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Development of a Nonlinear Probability of Collision Tool 
for the Earth Observing System 

David P. McKinley ' 
The Earth Observing System (EOS) spacecraft Terra, Aqua, and Aura fly in constellation 
with several other spacecraft in 705-kilometer mean altitude sun-synchronous orbits. All 
three spacecraft are operated by the Earth Science Mission Operations (ESMO) Project at 
Goddard Space Flight Center (GSFC). In 2004, the ESMO project began assessing the 
probability of collision of the EOS spacecraft with other space objects. In addition to 
conjunctions with high relative velocities, the collision assessment method for the EOS 
spacecraft must address conjunctions with low relative velocities during potential 
collisions between constellation members. Probability of Collision algorithms that are 
based on assumptions of high relative velocities and linear relative trajectories are not 
suitable for these situations; therefore an algorithm for handling the nonlinear relative 
trajectories was developed. This paper describes this algorithm and presents results from 
its validation for operational use. 

The probability of collision is typically calculated by integrating a Gaussian probability 
distribution over the volume swept out by a sphere representing the size of the space 
objects involved in the conjunction. This sphere is defined as the Hard Body Radius. 
With the assumption of linear relative trajectories, this volume is a cylinder, which 
translates into simple limits of integration for the probability calculation. For the case of 
nonlinear relative trajectories, the volume becomes a complex geometry. However, with 
an appropriate choice of coordinate systems, the new algorithm breaks down the complex 
geometry into a series of simple cylinders that have simple limits of integration. This 
nonlinear algorithm will be discussed in detail in the paper. 

The nonlinear Probability of Collision algorithm was first verified by showing that, when 
used in high relative velocity cases, it yields similar answers to existing high relative 
velocityAinear relative trajectory algorithms. The comparison with the existing high 
velocity/linear theory will also be used to determine at what relative velocity the analysis 
should use the new nonlinear theory in place of the existing linear theory. 

The nonlinear algorithm was also compared to a known exact solution for the probability 
of collision between two objects when the relative motion is strictly circular and the error 
covariance is spherically symmetric. Figure I shows preliminary results from this 
comparison by plotting the probabilities calculated from the new algorithm and those 
from the exact solution versus the Hard Body Radius to Covariance ratio. These results 
show about 5% error when the Hard Body Radius is equal to one half the spherical 
covariance magnitude. 

The algorithm was then combined with a high fidelity orbit state and error covariance 
propagator into a useful tool for analyzing low relative velocityhonlinear relative 
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trajectories. The high fidelity propagator is capable of using atmospheric drag, central 
body gravitational, solar radiation, and third body forces to provide accurate prediction of 
the relative trajectories and covariance evolution. The covariance propagator also 
includes a process noise model to ensure realistic evolutions of the error covariance. This 
paper will describe the integration of the nonlinear probability algorithm and the 
propagators into a useful collision assessment tool. Finally, a hypothetical case study 
involving a low relative velocity conjunction between members of the Earth Observation 
System constellation will be presented. 

Figure 1: Comparison of Pc with Truth for Circular Relative Motion 
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The Earth Observing System began routine conjunction threat assessment of its member 
missions starting in 2004. It was quickly determined that a capability was needed to analyze 
conjunctions having nonlinear relative motion. An algorithm was developed that reduces 
the complex nonlinear relative motion into small linear segments that are easy to evaluate. 
The algorithm shows good agreement to the existing linear theory when used to analyze 
linear relative trajectories and for simple nonlinear cases for which solutions are known. 
The algorithm has been implemented in a software tool that accurately propagates the 
spacecraft states and covariances. The resulting 3D Collision Probability Tool is now being 
used by EOS analysts to study conjunction events. 

I. Introduction 
Starting in 2004, a collision risk identification and mitigation strategy was implemented for the Earth Observing 
System (EOS) series of spacecraft flown by Goddard Space Flight Center (GSFC). The 3 EOS spacecraft, Terra, 
Aqua, and Aura, fly with several other spacecraft in two constellations in 700 krn mean equatorial altitude, sun- 
synchronous orbits. One of the key areas of interest was the capability to analyze and assess the collision risk during 
potential low relative velocity encounters between these spacecraft, since certain failure scenarios had been 
identified for the constellations that could lead to close approaches withn a constellation [I]. Since the spacecraft in 
each constellation are in essentially the same orbital plane, it is reasonable to expect that interactions between the 
constellation members can be described as low relative velocity. Although existing tools compute a high relative 
velocity Probability of Collision (PC), the limits of applicability for that calculation as velocity transitions to a low 
relative velocity case are not well understood or documented. It was determined that a tool was needed that was 
capable of calculating the probability for low relative velocity encounters, not only so that low relative velocity 
encounters could be analyzed, but also so that an understanding of the transition fiom low relative velocity 
encounters to high relative velocity encounters could be analyzed. This paper documents the development of such a 
tool. 

A great deal of work has been done on calculating PC for high relative velocity encounters [2, 3, 41. The problem of 
low relative velocity has been investigated by Chan [5] and Patera [6]. Chan's method uses an analytical expression 
for the relative trajectory in order to derive the PC. Patera's method uses a numerical scheme to evaluate the 
trajectory in increments to calculate the PC. 

This paper describes the algorithm and tools that have been developed for EOS to handle the calculation of PC 
between two spacecraft whose relative trajectory is nonlinear. The algorithm developed is similar to that of Patera 
[6], although the reduction of the volume integral into a contour integral is bypassed because the limits of integration 
that arise fiom the algorithm are easily expressed in rectangular coordinates. The derivation of the algorithm is 
presented, and then it is shown that the new algorithm is equivalent to existing algorithms for high relative velocity 
cases. The use of the algorithm to evaluate the breakdown of the high relative velocity calculations is briefly 
examined. Finally, a realistic case study is examined through implementation of the algorithm within the 
commercial off-the-shelf astrodynamics software package ~ r e e ~ l ~ e r ~ .  
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11. Background 

The general structure of the probabilistic collision problem is shown in Figure 1. An object of concern, called the 
Primary, is predicted to come into close proximity with another object, called the Secondary. Without loss of 
generality, the Secondary's position is taken as the origin and the Primary is visualized as moving along the relative 
trajectory. The combined geometric extent of the Primary and Secondary is described by a sphere of radius kb, 
referred to as the combined Hard Body Radius (HBR). This sphere is attached to the Primary and sweeps out a 
volume, V, during the time of interest. A 3-dimensional relative probability density function (PDF), C(t), which is 
defmed as the sum of Primary's and Secondary's position covariance matrices, is attached to Secondary. Generally, 
C(t) possesses a time-dependent shape and orientation due to the time variation in the covariance matrices of the 
separate objects. 

1-o combined error 
ellipsoid, centered 
on the Secondary / 

object 

sphere 
Rhb 

Figure 1: Typical Encounter Geometry. 

The probability of collision, PC, is defined as the integral of the PDF over the swept-out volume V [3]: 

where t)= y  - y o  is in some convenient set of coordinates. The vector & = {x, yo  z,} is the offset of i"-*I 
Iz -zo J 

the origin of the covariance from the center of the coordinate system. When the coordinate system and the 
covariance are centered on a common origin, the vector & is zero. 

In general the integral in Equation (I) is difficult to evaluate because of the time dependencies arising from the time- 
varying nature of C(t), and f?om the fact that different portions of C(t) fall within the Hard Body Radius at different 
times as the Primary evolves along the relative trajectory. 

Computation of Equation (1) can be simplified on those occasions when the relative motion is nearly rectilinear; this 
approximation is valid when the relative velocity between the Primary and Secondary objects is high. This relative 
motion, called the linear or 2 0  case, allows the well-known reduction of Equation (1) to a two-dimensional integral 
[2,3,4]. Figure 2 demonstrates this linear configuration. A conjunction frame is constructed centered on the 
Secondary. The 2 -axis of the frame points to the Primary at the time of closest approach (TCA). The 9 -axis is 
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along the direction of the relative velocity, and the 2 -axis completes the right handed coordinate system. This 
construction allows for the long axis of the cylinder V to be in the direction of the 9 -axis of the conjunction frame. 

Certain assumptions are made when solving the linear high relative velocity case. First, it is assumed that the 
encounter time is sufficiently small so that the individual covariance matrices and the resulting PDF are constant 
over the time of interest. Second, the high relative velocity means that the volume V will be several times longer 
than the 3-sigma value of the covariance in the p -axis. This equates to V essentially extending from negative 

infinity to positive infinity relative to the size of the combined covariance along the -axis of the conjunction 

frame. Therefore, the integral along the 9 -axis is taken to be unity, and the problem expressed in Equation (1) may 

then be reduced to a convenient integral of a two-dimensional Gaussian PDF over the area, A (Figure 2), formed by 
the intersection of V with the conjunction plane: 

where P= (I} and C *  is the 2-dimensional covariance matrix that results from projecting ((I) into the 

conjunction plane. 

However, the high relative velocity assumptions used in the construction of Equation (2) make it impractical to use 
in cases where the relative motion is nonlinear. The correct procedure would be to fall back on Equation (1) for a 
nonlinear trajectory. However, the nonlinear trajectory would create a complex geometry for the volume V, making 
integration difficult. In the next section an algorithm is presented that makes use of a series of simple geometries 
that approximate a nonlinear volume V. 
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Figure 2: Reduction to two-dimensional integral for linear cases. 

111. Calculating the Probability of Collision along Nonlinear Relative Trajectory 

An algorithm similar to that given in Reference 6 has been implemented to investigate conjunctions with nonlinear 
relative trajectories. The algorithm differs from Reference 6 in that a new coordinate system in which to perform 
the numerical integration is developed. This limits of integration in the problem are easily defined in this new 
coordinate system, particularly when the problem of segment overlap is considered, as will be shown shortly. 

To accommodate an arbitrary geometry, the volume V will be dissected into smaller, simpler geometries. Consider 
a sphere that defines the combined geometries of the Primary and Secondary objects with radius hb as shown in 
Figure 3. During the encounter the sphere will similarly sweep out a long, curved, cylindrical volume. This volume 
can be thought of as made up of a series of smaller linear cylindrical volumes, vi. The geometric centers of the 
edges of the smaller cylinders are defined by the relative position of the Primary object with respect to the --. --. 
Secondary object at the current time and at a time step in the fiture: RREL, and RREL,, , respectively. By making the 
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time step between the two vectors small enough, the successive small linear cylinders can be made to approximate 
an arbitrary geometry defined by the nonlinear trajectory of the Primary relative to the Secondary. 

Secondary 

Figure 3: Dissection of complex geometry into small simple geometries. 

The cylinders, q, can be used as the limits of integration in Equation (1). The total probability of collision for the 
encounter will then be the summation over all vi. An additional advantage to this method is that the time steps may 
be sufficiently small such that the covariance is essentially constant over a single volume q. However, the 
covariance can change fiom its value at subsequent time steps. 

The small simple geometries are easily integrated over using Equation (1) by constructing a convenient coordinate ,. 
system at each time step, which is shown in Figure 4. The direction is defmed as the difference between the two 

relative positions IEL, andiEL,+, . The Ct direction is defined as the normal to the plane containing 

, and + . The gl vector completes the right-handed system. The { fil kl ) system is centered 

on such that its origin does not coincide with the center of combined PDF. 

vi 

Figure 4: Defmition of integration fiame. 

If the segments vi are left as right cylinders, there is the possibility of overlap between segments as shown in Figure 
5. This overlap leads to integrating over the overlap volume twice, while not integrating over the excluded volume. 
When the HBR is large compared to the error covariance, this overlap issue can lead to incorrect probabilities [7]. 
To mitigate the overlap, each end of the cylinder y is cut off at an angle defined by the angle the adjacent segments 
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make to the current segment. These are angles and O2 shown in Figure 6. There are four possibilities for the 
exact shape of each segment as shown in Figure 6 .  The exact geometry can be determined by comparing the cross 

A A A A A 

products V , X ~ - ~  and Vi+,xy with the vector Ni as described in the algorithm section. 

This method only accounts for overlap that occurs from nonlinearities in the in-plane relative motion. If there is a 
A A 

significant out-of-plane nonlinearity, i.e. Ni is significantly different from Ni+, , then additional measures would 

need to be taken to eliminate this overlap. Patera [7] suggests one methodology for dealing with significant three- 
dimensional overlap, and this topic remains one of the key areas for future work. 

Figure 5. Overlap of cylindrical segments. 
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C1 into the page Cl out of the page 
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C2 out of the page C2 into the page 
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C, out of the page C1 into the page 
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C2 out of the page C2 into the page 

Figure 6. Each segment vi is truncated at the end by the angle between the current segment and the adjacent 
segments. Four shapes are possible depending on the relative angles of the adjacent segments. 
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IV. 3D Algorithm 

An algorithm was developed based on the concepts described in Section 111. The following steps take the Earth 
Centered Inertial (ECI) states and covariances for the Primary and Secondary objects and compute the probability of 
collision. The Primary and Secondary states and covariances are propagated to a particular time i, the integration 

frame is constructed, and the Pci associated with that segment of the trajectory is computed. This process continues 

and the overall PC is the summation of the individual PC; . 
J 2 K  1. The initial states and covariances at time i are labeled: J2KIpi, J2Kk!si, lZK cPi, CSi  . The subscript 

P represents state and covariance for the Primary object and S represents the secondary. Propagate the 
J2000 inertial states and covariance to time i+l and the inertial states also to time if2 to obtain 

J2KIpi+l, J2KIsi+l , J2K ' P i + l ?  J 2 K  ' S i + l - '  J2KIpi+2, J2KIsi+2. 
2. Construct the transformation from J2000 to the integration frame at time i: 

J2K 
3. When the individual position uncertainty covariance matrices C,: and "" Csi  are uncorselated the 

uncertainty in the relative position between the primary and secondary object is described by the 
summation of the two matrices. Construct the combined covariance, transform it to the integration frame, 
and center it on the secondary object. 

4. Transform the miss distance vector from J2000 to the integration frame: 

5 .  Compute the angles between adjacent segments 8, and 8, : 

el = cos-I (t. .6-:_,) 
A A e2 = c o s - l  ( Y + ~  - y,) 
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6. Compute the vectors and Z2, which are used to determine the direction the trajectory is turning from 
segment to segment: 

A  * 
7. By comparing the dot products El Ni and i?2 Ni , the direction the trajectory is turning is known, and the 

A  A A  

limits of integration can be defined. The variables of integration in the ( Ni Bi ) system are v, n, and b. 

The limits for the v integral are given as a function of b and 6, and 8, : 

1f .& 2 0  and 2, .fii < O  

1 f t 1 . G i  < O  and e2.fii < O  

If E , - & > o  and t 2 . f i i > 0  

If 2, . fii < 0 and i2 fii > 0 

Q, 8 2  - b tan(-) i 17 < 11 -'"lREL, 11 - b tan(-) 
2 2 

(20) 

A  A  

8. Compute the limits of integration in the Ni and Bi directions: 

9. Integrate the Gaussian distribution over the segment vi to determine the incremental probability associated 

with step i, where vi, ni and bi are the components of the negative of the relative position vector: --mTirnL, 
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A A 

10. Save Ri-, = Ri . Return to Step 3 and repeat for the next time step until probability or trajectory conditions 

dictate that the loop ends. Discussion of when to terminate the loop is left to the following sections in 
which examples are given. 

1 1. Accumulate the probability: 

V. Comparison with Two-Dimensional Integration 

The algorithm presented in Equations (3) through (25), which will be referred to as the 3D method, makes no 
assumptions that would limit its use in linear as well as nonlinear relative trajectories. Therefore, using a linear 
relative trajectory, the probability can be computed using both the 3D method and the 2D method described in 
Equation (2). Simulated primary and secondary trajectories with 97-minute periods were generated with the 
Secondary object 500 meters directly below the Primary object in the radial direction at TCA. The angle between 
the two orbit planes was adjusted from 0 to 90 degrees to vary the relative velocity. A constant combined spherical 
position error covariance of 2 km2 was used, and the probability of collision was calculated. 

Table 1 shows the results of the comparison of the 2D and 3D methods. As the angle between the two orbital planes 
decreases, the relative velocity at TCA decreases. For relative velocities as low as 13 mfs, the percent difference 
between the 3D and 2D probabilities is less than 1 percent, indicating good agreement between the 2D and 3D 
methods. As the relative velocities fall below about 2 d s ,  the percent error grows quickly with the 2D method 
often giving probabilities an order of magnitude too conservative. 

Table 1: Comparison of 2D and 3D methods for relative trajectories with various relative velocities. 

The breakdown of the assumptions of the 2D method in this case happens below 13 mfs. Figure 7 shows the 
accumulated probability for the 5775 d s  and 0.27 d s  relative velocity cases. In the 5775 d s  case, the total 
Probability of Collision is "accumulated" in under two seconds. In the 0.27 m/s relative velocity case it takes nearly 
five hours for the probability to "accumulate". The long dwell time of the 0.27 d s  case demonstrates the necessity 
of using a nonlinear algorithm to assess this probability. 

Percent 
Difference 

1.809729E-04 
6.751 356E-01 
1.724566E-01 
1.81 4288E-01 
1 .I 34807E-02 
7.505425E+01 
5.859084E+01 

A general statement on the breakdown of the two-dimensional assumptions should not be inferred from this simple 
example. The failure of the two-dimensional assumptions is possibly dependent on the covariance size, shape (most 

Orbit Plane 
Angle 

(degrees) 

90.00 
45.00 
10.00 
1 .OO 
0.10 
0.01 
0.00 
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Relative 
Velocity (mls) 

10672.000 
5775.000 
131 5.000 
131.700 
13.175 
1.318 
0.270 

PC 3D 

9.393687E-05 
9.330270E-05 
9.409870E-05 
- 9.41 071 3E-05 
9.394736E-05 
1.644402E-04 
1.489750E-04 

PC 2D 

9.393670E-05 
9.393690E-05 
9.393670E-05 
9.393670E-05 
9.393670E-05 
9.393670E-05 
9.393670E-05 



covariances are actually elliptical, not circular), and orientation. Further analysis is required to fully assess the 
transition between the two- and three-dimensional cases. Clearly, however, a breakdown of the two-dimensional 
case will occur, and a three dimensional tool is required to evaluate the collision probability in these cases. 

Probability of  Collision 
5775 m/s Relative Velocity 

2 3 
Elapsed Seconds 

0.27 m/s Relative Velocity 

3:OO 
Elapsed Hours 

Figure 7. Accumulation of the Probability of Collision for low and high relative velocities using 3D method. 

The 0.27 m/s relative trajectory depicted in Figure 7 is nonlinear, but is also essentially a fly-by trajectory. In fly-by 
trajectories one object approaches the vicinity of the other, reaches a minimum miss distance, and then departs the 
vicinity. In fly-by cases the conditions under which the integration loop can be terminated are clear. When the 
distance between the objects is large compared to the combined covariance the contribution of the trajectory 
segment vi to the overall PC is negligible. Therefore, after the objects have left the vicinity of one another the 
probability no longer accumulates and the PC for this fly-by event is determined. Figure 7 then should not be 
interpreted as a time history of the PC; rather it shows the summation of Equation 25 as the relative trajectory 
progresses. The PC must be tied to an event or time span, in this case a fly-by. The correct interpretation of Figure 7 
is that the steady state value of 1.489E-04 shown is the PC for the given fly-by event. 
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VI. Nonlinear Trajectoiy 

A solution for the Probability of Collision has been given in Reference 6 for the case of a spherical hard body of 
radius r in a circular relative trajectory about the Secondary object with a spherically symmetric covariance with 
uncertainty o. The hard body radius centered on the Primary object sweeps but a torus of radius R about the 
Secondary as shown in Figure 8. The truth probability for this case is given by Patera [6]: 

Chan [5] also derives a closed-form approximate solution for this case by assuming relative motion described by the 
Clohessey-Wiltshire equations. This approximation is given by: 

Equation (26) was numerically integrated and compared to results fiom Equation (27) and the new 3D algorithm. 
The simulation parameters were set to R = 1 km and o = 1 km. A one-degree step size was used around the torus. 
In this case the 3D algorithm was terminated after the primary object completed 360 degrees, or one relative orbit. 
The resulting PC is therefore the PC for the event defined as one orbit of the primary object about the secondary. The 
resulting probabilities for various values of hard body radius to uncertainty ratios (HBRIo) are shown in Table 2, 
and the percent differences are shown in Figure 9. The results show good agreement between the 3D method and 
the existing methods, with the 3 0  method differing by less than 1% fiom the exact soIution of Equation (26). 

Primary Sphere 
with radius = 

HBR 

Secondary 
Object 

Figure 8: Circular Relative Motion of Primary about the Secondary. 
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Table 2. Comparison of 3D method with Patera's exact solution and Chan's approximation. 

HBR to sigma ratio 

Figure 9. Percent difference between PC calculated using 3D method, Patera's exact solution, and Chan's 
approximation. 

VII. Case Study 

The 3D algorithm presented above was incorporated into the Conjunction Assessment and Mitigation (CAM) Tool 
Suite System, which was designed and built to support conjunction risk assessment and mitigation for EOS. The 
CAM Tool Suite was developed using the commercial off-the-shelf astrodynamics software F r e e ~ l ~ e r @  (FF) and 
MATLAB@. FF provides the means to propagate the states and covariances using a wide set of force model options. 
Additionally, FF provides a built-in interface to MATLAB@, which is used to perform the numerical integration to 
determine the PC. 

A simulation of a hypothetical interaction between constellation members was developed. In this scenario, the 
Secondary object is slowly flying above the Primary object, and the relative motion is coplanar. At TCA the 
Secondary is approximately 50 m above the Primary and the relative velocity is approximately 1 rnls for the entire 
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encounter. Table 3 lists the orbital elements at TCA, and Table 4 lists the force model parameters used. The 
nonlinear relative trajectory in the Radial - In Track plane can be seen in Figure 10. The same initial covariance 
was used for each object in the Radial - In Track - Cross Track coordinate system: 

The time history of the Primary and Secondary object's covariance can be seen in Figures 11 and 12. Figure 13 
shows that the PC computed for this encounter using the 3D method is 0.38877. Although this relative trajectory has 
a significant nonlinear component, this is again a fly-by trajectory and Figure 13 shows the summation of Equation 
25. The PC reported is the steady state value and represents the PC for this fly-by event. 

To substantiate these results, a Monte Carlo simulation was also performed. The same states, covariances, and force 
models were used as inputs. For each Monte Carlo trial, the Primary and Secondary states were randomly sampled 
according to their covariance matrices. The sampled states were then propagated forward in time. If the range 
between the states went below the HBR of 20 m, a conjunction was said to have occurred. The number of 
conjunctions divided by the number of trials was the resulting PC. Figure 14 shows the results of the Monte Car10 
simulation. The PC computed by Monte Carlo was between 0.125 and 0.15, which is of a comparable magnitude to 
the results given by the 3D algorithm. This discrepancy is still under investigation. 

Parameter 
a, km 

e 
i, degrees I 98 

Parameter 1 Primary 1 Secondary 
Mass. ka 1 3239 1 897 

Primary 
7077 

0 
98 

w, degrees I 90 

Cd 1 2.2 1 2.2 
Draa Area 1 47.95 1 8.3 

Secondary 
7078.8966 
0.0002665 

90 

" 
Atmosphere / Jacchia Roberts 1 Jacchia Roberts 1 

0, degrees I 22 1 

1 3" Body I Sun, Moon I Sun, Moon 
Table 4. Force model propelties for case study. 

22 1 

v, degrees I 0 
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Radial vs. I n  Track 

Figure 10. Nonlinear relative trajectory of the Secondary object relative to the Primary object. 

Primary RIC Error Sigmas 
2/27/2006 - -- -- - -  

Rad~al-Error InTradc-Error CrossTradc-Error 

- - .. 

00 30 1 00 1 30 2 00 
Elapsed Hours 

Figure 11. Primary object Covariance time history. 
Secondary RIC Error Sigma 

2/27/2006 - -- -- - -  
Rad~al-Error InTradc-Error CrossTradc-Error 

.... .. . -  - - - - -  - -  - -.-.....,. - - . . . - - - . . . -. ... . 

00:30 1 00 1 30 2.00 
Elapsed Time 

Figure 12. Secondary object Covariance time history. 
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Probability of Collision 

00:30 1:00 1:30 
Elapsed Hours 

Figure 13. Probability of Collision time history. 

Probability of Collision Vs. Iteration 
mnvergence beck 

Figure 14. Probability of Collision versus iteration for the Monte Carlo simulation. 

VIII. Summary and Future Work 

An algorithm based on [6] has been implemented to calculate the probability of collision between spacecraft with 
nonlinear relative trajectories. The complex geometries that can be created in these encounters are broken down into 
simple geometries that are easily used as integration volumes. The resulting algorithm compares extremely well 
with existing 2D theory when analyzing linear relative trajectories. In addition, the new algorithm has also been 
shown to give comparable answers to a published reference solution for the case of a highly nonlinear circular 
relative trajectory and compares within an order of magnitude with Monte Carlo results. 

The 3D tool is currently being used to analyze conjunctions with EOS and its fellow constellation members. While 
most conjunctions are high velocity, using the 3D tool allows the EOS Conjunction Assessment Analysts to begin 
gaining insight into the transition between linear and nonlinear relative trajectories. Additionally, should any low 
velocity encounters between constellation members or between EOS and other space objects occur, the tool is 
available to assess the collision risk. 

References 

1. Demarest, P. "The Impact of Maneuver Failures on the EOS Afternoon Constellation," (AIAA 02-4744), 
AIAAfAAS Astrodynamics Specialist Conference, Monterey, CA, August 2002. 

2. Chan, K., "Collision Probability Analysis for Earth Orbiting Satellites," Advances in the Astronautical 
Sciences Vol. 96, pp.1033-1048, 1997. 

15 
American Institute of Aeronautics and Astronautics 



3. Al@iend, KT., Akella, M. R., Lee, D., Frisbee, J., Foster, J. L., "Probability of Collision Error Analysis," 
Space Debris Vol. 1, No. 1, Kluwer Academic Publishers, p. 21-35, 1999. 

4. Patera, R. P., "General Method for Calculating Satellite Collision Probability," Journal of Guidance, 
Control, and Dynamics, Vol. 24, No. 4,2001. pp. 716-722. 

5. Chan, K., "Spacecraft Collision Probability for Long-Term Encounters," American Astronautical Society, 
AAS Paper 03-549, Aug. 2003. 

6. Patera, R., P., "Satellite Collision Probability for Non-Linear Relative Motion," Journal of Guidance, 
Control, and Dynamics, Vol. 26, No. 5,2003. pp. 728-733. 

7. Patera, R., P., "Collision Probability For Larger Bodies Having Non-Linear Relative Motion," American 
Astronautical Society, AAS Paper 05-309, Aug. 2005. 

16 
American Institute of Aeronautics and Astronautics 


