies 2 and 29, the dynamic buckling analysis shows that the shell’s 
buckling resistance is weakened 2.5% (fig. 14). For the cases described in this section, the 
reduction in the dynamic buckling load in the presence of smart material is caused by a reversal 
in the effect of the control strain. As a result, the buckling resistance of the composite shell has 
deteriorated.  
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CONCLUSIONS 
 

The generic combination of conventional finite element method, available composite mechanics, 
smart structure concepts and incrementally updated Lagrangian solution algorithm is 
computationally efficient and sufficient for evaluating the dynamic buckling load of thin shells. 
The method is demonstrated for conventional and smart composite thin shells. In addition to 
deterministic results, uncertainties in properties, fabrication, and smart material primitive 
variables and their effects on the dynamic buckling load are discussed. The following specific 
conclusions are also drawn:  

 

(1) The universal plot developed for estimating the dynamic buckling load of conventional 
shells can be equally applied to determine the dynamic buckling load of smart composite 
shells.  

(2) The use of smart fibers in a thin graphite epoxy shell improved the buckling resistance by 
10%. 

(3) Uncertainties in the smart material volume fraction and field strength have moderate effects 
on the buckling load while uncertainty in the fiber volume ratio, and ply thickness of the 
host composite have major effects. 

(4) For the shell considered in this evaluation, benefits obtained from the use of smart material 
can be surpassed by the simple re-arrangement of the fiber orientation of the outer plies.  
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