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1 Executive Summary  

This report describes the development of a tunable electromechanical Helmholtz 

resonator (EMHR) for engine nacelles using smart materials technology.  This effort 

addresses both near-term and long-term goals for tunable electromechanical acoustic liner 

technology for the Quiet Aircraft Technology (QAT) Program.  Analytical models, i.e. 

lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, 

have been developed to predict the acoustic behavior of the EMHR.  The models have 

been implemented in a MATLAB program and used to compare with measurement 

results.  Moreover, the prediction performance of models is further improved with the aid 

of parameter extraction of the piezoelectric backplate.  The EMHR has been 

experimentally investigated using standard two-microphone method (TMM).  The 

measurement results validated both the LEM and TM models of the EMHR.  Good 

agreement between predicted and measured impedance is obtained.  Short- and open-

circuit loads define the limits of the tuning range using resistive and capacitive loads.  

There is approximately a 9% tuning limit under these conditions for the non-optimized 

resonator configuration studied.  Inductive shunt loads result in a 3 degree-of-freedom 

(DOF) system and an enhanced tuning range of over 20% that is not restricted by the 

short- and open-circuit limits.  Damping coefficient measurements for piezoelectric 

backplates in a vacuum chamber are also performed and indicate that the damping is 

dominated by the structural damping losses, such as compliant boundaries, and other 

intrinsic loss mechanisms.  Based on models of the EMHR, a Pareto optimization design 

of the EMHR has been performed for the EMHR with non-inductive loads.  The EMHR 

with non-inductive loads is a 2DOF system with two resonant frequencies.  The tuning 

ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be 

optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached.  The 

Pareto solution provides the information for a designer that shows how design trade-offs 

can be used to satisfy specific design requirements.  The optimization design of the 

EMHR with inductive loads aims at optimal tuning of these three resonant frequencies.  

The results indicate that it is possible to keep the acoustic reactance of the resonator close 

to a constant over a given frequency range.  An effort to mimic the second layer of the 
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NASA 2DOF liner using a piezoelectric composite diaphragm has been made.  The 

optimal acoustic reactance of the second layer of the NASA 2DOF liner is achieved using 

a thin PVDF composite diaphragm, but matching the acoustic resistance requires further 

investigation.  Acoustic energy harvesting is achieved by connecting the EMHR to an 

energy reclamation circuit that converts the ac voltage signal across the piezoceramic to a 

conditioned dc signal.  Energy harvesting experiment yields 16 mW continuous power for 

an incident SPL of 153 dB.  Such a level is sufficient to power a variety of low power 

electronic devices.  Finally, technology transfer has been achieved by converting the 

original NASA ZKTL FORTRAN code to a MATLAB code while incorporating the 

models of the EMHR. 

Initial studies indicate that the EMHR is a promising technology that may enable low-

power, light weight, tunable engine nacelle liners.  This technology, however, is very 

immature, and additional developments are required.  Recommendations for future work 

include testing of sample EMHR liner designs in NASA Langley’s normal incidence 

dual-waveguide and the grazing-incidence flow facility to evaluating both the impedance 

characteristics as well as the energy reclamation abilities.  Additional design work is 

required for more complex tuning circuits with greater performance.  Poor 

electromechanical coupling limited the electromechanical tuning capabilities of the proof 

of concept EMHR.  Different materials than those studies and perhaps novel composite 

material systems may dramatically improve the electromechanical coupling.  Such 

improvements are essential to improved mimicking of existing double layer liners.   

2 Objectives 

The objective of this study is to develop electromechanical acoustic liner technology 

for future tunable systems using smart materials technology. Specifically, to achieve this 

objective, the following tasks are required: 

• Develop a physics-based impedance prediction model to convert the selected 

electromechanical inputs into acoustic impedance  

• Experimentally verify the performance of the EMHR and validate the modeling   

• Develop the architecture to enable optimization studies to aid in the design of 

liners to achieve a target impedance range 
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• Design a single cell of an electromechanical liner with the goal achieving a 

NASA-specified impedance range 

• Incorporate the impedance prediction model into the existing NASA-LaRC 

Zwikker-Kosten Transmission Line Code (ZKTL) 

3 Background Information 

Equation Section 1Originating from the operation of military and commercial 

airplanes, aircraft noise exposure can extend many miles beyond the boundaries of an 

airport.  Aircraft noise is potentially dangerous for humans, i.e., aircrew and passengers, 

ground crews and mechanics, and people working or living in the vicinity of the airport.  

With more and more people suffering adverse effects due to aircraft noise, public 

awareness of and concerns for noise emitted from aircraft have increased tremendously.  

As a consequence, worldwide policies and laws have been enacted to restrict the noise 

emission from aircraft.1  Hence, modern aircraft must reduce their noise emissions to 

satisfy new government regulations.  

Aircraft noise is mainly generated from the airframe and propulsion systems.2  

Propulsion noise dominates during take-off (with or without cutback in thrust) and the 

cruise phases of the flight.  Airframe noise, on the other hand, is dominant during 

approach.  To suppress the propulsion noise, acoustic liners are used to line the wall of 

the turbofan engines.  Acoustic liners provide a complex impedance boundary condition 

for noise propagating with the engine duct.3  The liners can either be passive or active in 

terms of their noise suppression characteristics.  A typical passive single degree of 

freedom (SDOF) acoustic liner cell is essentially a Helmholtz resonator that consists of a 

solid backplate, perforated face sheet and honeycomb core.  The conventional passive 

SDOF liners are most effective over a narrow frequency range.3  Multiple DOF liners 

have additional perforated septum sheets and offer a wider suppression bandwidth but 

represent a tradeoff in terms of size, weight, and cost.4  The greatest limitation of passive 

liners is the constraint of fixed impedance for a given geometry.  For a given aircraft 

propulsion system, there may be different optimum liner impedance distributions for the 

differing mean-flow and acoustic source conditions associated with take-off, cut-back, 

and approach conditions.4 
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Active/adaptive liners have attracted more attention from researchers recently 

because of their promise in suppressing the engine noise under different operating 

conditions.  The typical operating conditions of the engine include take-off/cutback, 

cruise, and approach.  When operated at different conditions, the characteristics of the 

aircraft noise may be significantly different.  Potential ways in which active/adaptive 

liners can modify acoustic liner performance in-situ include changing the geometry 

characteristics of the liner and using bias flow through the liner resistive elements.  Little 

et al. tuned their resonator by changing the neck-sectional area.5  De Bedout et al. 

developed a Helmholtz resonator with a cavity that allows a continuously variable 

volume.6  The variable volume actuation of the cavity is realized by rotating an internal 

radial wall based on a tuning (control) algorithm.  Both methods above mechanically 

modify the geometry of the resonator-like acoustic liner.  Generally, there is an obvious 

need for an additional actuator, controller, and power supply.  Thus, it is difficult to apply 

these methods to the acoustic liner in an engine.  

Earlier in 1957, Thurston et al. indicated that steady air flow through a orifice will 

change its impedance.7  In the 1970s, Howe  developed a model of the Rayleigh 

conductivity of an aperture, which a high Reynolds number flow passed through.8  The 

interaction between the incident sound wave and the mean bias flow results in the 

periodic shedding of vorticity.  Consequently, a portion of the acoustic energy was 

dissipated into heat.  Howe’s work indicates that it is possible to enhance the sound 

absorption using a bias flow through the orifice of the acoustic liner.  Hughes and 

Dowling further studied the vortex shedding mechanism for slits and circular 

perforations.9, 10  The perforated liner was experimentally investigated by Sun and Jing.11  

They found that a bias flow can enhance sound absorption and extend the effective 

bandwidth of the perforated liner.  

In essence, the techniques described above seek to enhance the noise absorption by 

modifying the impedance boundary conditions of the liner system.  Furthermore, it is 

worth noting that all adaptive/active systems discussed above, whether by modifying the 

geometry of the acoustic liner or introducing a bias flow to the liner, may require 

actuators, sensors, and controllers.  Consequently, such a system is often complex in 

comparison with a passive liner system.  Ideally, an acoustic treatment system should be 
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robust and lightweight, have wide noise suppression bandwidth, and have the ability to 

modify the performance of the system in-situ.  

Another type of acoustic treatment using a Herschel-Quincke tube merits some 

discussion here.  A Herschel-Quincke (HQ) tube is essentially a hollow side-tube that 

travels along the axis of a main duct (but not necessarily parallel to) and attaches to the 

main-duct at each of the two ends of the tube.12  In essence, the HQ tube is a simple 

implementation of the interference principle to attenuate sound.  The potential of HQ tube 

to attenuate noise for turbo-fan engine was recently investigated by Smith et al.13, 14  They 

found that HQ tube can be used to attenuate low-frequency broadband noise, “buzz-saw” 

noise, and blade passage frequency (BPF) tones.  The HQ tube can be designed to work 

together with passive liners, which is most effective in attenuating high-frequency noise.  

They also presented an adaptive HQ tube, whose resonant frequency can be tuned by an 

internal throttle-plate flap.  Again, additional controller, sensor, and actuator hardware 

are needed.  

A novel method to tune the impedance of the liner system is presented in this project.  

The primary element of this liner is a Helmholtz resonator with the standard rigid backing 

replaced by a compliant piezoelectric composite diaphragm.15  The electromechanical 

Helmholtz resonator (EMHR) is shown in Figure 1.  The acoustic impedance of the 

resonator is adjusted and additional degrees of freedom added via electromechanical 

coupling of the piezoelectric composite diaphragm to a passive electrical shunt network. 

4 Lumped Element Model and Transfer Matrix of the EMHR 

4.1 Description of the LEM of the EMHR 

At low frequencies where, for example, the acoustic wavelength is much larger than 

the largest physical dimension of the device, a distributed system can be lumped into 

idealized discrete circuit elements.16  Under this approximation, the linearized continuity 

and Euler equations may be replaced by equivalent Kirchoff’s laws for volume velocity 

and pressure drop.   

From a lumped element modeling perspective, the EMHR shown in Figure 1 is very 

similar to the compliant isotropic backplate Helmholtz resonator presented in Horowitz et 

al.17  The primary difference is that the isotropic backplate impedance is replaced by a 
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two-port network representing the electromechanical transduction of the piezoelectric 

composite backplate.18  The EMHR is similar in nature to a synthetic jet actuator 

presented in Gallas et al.19  However, the piezoelectric backplate is actively driven in the 

latter case, while the EMHR is a passive device whose acoustic impedance is adjusted by 

changing the passive loads. 

The equivalent circuit representation for the EMHR is shown in Figure 2, where P  

and P′  represent the incident and diaphragm acoustic pressures, respectively.  Similarly, 

Q  and Q′  are incident and diaphragm volumetric flow rates, respectively.  In the 

notation below, the first subscript denotes the domain (e.g., “ a ” for acoustic), while the 

second subscript describes the element (e.g., “ D ” for diaphragm).  Hence, aNR  and aNM  

are the acoustic resistance and acoustic mass of the fluid in the neck, respectively.  The 

term aCC  is the acoustic compliance of the cavity, while aDC  and aDM  represent the 

short-circuit acoustic compliance and the acoustic mass of the piezoelectric compliant 

diaphragm, respectively.  For the diaphragm, aDradM  is the acoustic radiation mass, aDR  

is the acoustic resistance which includes the acoustic radiation resistance and other 

structural damping losses.  Finally, eBC  is the electrical blocked capacitance of the 

piezoelectric diaphragm (i.e., when the diaphragm does not move so that its volumetric 

flow rate is zero), φ  is the effective acoustic piezoelectric transduction ratio (in Pa V ), 

eLZ  is the electrical load impedance across the piezoelectric backplate, and V  is the 

voltage output generated across the piezoelectric backplate under the excitation of an 

incident acoustic wave.  From the equivalent circuit representation of the EMHR, shown 

in Figure 2, the acoustic input impedance of the EMHR is given by 

 
( )

( )

2

2

1 1
1

1 1
1

eL
aD aD aDrad

aC aD eB eL
aIN aN aN

eL
aD aD aDrad

aC aD eB eL

ZR s M M
sC sC sC ZPZ R sM

ZQ R s M M
sC sC sC Z

φ

φ

⎛ ⎞
+ + + +⎜ ⎟+⎝ ⎠= = + +

+ + + + +
+

. (1) 

The parameters of the LEM of the EMHR are listed in Table 1.  Appendix A presents the 

extraction of the model parameters for the piezoelectric backplate.  The analysis of the 

tuning behavior of the EMHR based on the LEM is given in Appendix B.  An 

experimental study of the tuning capabilities of the EMHR is presented in Section 8.  
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Table 1.  LEM parameter estimation for the neck and cavity of the EMHR 17, 18, 20-23 

 Acoustic 

impedance 

Description 

aNR  
0 0 0 0 1

2 2 2

2 2 2 (2 )
2 1 ,

2aN
c J krtR

r krr r r
μρ ω μρ ω ρ
π π π

⎡ ⎤= + + −⎢ ⎥⎣ ⎦
 where 1J is the 

Bessel function of the first kind, 0k cω=  is the wave number   

Neck20, 21 

aNM  ( )0
2 ,aN

t t
M

r
ρ

π
+ Δ

= where 0.85 1 0.7 0.85rt r r
R

⎛ ⎞Δ = − +⎜ ⎟
⎝ ⎠

 

Cavity22, 23 aCC  
2

0 0
aCC

cρ
∀

= , where ∀  is volume of the cavity 

aDC  
( )

2

0 0

2
R

aD

V

C rw r dr Pπ
=

= ∫  

aDM  

( )
( )

2
2

2
0 0

2 ( )
R

aD A

V

M w r rdrπ ρ
=

=
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aDradM  0
2

2

8
3aDradM

R
ρ

π
= 22 

aDR  
2 aD aDrad

aD
aD

M M
R

C
ζ

+
=  where ζ  is the experimentally determined 

damping factor 24 
φ  

( )
2

0 0

2
R

a P

aD aD

rw r dr V
d

C C

π

φ =

−
−

= =
∫

 

Piezoelectric 

backplate18 

eBC  ( ) ( )
2

2 20 11 1r
eB eF

p

R
C C

h
ε ε π

κ κ= − = −  where rε  is the relative dielectric 

constant of the piezoelectric material, 0ε  is the permittivity of free space, 

and 2 2
a EF aDd C Cκ =  is the electroacoustic coupling factor 

 

4.2 Development of the transfer matrix of the EMHR 

The transfer matrix (also called the transmission matrix or the four-pole parameter 

representation) method has been widely used in acoustic engineering.25  The analysis of 

complicated systems is greatly simplified by the use of the transfer matrix method.  A 

complicated system can be simply regarded as a “black box” with one input port and one 

output port.  Matrix algebra can then be applied to the general treatment of such networks.  
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The interconnection of parallel, series-parallel, and parallel-series network combinations 

can then be handled by simple linear addition or multiplication of the four-pole parameter 

matrix.26  

The transfer matrix for an EMHR mounted at the end of plane wave tube (PWT) has 

been developed.  As shown in Figure 3, the EMHR mounted at the end of the PWT 

composes of the following four components: 

• area contraction 

• area expansion 

• duct element  

• piezoelectric backplate with shunt network 

Hence, it is convenient to develop the transfer matrix for all these elements, and then 

multiply these matrices sequentially to obtain the transfer matrix of the EMHR as 

 

 

( ) ( )
( ) ( )

( )1
5 4 2 3 3

0 0 5 4 5 2 3

Transfer matrix for Transfer matrix fTransfer matrix for neck of the EMHR
area contraction

1 cosh sinh 1
0 sinh cosh 0

N N N

N N N

P kt kt G A A
c U A A G kt kt A A

ζ ζ
ρ

−⎡ ⎤Γ Γ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ Γ Γ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦14243144444424444443

( ) ( )
( ) ( )

or 
area expansion

2

1

0 0 0 0

Transfer matrix for cavity of the EMHR

Transfer matrix for
PZT-backpla

cosh sinh
sinh cosh

eB aD aD

C C C

C C C eB

D D

j C Z Z
kL kL G

G kL kL j c C c
A A

ω φ
φ φ

ωρ ρ
φ φ

−

⎡ ⎤+
−⎢ ⎥⎡ ⎤Γ Γ ⎢ ⎥⎢ ⎥ ⎢ ⎥Γ Γ⎣ ⎦ −⎢ ⎥

⎣ ⎦

1442443

144444424444443

te

V
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

14444244443

. (2) 

Notations in the equation above, the transfer matrix development details are presented in 

Appendix C. 

5 Optimization of the EMHR  

5.1 Objective of the optimization 

The synthesis of the optimization design problem for the EMHR aims at providing 

the architecture to enable optimization studies to aid in the design of liners to achieve a 

desired impedance range.  The optimization design studies of the EMHR follow two 

paths.  The first path is to maximize the tuning range of the EMHR with non-inductive 

loads.  The EMHR with non-inductive loads is 2DOF and has two resonant frequencies.  
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Both resonant frequencies can be tuned by adjusting the electrical impedance of the non-

inductive shunts.  The difference between the open-circuit resonant frequency and its 

respective short-circuit counterpart is defined as the tuning range.  The optimal design of 

the 2DOF EMHR consequently aims to maximize the tuning ranges of both resonant 

frequencies of the EMHR.  The second path is to maximize the tuning range of the 

EMHR with inductive loads.  The EMHR with inductive loads is 3DOF and has three 

resonant frequencies.   

5.2 Optimizing single tuning range of EMHR with non-inductive loads 

The EMHR with non-inductive loads has two resonant frequency 1ω  and 2ω , and 

thus has two tuning ranges 1ωΔ  and 2ωΔ .  The single objective design optimization 

problem seeks to maximize either tuning range, 1ωΔ  or 2ωΔ , which are functions of the 

geometric parameters listed in Table 2.  To simplify the problem, it is assumed that the 

material properties of the piezoelectric composite diaphragm, i.e. Lead Zirconate Titanate 

(PZT) composite diaphragm, listed in Table 3 are constant.  The optimization is 

formulated as follows: 

• Minimize the Objective function: 1ω−Δ  or 2ω−Δ  

• Design variables: r , t , R , L , 1R , ph  , 2R  and sh  

• Constraints: 

1) Geometry constraints that impose physical limitations on the design variables.  

The constraints are based on the size of the test apparatus, available commercial 

piezoelectric benders, and size restrictions on the EMHR. 

2) Frequency constraint that confines the first short-circuit resonant frequency 1sf  of 

the EMHR to a particular range (1200 Hz to 1900 Hz) where noise suppression is 

preferred, while also prescribing an upper limit of 3500 Hz for 2sf  

3) Lower bounds (LB) and upper bounds (UB): { }1 2, , , , , , ,p sLB r t R L R h R h UB≤ ≤ , 

where LB  and UB  of each design variable are listed in Table 2. 

Clearly, both the objective function and the frequency constraint are nonlinear; thus the 

optimal design of the EMHR is classified as a constrained nonlinear optimization 

problem.  Mathematically, the single objective optimization of the EMHR is  
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Minimize ( )1ω−Δ x  or ( )2ω−Δ x , where x  is the design variable vector 

Subject to 

 

2 1 2
4 3

1 1 2

0; 0;

10 0; 10 0;

1200 2 0; 2 1900 0; 2 3500 0
1 0; 1 0;

p s p s

s s s

i i i i

R R R R

h h h h

LB x x UB
ω π ω π ω π

− −

− ≤ − <

− − + ≤ + − ≤

− ≤ − ≤ − ≤
− ≤ − ≤

 (3) 

where  { } { }1 2, , , , , , , 1, 2...8i p sx r t R L R h R h i= = . 

Table 2.  Design optimization variables of the EMHR (Unit: mm). 

Description Symbol Lower Bound 

(LB) 

Upper Bound 

(UB) 

Neck radius r  0.5 3.5 

Neck thickness  t  1 4.5 

Cavity depth  R  5 15 

Cavity radius  L  10 20 

Piezoceramic radius  1R  1 25 

Piezoceramic thickness  ph  0.05 1 

Shim radius  2R  5 25 

Shim thickness  
sh  0.05 1 

 

The optimization defined above was first implemented using the fmincon command in 

the Matlab Optimization Toolbox and then verified using a Genetic Algorithm provided 

by Matlab Genetic Algorithm Direct Search (GADS) toolbox.  One set of the 

optimization results are listed in Table 4.  The initial values of the design variables are 

chosen based on the prototype of the EMHR discussed in Liu et al.27  The initial design 

vector satisfies all constraints and thus is a feasible initial condition.  Different initial 

design vectors are explored next.  The result of the optimization depends strongly on the 

initial values.  However, the collective optimal results show that any improvement in one 

tuning range ( 1ωΔ  or 2ωΔ ) can only occur by compromising the other tuning range.  

Both tuning ranges 1ωΔ  and 2ωΔ  cannot maximized simultaneously, as shown in Table 4. 
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Table 3.  Material properties of piezoelectric composite diaphragm 

Young’s Modules (Gpa) 63 

Density (kg/m3) 7700 

Relative dielectric constant 1750 

Piezoceramic 

(APC 850) 

Poisson’s ratio 0.31 

Young’s Modules (GPa) 110 

Density (kg/m3) 8530 

Piezoelectric 

composite 

diaphragm 
Shim  

(260 half Brass) 
Poisson’s ratio 0.37 

 

Table 4.  Single objective optimization results of the EMHR (dimension units in mm). 

 Initial value Optimizing 1ωΔ  Optimizing 2ωΔ  

r  2.39 3.50 3.50 

t  2.18 1.0 1.0 

R  6.35 5.96 15.0 

L  15.2 12.6 16.2 

1R  10.1 21.8 16.2 

ph  0.12 0.75 0.74 

2R  12.4 23.2 17.2 

sh  0.17 0.30 0.23 

1ωΔ (rad) 211.7 1085.3 1.60 

1 1sω ωΔ  1.86% 9.09% 0.02% 

2ωΔ (rad)  607.5 44.4 2042.6 

2 2sω ωΔ  4.14% 0.2% 9.29% 

 

5.3 Pareto optimization of the EMHR with non-inductive loads 

It is impossible to simultaneously maximize both 1ωΔ  and 2ωΔ  for the EMHR with 

non-inductive loads.  Therefore, a trade-off approach is pursued.  Pareto optimization is 

thus explored to optimize both tuning rages at the time to achieve a Pareto solution.  The 

Pareto solution (also called a Pareto optimal) is one where any improvement of one 

objective degrades at least one other objective.  Three methods have been explored to 

obtain a Pareto solution for multiple-objective optimization of the EMHR: the ε -
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constraints method,28 the traditional weighted sum method,29 and the adaptive weighted 

sum (AWS) method.30  Mathematically, the ε -constraints method is  

Minimize ( )2ω−Δ x , where x  is the design variable vector 

Subject to 

 

1
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, (4) 

where { } { }1 2, , , , , , , 1, 2...8i p sx r t R L R h R h i= = .  The tuning range 2ωΔ  is chosen to be the 

primary objective function which is subject to the original constraints and an additional 

constraint limiting the tuning range 1ωΔ .  The advantage of the ε -constraint method is 

that it is able to achieve the optimal solution even for a non-convex boundary of the 

Pareto front.  The problem with this method is that it is generally difficult to choose a 

suitable ε .  

The traditional weighted sum method is used to convert the multi-objective 

optimization to a single objective problem by using a weighted sum of the original 

multiple objectives 

Minimize ( ) ( ) ( )( )1 1 1 21α ω α ω− Δ + − Δx x , where x  is the design variable vector 

Subject to 
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, (5) 

where 10 1α≤ ≤  is the weighting coefficient.  This method is easy to implement, but it 

has two drawbacks.  One is that an even distribution of the weighting factors does not 

always achieve an even distribution of the Pareto front.  The other is the weighted sum 

method cannot find the Pareto solution on non-convex parts of the Pareto front.  

Furthermore, the traditional weighted sum method can produce non-Pareto points 

occasionally.  However, the AWS method is able to produce well-distributed Pareto 
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solutions.  For the region unexplored by the traditional weighted sum method, the AWS 

involves changing the weighting factor adaptively rather than by using a priori weight 

selections and by specifying additional inequality constraints.30   

The Pareto solution obtained using these three methods are shown in Figure 4. 

Clearly, optimal solutions obtained using the weighted sum method tends to cluster 

together, as mentioned above.  A large portion of the Pareto front is obtained using the ε-

constraints method, which is simply ignored by the weighted sum method.  This is due to 

the non-convex properties of the Pareto front.  Figure 4 also shows the result of the AWS.  

The results indicate that the AWS addresses the drawback of the conventional weighted 

sum method, and produces the Pareto optimum with a good distribution.  The result from 

the AWS method matches the result using the ε-constraint method very well. 

5.4 Optimization of the EMHR with inductive loads 

The EMHR with inductive loads has 3DOF and thus has three resonant frequencies.  

However, for the EMHR studied, there are two resonant frequencies located within the 

frequency range of interest, as shown in Figure 5.  One possible goal of the optimization 

is to find an optimal EMHR in which all resonant frequencies are within the frequency 

range of interest and the frequency shift between the maximum and minimum resonant 

frequency is minimized.  Thus, within a wide frequency range, the variation of the 

reactance of the EMHR is relative small.  Mathematically, the task is described as 

Minimize ωΔ  

Subject to 
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1 3
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− ≤ − ≤
− ≤ − ≤

 (6) 

where { } { }1 2, , , , , , , , 1, 2...8i p s eLx r t R L R h R h Z i= = , and the objective function is defined 

as 

 ( ) ( )max min 1, 2,3i i iω ω ωΔ = − =  (7) 

Note that the design variables include inductive shunt impedance. Moreover, because the 

optimization goal is to limit three resonant frequencies within a given frequency range, 
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the objective function is thus set to be constant, i.e. a given negative real number.  Due to 

highly nonlinearity of constraints, Genetic Algorithm provided by Matlab Genetic 

Algorithm Direct Search (GADS) toolbox is thus explored.  One set of optimal results is 

listed in Table 5.  A comparison of the acoustic impedance between the initial and 

optimal EMHR is shown in Figure 6.  It is clear that the reactance of the optimal EMHR 

varies much less than the initial one.   

Table 5.  Optimal result for optimization of the EMHR with inductive loads (dimension units in mm) 

 Initial value Optimizing 1 2 3, ,ω ω ω  

r  2.4 3.0 

t  3.2 1.0 

R  6.3 6.5 

L  16.4 37.4 

1R  10.1 13.8 

ph  0.1 0.1 

2R  12.4 14.8 

sh  0.2 0.2 

eLZ (mH) 50 108.8 

1ω (rad) 11422.8 9424.8 

2ω (rad) 14903.7 10386.1 

3ω (rad) 24045.8 12604.1 
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6 Mimicking the NASA 2DOF Liner 

One potential application for an EMHR is to achieve the performance of an ideal 2-

layer liner while possessing a smaller depth.  If achieved, this could potentially result in 

significant cost savings due to weight and size reductions.  To explore this possibility, we 

conducted a study to mimic an ideal NASA 2DOF liner design provided by Mr. Jones.  

Specifically, the goal was to replace the second layer of the liner using a piezoelectric 

composite diaphragm.  The nominal specific acoustic impedance of NASA 2DOF liner is 

shown in Figure E-1.  

The second-layer of a liner can be modeled as a second order system.  In an attempt 

to achieve the desired reactance, a curve-fitting method is adopted to obtain the specific 

acoustic mass and compliance that satisfy the NASA DDOF requirements, as shown in 

Figure E-2 and Figure E-3 in Appendix E, which presents how to mimic the NASA 

2DOF liner step by step.  It becomes clear that the composite diaphragm should be light 

and compliant to achieve the goal.  The PZT backplate, which is used in the EMHR under 

study, thus cannot satisfy such requirement due to its large density and stiffness.  

Moreover, the shim of the PZT backplate is made of half-hard 260 brass which further 

makes it difficult to mimic the NASA 2DOF liner.  A possible choice is to use 

Polyvinylidene fluoride (PVDF) instead of the PZT and substitute a light, compliant 

metal shim for brass shim.  In comparison with PZT, PVDF is more flexible and has 

lower density but provides relatively weak electromechanical transduction, see Table 6.  

Thus, a trade-off must be reached to design an EMHR, whether to satisfy a given 

impedance requirement or to obtain a satisfactory tuning range.  Except for lower density 

and more compliance, some factors must be taken into account to choose the metal shim, 

such as fatigue, operation temperature and cost.  One choice is to use a Titanium alloy 

(Ti90/Al6/V4); material properties are listed in Table 7.  Figure 7 shows a possible 

design using Titanium alloy shim attached with PVDF film, where the damping loss is 

estimated using Eq.(A-9) with 0.02ζ = .  Note that the actual damping coefficient may 

differ from this and should be determined via measurement, as presented in Section 8.2.  

The results show good agreement between the design and the nominal requirement for 

the acoustic reactance, while there is a discrepancy for the acoustic resistance.  The 
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dimensions of this PVDF composite diaphragm are listed in Table 8.  With the modeling 

tools in place, improved designs can be obtained in a more systematic study. 

Table 6.  Material properties of PVDF and PZT 

 Density 

 

(kg/m3) 

Young’s 

Modulus 

(GPa) 

Poisson’s 

Ratio 

 

Piezo Strain 

Constant d31 

(pC/N) 

Relative 

Dielectric 

Constant 

PVDF 1780 8.3 0.18 -22 10-12 

PZT (APC850) 7700 63 0.31 -175 1700 

 

Table 7.  Material properties of the Titanium alloy 

 Density 

 

(kg/m3) 

Young’s 

Modulus 

(GPa) 

Yield 

Modulus 

(MPa) 

Melting Point 

 

(ºC) 

Titanium Alloy 

(Ti90/Al6/V4) 

4420 106-114 1035-1410 1600-1650 

 

Table 8.  Dimensions of the PVDF diaphragm 

 Radius of the 

shim 

Thickness of 

the shim 

Radius of the 

PVDF 

Thickness of the 

PVDF 

PVDF Composite Diaphragm 10 0.045 7 0.09 

 



 17

7 Energy Harvesting Using EMHR 

The acoustic energy harvester is comprised of two components, the EMHR and the 

energy harvester circuit, as shown in Figure 8a.  The EMHR transforms incident acoustic 

energy into time-varying electrical energy across the high-impedance piezoceramic.  This 

high impedance ac output voltage requires the addition of a power converter to transform 

the power generated into a form that is suitable for an electrical load.  Figure 8b shows 

the model of the electromechanical Helmholtz resonator connected to a rectifier bridge, 

large filter capacitor rectC  and resistive load LoadR .  Maximum power is delivered to the 

load when the magnitude of the EMHR output impedance is matched to the load 

resistance.  Shown in Figure 8c is the electromechanical Helmholtz resonator connected 

to a fly-back converter.  The converter provides an electronically controllable input 

impedance and transforms the ac voltage output of the Helmholtz resonator into a dc 

voltage delivered to the load.  The experimental study of the energy harvesting is 

presented in Section 8. 

8 Experimental Setup and Results 

8.1 Impedance measurement for the EMHR 

The experimental setup implements the standard two-microphone method for 

measuring acoustic impedance,31 shown in Figure 9.  The plane wave tube (PWT) 

consists of a 965 mm long, 25.4 mm by 25.4 mm square duct that permits a plane wave 

acoustic field at frequencies up to 6.7 kHz.   

Four Brüel and Kjær (B&K) type 4138 microphones were used for simultaneous 

acoustic pressure measurements.  Two microphones, labeled as Mic. 1 and Mic. 2, were 

flush mounted in a rotating plug to the side of the impedance tube, as shown in Figure 9.  

The rotating plug is used to correct for calibration errors of the microphones by repeating 

the measurements with the microphones in switched positions.  The other two 

microphones were used to measure the pressure amplification frequency response 

function in this experiment.  One microphone was flush mounted in the sidewall of the 

resonator cavity to measure the cavity pressure.  The second was flush mounted to the 

end face of the impedance tube to measure the total acoustic pressure at the entrance of 
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the resonator.  This microphone also served as a reference to monitor SPL at the neck of 

the resonator.  In the experiment, the SPL is set to be low enough (<100dB) for nonlinear 

behavior of the EMHR to be neglected.  

All microphones are calibrated with a B&K 4228 Pistonphone when connected to a 

B&K PULSE Multi-Analyzer System Type 3560.  The PULSE system served as the 

power supply and data acquisition and processing system for the microphones as well as 

the signal source.  A pseudo-random waveform generated from the PULSE system was 

fed through a Techron Model 7540 power supply amplifier to drive a BMS H4590P 

compression driver.  The driver, which can produce acoustic waves between 200 Hz and 

22 kHz, was connected to one end of the PWT via a transition piece.  The pseudo random 

waveform was bandpass filtered from 300 Hz to 6.7 kHz.  Meanwhile, a zoom FFT with 

1500 ensemble averages was performed on each incoming microphone signal.  

The specimen used in the acoustic impedance measurement using TMM is an EMHR, 

as shown in Figure 1.  The piezoelectric backplate is a commercially available 

piezoceramic circular bender disk from APC International, Ltd.  The piezoceramic 

material employed in this bender disk is APC850 lead zirconate titanate (PZT).  The 

material properties and dimensions of the piezoelectric backplate Helmholtz resonator are 

listed in Table 3 and Table 9, respectively.  A variety of loads were used in the 

experiment to investigate the tuning ability of the resonator.  Table 10 lists the different 

loads used in the experiment. 

Table 9.  Dimensions of the EMHRs (Unit: mm) 

  Case I Case II 

Radius r  2.42 2.42  

Neck Length t  3.16 3.16 

Radius R  6.34 6.34  

Cavity Depth L  16.4 9.4 

Radius 1R  10.1 10.1  

piezoceramic Thickness ph  0.13 0.13 

Radius 2R  12.4 12.4 

 

 

Piezoelectric 

backplate 
 

shim Thickness sh  0.19 0.19 
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8.2 Damping coefficient measurement 

It is difficult to accurately model damping of the EMHR.  The damping may arise 

from acoustic radiation, thermo-elastic dissipation, compliant boundaries, and other 

intrinsic loss mechanisms.32  Generally, the present model employed in this study only 

accounts for the acoustic radiation loss.  The damping loss measurement thus provides a 

way to check if the acoustic radiation loss represents the damping of the system.  The 

schematic of the experimental setup for the damping coefficient measurement is shown in 

Figure 10.  The piezoelectric backplate is placed within a vacuum chamber capable of 

producing a low pressure around 10 Torr (1300 Pa).  A LK-G32 high accuracy laser 

displacement sensor is used to measure the vibration response of the plate.  The 

repeatability of the sensor is 0.05 μm, and the measurement range is 5 mm.  A rectangular 

waveform (1 Hz, 10Vp-p) generated from the Agilent 33120A Waveform Generator is 

used to excite the piezoelectric plate.  This signal is also used to be the external trigger of 

the Tek TDS5104B oscilloscope which acquires data from the laser displacement sensor.  

In addition, 1024 ensemble averages are performed. 

Table 10.  Selected loads matrix used in the experiment to tune the EMHR 

Resistive loads 

(Ω) 

Capacitive loads 

(nF) 

Inductive loads 

(mH) 

nominal measured nominal measured nominal measured 

Short Short Short Short Short Short 

200 199 10 10.3 33 31.9 (70) 

2k 1.98k 47 37.8 60 57.2 (130) 

7.5k 7.44k 100 89.7 100 101 (65) 

Open Open Open Open Open Open 

 

8.3 Parameter extraction of the piezoelectric backplate 

As discussed in Section 4, it is very important for both LEM and TM to accurately 

model the piezoelectric backplate.  The parameter extraction provides a way to validate 

the model of the piezoelectric plate.  The experimental setup for parameter extraction of 

the piezoelectric backplate is similar to the damping measurement setup described above 

with two exceptions.  The piezoelectric backplate is not placed within the vacuum 
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chamber and the transverse displacements along the radius of the backplate are measured 

to reconstruct the deformation of the plate due to the application of the voltage.  When 

the deformation of the plate is measured, the effective acoustic piezoelectric coefficient, 

ad  , and the impedance transformer factor, φ  , and the blocked electrical capacitance, 

eBC  , of the piezoelectric backplate can then be deduced and compared with the model. 

8.4 Energy harvesting experiment 

The experimental setup for acoustic energy harvesting is similar to the tunable liner 

experimental setup mentioned above, shown in Figure 9, with one exception.  The 

electrical terminals of the EMHR are connected to a power energy harvesting circuit via a 

1:1 isolation transformer which is used to prevent ground loops. 

8.4 Experimental results and discussion 

8.4.1 Acoustic impedance measurement results 

Figure 11 shows the acoustic impedance measurement results for the resonator (Case 

I) with a variety of capacitive loads.  The EMHR with capacitive loads has two resonant 

frequencies, located where the reactance of the EMHR crosses zero with positive slope.  

There is also an anti-resonant frequency where the reactance of the EMHR crosses the 

zero with negative slope.  As the capacitance is increased, the second resonant frequency 

shifts towards the short-circuit case from the open-circuit case, while the first resonant 

frequency barely changes for the EMHR (Case I).  This is because of the weak coupling 

between the Helmholtz resonator and the PZT backplate for the tested EMHR.  There is 

an approximately 9% capacitive tuning range for Case I resonator under the conditions 

and geometry listed in Table 9.   

Figure 12 shows the measured acoustic impedance for different resistive loads across 

the resonator (Case I).  The EMHR with resistive loads has 2DOF.  A trend similar to the 

capacitive tuning can be observed for the resistive tuning, in which the tuning range is 

also defined by the short- and open-circuit limits.  When the resistance is increased, the 

resonant frequency shifts toward the open-circuit case from the short-circuit case.   

Moreover, resistive loads increase the system damping and thus reduce the amplitude of 
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the impedance peaks.  Maximum damping occurs when resistive loads match the 

magnitude of the output resistance of the EMHR.  

Figure 13 shows the measurement results for inductive tuning of the EMHR (Case I).  

Unlike capacitive and resistive tuning, EMHR with inductive loads has 3DOF and thus 

has three resonant frequencies.  However, the third resonant frequency of the EMHR 

(Case I) with inductive loads is out of the frequency range of interest and is not shown in 

Figure 13.  The third resonant frequency shifts close to the open-circuit case as the 

inductance is increased.  Moreover, inductive tuning is not limited by the short- and 

open-circuit cases.  The second resonant frequency shifts to lower frequencies away from 

the short-circuit case as the inductance is increased.  For EMHR (Case I), the first 

resonant frequency rarely changes due to weak coupling between the piezoelectric 

backplate and the Helmholtz resonator.  Furthermore, a real inductor has resistance as 

well.  Thus, the peak values of the acoustic resistance and reactance of the EMHR with 

inductive loads has been reduced.  

The experimental results of the EMHR (Case II) with short- and open-circuits are 

shown in Figure 14.  It indicates that the first resonant frequency of the EMHR shifts due 

to coupling between the piezoelectric backplate and the Helmholtz resonator is not as 

weakly coupled as in Case I. This is because the depth of the cavity of the EMHR (Case 

II) is reduced.  The acoustic compliance of the cavity consequently decreases.  Hence, the 

coupling between Helmholtz resonator and piezoelectric composite backplate increases; 

see Appendix B for details.  

The comparison between measurement data and LEM and TM is shown in Figure 15– 

Figure 18 .  Clearly, using the measured damping loss of the PZT backplate, both LEM 

and TM predictions match the experimental results pretty well for the short-circuit 

EMHR.  The TM provides a better prediction for the acoustic resistance than LEM does.  

This is because the TM includes the viscous loss effect on the wave propagation within 

the cavity.  There are some other factors, as presented in Appendix D, which determines 

when the TM coincides with the LEM.   

The predictions for the normalized specific acoustic impedance do not match the 

experimental data very well for the open-circuit case.  One possible explanation for the 

observed discrepancy is that, for the short-circuit case, the piezoelectric backplate is 
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electrically shorted and thus φ  and eBC  do not affect the acoustic impedance of EMHR, 

as they do for the open-circuit case.  Hence, any inaccuracies in either φ  or eBC  will 

impact the predicted results.  Some factors do impact the piezoelectric backplate model, 

such as the bond layer between the piezoceramic patch and the brass shim (the model 

assumes a negligible bond layer), any asymmetry in the piezoceramic patch geometry, 

and imperfect clamped boundary condition.18  Figure 15 – Figure 18 also indicate that 

modeling damping loss of the backplate as acoustic radiation resistance severely 

underestimate the actual damping loss.    

8.4.2 Damping coefficient measurement results 

Figure 19 shows the damping coefficient measurement results for piezoelectric 

composite backplate in air and in a vacuum chamber.  Using logarithm decrement method, 

and if the first two peaks are chosen, the damping coefficient is calculated 

 0.026airζ =  (8) 

for piezoelectric backplate in air, and 

 0.024vacuumζ =  (9) 

for piezoelectric backplate in a vacuum chamber.  However, no measurements are exact, 

and the calculation of the damping factor on first two peaks may lead to errors.  Hence, it 

is perhaps more accurate to estimate the damping coefficient by measuring the 

displacement at two different times separated by a given number of periods.  For example, 

let 1x  and 1ix +  be the peak displacements corresponding to the times 1t  and 1it + , where 

( )1 1 1, 2,3...it t iT i+ = + =  and T is the period of the system.  Moreover,24  
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from which one has 

 ( )1ln ln 1ix x iδ= − − . (12) 
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The plot ln ix  versus i  should has the form of a straight line with the slope δ−  if the 

measurement is exact.  Hence, the accuracy of the estimation for the damping coefficient 

can be improved using Eq. (12).  In particular, N peak displacements ( , 1, 2,3...ix i = ) are 

chosen.  ln ix  and 1iy i= −  are calculated.  Then a strait line in the form 

 i iz ay b= +  (13) 

is to be determined to minimize 

 ( ) ( )2 2

1 1
ln ln

N N

i i i i
i i

x z x ay b
= =

− = − −∑ ∑ . (14) 

Note that a corresponds to δ−  in Eq. (12).  The damping coefficient is thus calculated  
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Twelve peak displacements are chosen from the damping measurement results of the 

piezoelectric plate in air and using method above obtains the damping coefficient of the 

piezoelectric plate in air  

 0.015airζ =  (16) 

which differs from the estimation in Eq. (8).  The illustration of the determination of 

damping coefficient using the method above and the comparison between numeric 

fittings and measurement results are shown in Figure 20. 

Following similar procedure, one has the damping coefficient of the piezoelectric 

plate in the vacuum chamber 

 0.01airζ =  (17) 

The illustration of the determination of damping coefficient in vacuum chamber and the 

comparison between numeric fittings and measurement results are shown in Figure 21. 

8.4.3 Parameter extraction of the piezoelectric backplate 

As discussed above, there is a large discrepancy between the measurement results and 

the predictions of both LEM and TM for open-circuited EMHRs.  One possible reason 

for the discrepancy is that any inaccuracies in either φ  or eBC  will impact the predicted 

results for open-circuited EMHR.  Parameter extraction provides such way to check if 

LEM parameters of the piezoelectric plate are accurate or not.  Figure 22 shows the 
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measured displacement of the piezoelectric backplate due to the application of voltages.  

The results indicated that, when applying the voltage on the plate, the measured 

transverse displacement of the plate is larger than one calculated by the model.  

Consequently, the deduced parameters such as Ad  and φ  and eBC  differ from ones from 

the model, as listed in Table 11.  Applying the deduced φ  and eBC  to the LEM and TM 

results in good predictions of open-circuited EMHRs, as shown in Figure 23.  However, 

the reasons for the discrepancy between the predicted and deduced results from the 

measurement data for the LEM parameters of the piezoelectric plate still require further 

investigations. 

Table 11.  Comparison between predicted and deduced LEM parameters of the Piezoelectric 

backplate 

 
Ad  φ  eBC  

Predicted 48.3e-12 82.4 45.7e-9 

Deduced 71.4e-12 122.0 41.2e-9 

 

8.4.4 Energy harvesting experiment results 

To ensure maximum power transfer, it is first necessary to determine the optimal 

resistive load for the EMHR. A bridge rectifier, filter capacitor and load resistor are 

connected to the Helmholtz resonator output.  The sound pressure level at the entrance of 

the EMHR is held constant at 140 dB, while the load resistor is swept from 1 kΩ  to 100 

kΩ .  The incident acoustic power is measured using the two microphone method.  The 

electrical power is measured by finding the voltage across the load resistor and the 

current flowing through it.  Figure 24a shows the output power of the EMHR versus load 

resistance.  The experimental results show that the optimal load for the EMHR is ~18 

kΩ .  Based on this result, the input impedance of the flyback circuit was set to 18 kΩ .  

The flyback converter was also compared to the direct charging method, where the 

EMHR is connected to a rectifier bridge and large capacitor with the rechargeable battery 

placed in parallel with the capacitor. The power flowing into the battery is measured and 

this serves as a baseline for comparison.  Figure 24b presents comparisons between the 
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flyback converter, the direct charging method.  The data indicate that for SPL above 140 

dB the flyback converter circuit is superior to the counterpart method. Specifically, at an 

incident SPL of 153 dB the flyback converter harvests 139% more power than the direct 

charging method. 

9 Conclusions and Recommendations 

The EMHR is a promising technology that may enable low-power, light weight, 

tunable engine nacelle liners.  Lumped element model (LEM) and transfer matrix (TM) 

of the EMHR have been developed to predict the acoustic behavior of the EMHR.  The 

models have been implemented in a MATLAB code and incorporated into the NASA 

ZKTL code, which is converted to a MATLAB code from the original FORTRAN code.  

In this study, LEM and TM match each other pretty well within the frequency range of 

interest.  The difference in the results is due to whether the viscous loss is taken into 

account when modeling the cavity of the EMHR.  Moreover, the LEM coincides with the 

TM when some conditions are satisfied, which are listed in Appendix D.  The analysis of 

the tuning behavior of the EMHR based on the LEM validates the experiment 

observation.  

An experimental investigation of the EMHR has been implemented using the 

standard two-microphone method (TMM).  The measurement results verify both LEM 

and TM of the EMHR.  Good agreement between predicted and measured impedance was 

obtained.  Short- and open-circuit loads define the limits of the tuning range using 

resistive and capacitive loads.  There is approximately a 9% non-inductive tuning limit 

for the second resonant frequency under these conditions for the non-optimized EMHR 

configuration studied.  Inductive shunt loads result in a 3DOF system and an enhanced 

tuning range of over 20% that is not restricted by the short- and open-circuit limits.  The 

damping coefficient measurement for the piezoelectric backplate in the vacuum chamber 

is also performed.  The results show that the acoustic radiation damping loss is relatively 

small.  Moreover, parameter extraction of the piezoelectric backplate is 

implemented to improve LEM and TM prediction performance, i.e. when EMHR is 

not short-circuited.  
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Based on models of the EMHR, the Pareto optimization design of the EMHR has 

been performed for the EMHR with non-inductive loads.  The EMHR with non-inductive 

loads is 2DOF and have two resonant frequencies.  Either of them can be optimally tuned 

by approximately 9%.  However, the results show that it is impossible to maximize both 

tuning ranges simultaneously.  The improvement of one tuning range degrades the other. 

Consequently, a trade-off must be reached.  In other words, a generally accepted Pareto 

solution should be achieved.  Three methods are explored to obtain the Pareto optimal set 

of the bi-objective optimization design of the EMHR: the ε -constraint method, the 

traditional weighted sum method, and the adaptive weighted sum method.  Both the ε -

constraint method and the adaptive weighted sum method obtain the same Pareto front 

for the optimization problem, while the weighted sum method clusters the Pareto 

solutions around the two single-objective design points of the Pareto front.  The Pareto 

solution provides the information for a designer that shows how design trade-offs can be 

used to satisfy specific design requirements. The EMHR with inductive-loads is 3DOF 

and has three resonant frequencies.  The optimization design of the EMHR with inductive 

loads aims at optimal tuning of these three resonant frequencies, i.e. to constrain three 

resonant frequencies within a given range.   

An effort to mimic the second layer of the NASA 2DOF liner using piezoelectric 

composite diaphragm has been made.  The optimal acoustic reactance of the second layer 

of the NASA 2DOF liner is repeated using a thin PVDF composite diaphragm while the 

acoustic resistance of the mimic requires further investigation.  The PVDF composite 

diaphragm is more flexible than the PZT composite diaphragm but possesses relatively 

weaker electromechanical transduction.  Hence, the EMHR with a PVDF composite 

diaphragm has a small tuning range.  Clearly, this is an area in which novel composite 

structures may be able to achieve improved performance whether it be in terms of 

increasing damping or tuning range. 

Acoustic energy harvesting is achieved by connecting the EMHR to an energy 

reclamation circuit that converts the ac voltage signal across the piezoceramic to a 

conditioned dc signal.  Energy harvesting experiments yield 16 mW continuous power 

for an incident SPL of 153 dB.  Such levels are sufficient to power a variety of low power 

electronic devices. 
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Future work should include the testing of sample EMHR liner designs in NASA 

Langley’s dual-incidence and grazing-incidence flow facilities to evaluating both the 

impedance characteristics as well as the energy reclamation abilities.  Inductive tuning 

offers the capability of an increased tuning range, but further work is needed regarding 

the design of such liners.  Specifically, system goals are required to drive the formulation 

of the optimal design problem.  Poor electromechanical coupling limits the 

electromechanical tuning capabilities of the EMHR.  Novel composite material systems, 

like an interdigitated piezoelectric composite may dramatically improve the 

electromechanical coupling.33  Such improvements are essential to mimic both resistance 

and reactance of existing double layer liners.  Furthermore, enhanced electromechanical 

tuning will also enable the use of more complex passive ladder circuits for impedance 

spectra shaping.   
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Figure 1.  Schematic of the EMHR 

 

 

a NRa NM

aCC

a DC a DR

a D r a d a DM M+

:1φ

P P′ e BC eLZ

i
+

−

V

aI NZ

Q Q′

 

Figure 2.  Equivalent circuit representation of the EMHR 
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Figure 3.  Illustration of the modeling EMHR using the transfer matrix method, where each 

subsystem is denoted as: 1-area contraction; 2-duct element; 3-area expansion; 4-duct element; 5-

piezoelectric backplate. 
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Figure 4.  The Pareto front obtained via the ε-constraint, traditional weighted sum, and adaptive 

weighted sum methods. 
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Figure 5.  Three resonant frequencies of the EMHR with inductive as function of the inductive loads 
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Figure 7.  Mimic NASA 2DOF liner 
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Figure 9.  Schematic of the acoustic impedance measurement for the EMHR. 

 
 

 

Figure 10.  Schematic of the damping measurement 

 

 

 

 

 

 



 39

1500 2000 2500 3000
0

10

20

30

θ

 

 

Short
10nF
47nF
100nF
Open

1500 2000 2500 3000
-10

0

10

20

χ

Freq.[Hz]

Short
Open

Short
Open

ω1s

ω1o ω2s ω2o

 

Figure 11.  Experimental results for the normalized specific acoustic impedance of the EMHR (Case 

I) as function of the capacitive loads. 
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Figure 12.  Experimental results for the normalized specific acoustic impedance of the EMHR (Case 

I) as function of the resistive loads. 
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Figure 13.  Experimental results for the normalized specific acoustic impedance of the EMHR (Case 

I) as function of the inductive loads. 
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Figure 14.  Experimental results of the normalized acoustic impedance of the EMHR (Case II) for the 

short- and open-circuit. 
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Figure 15.  Comparison LEM, TR and measurement results for a short- and open-circuited EMHR 

(CASE I), the damping loss of the backplate is determined using logarithm decrement method 

( 0.015ζ = ) 
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Figure 16.  Comparison LEM, TR and measurement results for a short- and open-circuited EMHR 

(CASE I), the damping loss of the backplate is assumed to be acoustic radiation resistance 
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Figure 17.  Comparison LEM, TR and measurement results for a short- and open-circuited EMHR 

(CASE II), the damping loss of the backplate is determined using logarithm decrement method 

( 0.015ζ = ). 
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Figure 18.  Comparison LEM, TR and measurement results for a short- and open-circuited EMHR 

(CASE II), the damping loss of the backplate is assumed to be acoustic radiation resistance. 
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(b) 

Figure 19.  Damping coefficient  measurement for piezoelectric composite backplate (Case I) (a) in 

air (b) in vacuum chamber 
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(b) 

Figure 20.  (a) Curve fitting the measurement data (in air) using a 2nd-order system, fitting 1-

0.026ζ = , fitting 2- 0.015ζ = .  (b) Determination of damping coefficient of the PZT plate in air 
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(b) 

Figure 21.  (a) Curve fitting the measurement data (in air) using a 2nd-order system, fitting 1-

0.024ζ = , fitting 2- 0.01ζ = .  (b) Determination of damping coefficient of the PZT plate in air  
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(b) 

Figure 22.  Measured transverse displacement of the piezoelectric backplate due to the application of 

various voltages. 
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(b) 

Figure 23.  Predictions of the LEM and TM for short- and open-circuited EMHRs.  (a) EMHR (Case 

I).  (b) EMHR (Case II). 
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Figure 24.  (a) Power delivered by the Helmholtz resonator to a resistive load.  (b) Output power 

versus incident pressure for the flyback circuit and direct charging method.  
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Appendix A.  Parameters Estimation for LEM of the Piezoelectric Composite 

Diaphragm 

Equation Chapter (Next) Section  1 

The extraction of the model parameters for the piezoelectric backplate is more 

complex due to composite plate mechanics.  The piezoelectric backplate consists of an 

axisymmetric piezoceramic of radius 1R  and thickness ph  bonded in the center of a metal 

shim of radius 2R  and thickness sh .  Up to and just beyond the first resonant mode, the 

one-dimensional piezoelectric electroacoustic coupling is given by 18 

 aD a

a eF

C d P
d Cq V

Δ∀ ⎧ ⎫⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎨ ⎬

⎩ ⎭ ⎩ ⎭⎩ ⎭
, (A-1) 

where Δ∀  is the volume displacement of the piezoelectric backplate due to the 

application of the pressure P  and voltage V .  Additionally, q  is the charge stored on the 

piezoelectric electrodes, ad  is the effective acoustic piezoelectric coefficient, and eFC  is 

the electrical free capacitance of the piezoelectric material.  The volume displacement is 

calculated by integrating the transverse displacement, ( )w r , over the whole plate 

 ( )
2

0

2
R

rw r drπΔ∀ = ∫ . (A-2) 

Thus, the short-circuit acoustic compliance of the backplate, aDC , is determined by 

 
( )

2

0

0

0

2
R

aD
V

V

rw r dr
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P P

π

=

=

Δ
= =

∫
. (A-3) 

Similarly, the effective acoustic piezoelectric coefficient, Ad , is determined by 

application of voltage to the free piezoelectric plate 
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2
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0
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=

Δ
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∫
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The impedance transformer factor, φ , is  
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 A

aD

d
C

φ −
= . (A-5) 

The effective acoustic mass of the piezoelectric backplate, aDM , is found by equating the 

total distributed kinetic energy stored in the velocity of the plate to a lumped mass as18 

 ( )
2

2

0 0

2 ( )
R

aD A

V

M w r rdr
V
π ρ

=

=
Δ ∫ , (A-6) 

where Aρ  is the area density of the piezoelectric backplate.  The blocked electrical 

capacitance, eBC , is related to the free electrical capacitance of the piezoelectric 

backplate, EFC , as 

 ( ) ( )
2

2 20 11 1r
eB EF

p

RC C
h

ε ε πκ κ= − = − , (A-7) 

where rε  is the relative dielectric constant of the piezoelectric material, 0ε is the 

permittivity of free space, 1R  is the radius of the piezoceramic, and ph  is the thickness of 

the piezoceramic, and 2κ  is the electroacoustic coupling factor and given by 

 
2

2 A

EF aD

d
C C

κ = . (A-8) 

The acoustic resistance, aDR , of the PZT backplate models acoustic resistance and 

structural damping in the backplate.  The damping may arise from thermo-elastic 

dissipation, compliant boundaries, and other intrinsic loss mechanisms.  The acoustic 

resistance is given by 

 2 aD aDrad
aD

aD

M MR
C

ζ +
=  (A-9) 

where ζ  is an experimentally determined damping factor determined using, for example, 

the logarithmic decrement method.24  
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Appendix B.  Capacitive and Inductive-Tuning Strategy of the EMHR 

Equation Chapter  2 Section 1 Equation Section  2 

Capacitive tuning of the EMHR 

The EMHR with capacitive shunts is analogous to a 2DOF system with two resonant 

frequencies, as shown in Figure B-1.  To simplify the problem without loss of generality, 

it is assumed that the EMHR with capacitive shunts has negligible damping. 

Referring to Figure B-1a, by defining  

 1 aCC C= , (B-1) 

and 

 ( )
( ) ( )2

aEB aL aD aC

aB aL aD aB aL aD aC

C C C C
C

C C C C C C C
+

=
+ + + +

, (B-2) 

the coupling coefficients, which defines the ratio of the oscillating energy stored in the 

coupling elements to that stored in the total capacitance for each loop, are given by 34  

 
( )
( )

2

1 1
1 2

1 1

1
aC

aC

Q dt C C
CQ dt C

κ = = =∫
∫

, (B-3) 

 
( )
( )

2

2 2
2 2

2 2

aC

aC

Q dt C C
CQ dt C

κ = =∫
∫

, (B-4) 

where iQ is volume velocity, as shown in Figure B-1 .  Hence, the impedance of loop 1 is  

 

{ }

1

1
1

1 1

1 1 1

1

1

L aN aN
aC

aN
aN aN aC

aC aN aC

aN L
wL

L L

wL L L

Z R j M
C

MR j M C
C M C

RZ j
Z

Z j

ω
ω

ω
ω

ωω
ω ω

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞⎪ ⎪= + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

= Δ + Ω

, (B-5) 

where the quantity  

 1 1L aN aCM Cω =  (B-6) 

is the resonant frequency of the loop 1.  Next,  
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 1L aN aN aCR M CΔ =  (B-7) 

is the dissipation factor, which is the ratio of the power dissipated to the power stored.  

The quantity 

 1 1 1L L Lω ω ω ωΩ = −  (B-8) 

is the tuning factor which measures the deviation of the operating frequency of loop 1 

from its resonant frequency.  Finally, The quantity 

 1wL aN aCZ M C=  (B-9) 

is a weighting factor by which the magnitude of the impedance of a different system 

which has the same dissipation factor and the resonant frequency differs from each other. 

Similarly, the impedance of the second loop is  

 ( )2
2 2 2 2 2

2 2

aDrad L
L wL wL L L

wL L

RZ Z j Z j
Z

ωω
ω ω

⎧ ⎫⎡ ⎤⎪ ⎪= + − = Δ + Ω⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

, (B-10) 

where the definitions of the quantities 2Lω , 2wLZ , 2LΔ and 2LΩ  are similar as their 

counterparts in loop 1 

 ( )2 21L aD aDradM M Cω = + , (B-11) 

 ( )2 2L aDrad aD aDradR M M CΔ = + , (B-12) 

 2 2 2L ω ω ω ωΩ = − , (B-13) 

and 

 ( )2 2wL aD aDradZ M M C= + . (B-14) 

Next, for the coupled system  

 1 1 2
1

aC

P Z Q Q
j Cω

= + , (B-15) 

and 

 2 2 1
10

aC

Z Q Q
j Cω

= + , (B-16) 

which leads to 

 
2

1
1 2

1 1
aIN L

L aC

PZ Z
Q Z j Cω

⎛ ⎞
= = − ⎜ ⎟

⎝ ⎠
. (B-17) 
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From Eqs. (B-5), (B-10) and (B-17), one has 

 
2

1 1
1 1 2 2 2

1 1 1aIN
L L

wL wL wL aC L L

Z j
Z Z Z j C jω

⎛ ⎞
= Δ + Ω − ⎜ ⎟ Δ + Ω⎝ ⎠

. (B-18) 

• If the system is undamped or weak damped, 

 1 2 0L LΔ = Δ = . (B-19) 

Thus, Eq. (B-18) is rewritten as 

 
1

2
21 1 2

1 2
1 2 2 1 2

2

1 1 1 1

aIN

wL

L L L

wL wL aC L L L

L

Z
Z

j j
Z Z j C j

j

ω ω ωω κ
ω ω ω ω ωω

ω ω

⎛ ⎞ ⎛ ⎞
= Ω − = − +⎜ ⎟ ⎜ ⎟Ω ⎛ ⎞⎝ ⎠⎝ ⎠ −⎜ ⎟

⎝ ⎠

,(B-20) 

where 2 2
1 2 1 2aCC C Cκ κ κ= =  is the coupling factor of the system. At the resonant 

frequency, Eq. (B-20) equals zero, and the solution for the resonant frequencies is  

 
( ) ( ) ( )( )2 22 2 2 2 2

1 2 1 2 1 22
1,2

4 1

2
L L L L L Lω ω ω ω κ ω ω

ω
+ ± + − −

= . (B-21) 

Furthermore, Eqs. (B-6) and (B-11) yields 

 

( )

( )( )

( ) ( )( )
( )

2 2
1 2

2

2 2

1 1

1 1 1

1 1

1

L L

aN aC aD aDrad

aB aL aD

aN aD aDrad aC aD aDrad aB aL aD

aB aL aD

aN aC aD aDrad aB aL aD

HR D

M C M M C

C C C
M M M C M M C C C

C C C
M C M M C C C

ω ω

α

α ω ω

+

= +
+

⎡ ⎤ + +
= + +⎢ ⎥+ + +⎣ ⎦

+ +
= + +

+ +

= + +

, (B-22) 

where ( )aN aD aDradM M Mα = +  is the mass ratio between the neck and piezoelectric 

backplate.  In addition,  

 1
HR

aN aCM C
ω =  (B-23) 
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is the resonant frequency of the Helmholtz resonator with solid wall instead of a 

piezoelectric backplate, and 

 
( )( )

aEB aL aD
D

aD aDrad aB aL aD

C C C
M M C C C

ω + +
=

+ +
 (B-24) 

is the resonant frequency of the piezoelectric backplate.  Similarly, 

 ( )2 2 2 2
1 2 1L L HR Dω ω α ω ω− = − −  (B-25) 

• If the system is weakly coupled, 0κ → , substitution of Eqs. (B-22) and (B-25) into 

(B-21) results in 

 

( ) ( ) 22 2 2 2

1,2

2 2

1 1

2
HR D HR D

HR

D HR

α ω ω α ω ω
ω

ω

ω αω

⎡ ⎤+ + ± − −⎣ ⎦=

⎧⎪= ⎨
+⎪⎩

. (B-26) 

• If the mass ratio between the neck and the piezoelectric backplate is very small, 

0α → , 

 

22 2 2 2

1,2 2
HR D HR D

HR

D

ω ω ω ω
ω

ω
ω

⎡ ⎤+ ± −⎣ ⎦=

⎧
= ⎨
⎩

. (B-27) 

In other words, the resonant frequencies of a lightly damped EMHR with capacitive 

shunts possessing weak coupling are approximately the resonant frequency of the solid-

walled Helmholtz resonator and the piezoelectric backplate.  As indicated by Eq.(B-24) , 

the resonant frequency of the piezoelectric backplate is adjusted with the change of the 

capacitive loads 

o Open-circuit , 0aLC =  or 1aL aLZ sC= →∞  

 [ ] ( )open
aEB aD

D
aD aDrad aEB aD

C C
M M C C

ω +
=

+
. (B-28) 

o Short-circuit, aLC = ∞  or 1 0aL aLZ sC= →  

 [ ] ( )short

1
D

aD aDrad aDM M C
ω =

+
. (B-29) 
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o Capacitive load, 2
aL eLC Cφ=  

 [ ] ( )( )capacitive
aEB aL aD

D
aD aDrad aEB aL aD

C C C
M M C C C

ω + +
=

+ +
. (B-30) 

Clearly,  

 [ ] [ ] [ ]short capacitive openD D Dω ω ω< < . (B-31) 

or by the use of Eq. (B-27) 

 [ ] [ ] [ ]2 2 2short capacitive open
ω ω ω< < . (B-32) 

Eq. (B-32) demonstrates how the tunable electromechanical Helmholtz resonator works 

with different capacitive shunts.  The short and open loads define the limits of tuning 

using capacitive loads.  The second resonant frequency shifts toward the short case when 

the capacitance increases. It is worthy to note that the aforementioned analysis focuses on 

the capacitive tuning behavior of the EMHR with weak coupling.  In fact, when such 

coupling is not weak, the first resonant frequency of the system can be tuned in-situ as 

well, as indicated by Eq.(B-21). 

 

Inductive tuning of the EMHR 

As shown in Figure B-1c, The EMHR with inductive loads is a 3DOF system.  

Similarly, to simplify the problem without loss of generality, it is assumed that the 

EMHR with inductive shunts has negligible damping. The effective impedance of loop 3 

is thus given by 

 
( )
( )

2 2

L3 2 2

eB eL

eB eL

j C j M
Z

j C j M

φ ω ωφ

φ ω ωφ

⎡ ⎤⎣ ⎦=
⎡ ⎤ +⎣ ⎦

 (B-33) 

which can be further approximated as 

 2
L3 eLZ j Mωφ�  (B-34) 

with the assumption  

 2 1eB eLC Mω << , (B-35) 

Or  

 1
E

eB eLC M
ω ω=� , (B-36) 
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where Eω  is the resonant frequency of the loop 3.  Eq. (B-36) is satisfied for the EMHR 

and the frequency range investigated in this project.  Physically, loop 3 effectively adds a 

mass 2
eLMφ  to loop 2.  Similarly, the resonant frequencies of the weakly coupled EMHR 

are given by  

 
22 2 2 2

1,2 2
HR D HR D HR

D

ω ω ω ω ω
ω

ω

⎡ ⎤+ ± − ⎧⎣ ⎦≈ = ⎨
⎩

, (B-37) 

where HRω  is given by Eq. (B-23), while Dω  is  

 
( )2

1
D

aD aDrad eL aDM M M C
ω

φ
=

+ +
. (B-38) 

Clearly, [ ]shortD Dω ω≤  in Eq. (B-29).  With increasing inductive loads, Dω  moves further 

away from the short-circuit resonant frequency [ ]shortDω . 
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Figure B-1.  EMHR with passive electrical loads is analogous to a 2DOF system for (a) 

capacitive and (b) resistive loads and a 3DOF system with an (c) inductive 

load. 
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Appendix C.  Development of Transfer Matrix of the EMHR 

  Equation Section (Next) 

Area contraction 

The area contraction is shown in Figure C-1a.  Due to abrupt change of the area, even 

with the planar incident wave, evanescent higher order acoustic modes will be excited in 

the vicinity of the discontinuity, thus the acoustic field near the discontinuity will have a 

transverse component.  Such effect can be taken into account in terms of  plane wave 

variables by means of an additional mass and resistance.35, 36  Following Karal and Ingard, 

the relation between the acoustic variables for the area contraction is given by  

 ( )5 4 0 0 4 4 4 4P P c A U Aρ ζ= + , (C-1) 

 0 0 5 5 0 0 4 4c U A c U Aρ ρ=  (C-2) 

where 4P  and 5P  are the plane wave pressure component in before and after the 

discontinuity.  Eqs. (C-1) and (C-2) represent the continuity of the pressure and the 

volume velocity across the discontinuity, respectively.  The matrix representation for the 

area contraction is thus given by, 

 5 4 4

0 0 5 4 5 0 0 4

1
0

P P
c U A A c U

ζ
ρ ρ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (C-3) 

where 2
4A rπ=  is the cross-sectional area of the neck of the Helmholtz resonator, 

2
5 tubeA D=  is the cross-sectional area of the tube, and 4ζ  is the normalized specific 

acoustic impedance, which is given by 36 

 
2

0 4
4 0

0 0 0

1 82
2 3

A j kr
c c

ρ ωζ μρ ω
ρ π π

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
. (C-4) 

Thus, the transfer matrix for the area contraction is given by 

 4

4 5

1
0ACT

A A
ζ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. (C-5) 

Area expansion 

Similarly, the relationship between the acoustic variables for the area expansion, 

shown in Figure C-1b, is given by 36 

 ( )3 2 0 0 3 3 2 2P P c A U Aρ ζ= + , (C-6) 
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 0 0 3 3 0 0 2 2c U A c U Aρ ρ= , (C-7) 

or in transfer matrix form, 

 ( )3 22 3 3

0 0 3 0 0 22 3

1
0

P PA A
c U c UA A

ζ
ρ ρ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
, (C-8) 

where 2
3A rπ=  is the cross-sectional area of the neck of Helmholtz resonator, 2

2A Rπ=  

is the cross-sectional area of the cavity, and 3ζ  is the normalized specific  acoustic 

impedance, which is given by 

 
2

0 3
3 0

0 0 0

1 82
2 3

A j kr
c c

ρ ωζ μρ ω
ρ π π

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
. (C-9) 

Thus, the transfer matrix for the area contraction is given by 

 ( )2 3 3

2 3

1
0AE

A A
T

A A
ζ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. (C-10) 

Duct element 

Finding the acoustic velocity and pressure fields due to sound wave propagation in a 

long, round duct is a classic acoustics problem.  Tijdeman  reviewed this topic and 

showed that the solution obtained by Zwikker and Kosten  has the widest range of 

validity.37, 38  For plane-wave propagation in a duct with radius R , as shown in Figure C-

1c, the pressure and axial velocity component are given by 37, 38 

 ( )
2

0 0 kx kxcP Ae B eρ
γ

−Γ Γ⎛ ⎞
= +⎜ ⎟
⎝ ⎠

, (C-11) 

 
( )
( ) ( )

3 2
0

0 3 2
0

1 kx kx
J j sjU c Ae B e
J j s

η

γ
−Γ Γ

⎡ ⎤Γ
⎢ ⎥= − −
⎢ ⎥⎣ ⎦

, (C-12) 

where Γ  is the complex propagation coefficient, 0k cω=  is the wave number,  r Rη =  

is dimensionless radius, s R ωρ μ=  is the shear wave number or Stokes number, γ  is 

the ratio of specific heats, and μ  is dynamic viscosity coefficient of the air.  The 

complex propagation coefficient is given by  

 
( )
( )

3 2
0

3 2
2

J j s
nJ j s
γ

Γ = , (C-13) 
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where 

 
( )
( )

13 2
2

3 2
0

11
J j s

n
J j s

σγ
γ σ

−
⎛ ⎞−⎜ ⎟= +
⎜ ⎟
⎝ ⎠

, (C-14) 

where PrpCσ μ λ= = , Pr is Prandtl number and ( )iJ is the ith order Bessel 

function of first kind. 

From Eq. (C-12), the mean velocity over cross-section of the duct is thus obtained by 

 

( ) ( )
( )

( )
( ) ( )

( )

2
0

3 2
0 0

2 3 2
0 0

3 2
20

3 2
0

0

1 2

1 2

R

kx kx R

kx kx

kx kx

U U rdr
R

c Ae B e J j sj rdr
R J j s

J j sj c Ae B e
J j s

c j Ae B e
n

π
π

η
π

π γ

γ

γ
γ

−Γ Γ

−Γ Γ

−Γ Γ

=

⎧ ⎫⎡ ⎤− Γ⎪ ⎪⎢ ⎥= −⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

Γ
= −

= −
Γ

∫

∫
, (C-15) 

where two identities of the Bessel function are used  

 ( ) ( ) ( )1 1
2

n n n
nJ z J z J z
z− ++ = , (C-16) 

 ( ) ( )0 1
0

a

zJ z dz aJ a=∫ . (C-17) 

Thus, from Eqs. (C-11) and (C-15), one can deduce the relationship between ( )2 2,P U  

and ( )1 1,P U , illustrated in Figure C-1c, as 

 
( ) ( )
( ) ( )

2 1

0 0 2 0 0 1

cosh sinh /
sinh cosh

P kL kL G P
c U G kL kL c Uρ ρ

Γ Γ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Γ Γ⎣ ⎦ ⎣ ⎦⎣ ⎦

, (C-18) 

where G j nγ= Γ , Γ  and n  are given by Eqs. (C-13) and (C-14).  The same result can 

be obtained for the relationship between ( )2 2,P u  and ( )1 1,P u .  Thus, the transfer matrix 

for the duct element shown is given by 

 
( ) ( )
( ) ( )

cosh sinh /
sinh coshDE

kL kL G
T

G kL kL
Γ Γ⎡ ⎤

= ⎢ ⎥Γ Γ⎣ ⎦
. (C-19) 
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when the wave field in the duct is lossless and isentropic,  

 1i GΓ = = . (C-20) 

Eq. (C-18) can thus be simplified to 

 
( ) ( )
( ) ( )

2 1

0 0 2 0 0 1

cos sin
sin cos

P kL j kL P
c U j kL kL c Uρ ρ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
, (C-21) 

or in the p Q′ −  formulation 

 
( ) ( )

( ) ( )

0

2 1

2 1

0

cos sin

sin cos

ZkL j kL
P PS

SQ Qj kL kL
Z

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

. (C-22) 

The determinant of the transfer matrix of Eq. (C-22) is given by 

 
( ) ( )

( ) ( )

0

0

cos sin
det 1

sin cos

ZkL j kL
S

Sj kL kL
Z

⎡ ⎤
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥⎣ ⎦

. (C-23) 

Thus the lossless isentropic duct element is a reciprocal system.  Furthermore, 11T  and 

22T  terms are real, and 12T  and 21T  are purely imaginary; thus this system is also 

conservative. 

 

Clamped piezoelectric backplate with shunt loads 

To develop the transfer matrix representation for the piezoelectric-backplate (or PZT-

backplate), it is assumed that the maximum dimension of the PZT-backplate is much less 

than the bending wavelength of interest, and that only linear behavior of the PZT-

backplate need be considered. With these assumptions, an equivalent two-port networks 

including a lossless transformer can be developed for the PZT-backplate, as shown in 

Figure C-2, where 1P  is the pressure exerting on the PZT-backplate, 1Q  is the incident 

volume velocity, V  and  I  are the voltage the current at the electrical port, respectively.  

Associated with the two-port networks are two impedances that are measurable properties 

of the system 

 
0

1
eB

Q eB

VZ
I j Cω=

= = :  the blocked electrical impedance (C-24) 
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0

1
aD aD aD

aDV

PZ R j M
Q j C

ω
ω=

= = + + : the short-circuit acoustic impedance  (C-25) 

where the definition of eBC , aDR , aDM  and aDC  are listed in Table 1.  Furthermore, the 

lossless transformer converts energy between the acoustical and electrical domains and 

obeys the transformer relations 

 1I Qφ′ = , (C-26) 

and 

 P Vφ′ = , (C-27) 

where φ  is the impedance transformation factor.  Hence, for two-port network shown in 

Figure C-2, one has 

 1

eB eB

QIV
j C j C

φ
ω ω

= + , (C-28) 

 1 1aDP V Z Qφ= + . (C-29) 

Substituting Eq. (C-28) into (C-29) results in 

 
2

1 11aD
eB eB

IP Z Q
j C j C
φ φ
ω ω

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
. (C-30) 

where 2
aD eBZ j Cφ ω+  defines the open-circuit ( 0I = ) acoustic impedance of the PZT-

backplate. One the other hand, substitution of 1P  and V for 1Q  in Eq. (C-28) from Eq. 

(C-29) results in  

 1
2 2

eB aD

eB eB aD eB aD

j C Z PIV
j C j C Z j C Z

ω φ
ω ω φ ω φ

⎛ ⎞
= +⎜ ⎟+ +⎝ ⎠

, (C-31) 

where 

 ( )
( ) ( )

2
2

2 2

1 1 1 11 1eBeB aD

eB eB aD eB aD eB eB eF

j Cj C Z
C j C Z C Z j C C C

φ ωω κ
ω φ φ ω

⎡ ⎤⎛ ⎞
= − = − =⎢ ⎥⎜ ⎟+ +⎝ ⎠ ⎣ ⎦

, (C-32) 

where eFC  is the free electric compliance ( 1 0P = ), and 2κ  is the coupling factor. Finally, 

from Eqs. (C-28) and (C-29), one has 

 
2

1
eB aD aDj C Z ZP V Iω φ
φ φ

+
= − , (C-33) 
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 1
1eBj CQ V Iω

φ φ
= − . (C-34) 

 

or in the matrix form of 

 

2

1

1

.
1

eB aD aD

eB

j C Z Z
P V
Q Ij C

ω φ
φ φ
ω
φ φ

⎡ ⎤+
−⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ −⎢ ⎥

⎣ ⎦

 (C-35) 

Consequently, when the electrical boundary condition defined by eLV I Z= −  is given, 

the acoustic impedance, defined by 1 1P Q , can thus be obtained for a given PZT-

backplate as 

 
( )( )

( )
( )2 2

1

1 1 1
eB aD aD eB aD eL aD

eB eB eL

j C Z V I Z j C Z Z ZP
Q j C V I j C Z

ω φ ω φ

ω ω

+ − + +
= =

− +
. (C-36) 

The 0 0P c uρ−  formulation of Eq. (C-35) is given by 

 

2

1

0 0 1 0 0 0 0

eB aD aD

eB

D D

j C Z Z
P V
c U Ij c C c

A A

ω φ
φ φ

ρ ωρ ρ
φ φ

⎡ ⎤+
−⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ −⎢ ⎥

⎣ ⎦

, (C-37) 

where DA  is the effective area of the PZT-backplate due to the displacement of the 

clamped PZT-backplate is not uniform. 
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3 3 3, ,A P U 2 2 2, ,A P U
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2 2,P U 1 1,P U

 
(c) 

 

Figure C-1.  (a) Schematic of an area contraction.  (b) Schematic of an area expansion.  

(c) Schematic of an acoustic duct system. 
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(b) 

Figure C-2. (a) Schematic of a piezoelectric backplate with shunt loads.  (b) The 

equivalent circuit representation for the piezoelectric backplate with the two-

port network indicated. 
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Appendix D.  Comparison Between TM and LEM  

Equation Section (Next) 

As discussed in Section 4, when the dimensions of the acoustic device are much 

smaller than the wavelength of interest, The device components can thus be lumped into 

idealized discrete circuit elements 16.  In comparison with the transfer matrix 

representation of the acoustic system, the LEM decouples the temporal and spatial 

variables associated the acoustic field, there is thus no spatial variation for a “lumped” 

element.  Furthermore, the lumped element is two-pole system, while transfer matrix 

representation is four-pole network.  

On the other hand, the LEM is occasionally no more than a reduced version of the 

transfer matrix representation when the quasi-state assumption is satisfied.  For example, 

as shown in Figure D-1a, a duct with a sound-soft termination, it is assumed that no 

viscous loss is taken into account, thus from Eq.(C-21), one has 

 0 0 01

1

tan as 1j c kl lP j kl
Q S S

ρ ρω= ≈ << , (D-1) 

where 0l Sρ  is the lumped acoustic mass of the short tube.  One more example, as 

shown in Figure D-1b, the duct is ended by a sound-hard termination, similarly, from Eq. 

(C-21), one has 

 0 01

1
2

0 0

cot 1 as 1j c klP kl
Q S j

c

ρ

ω
ρ

−
= ≈ <<

∀
, (D-2) 

where Sl∀ =  is the volume of the tube, 2
0 0cρ∀  is the lumped acoustic compliance aCC .  

However, in most case, more assumptions should be satisfied for the LEM 

consistence with the transfer matrix representation.  Shown in Figure D-1c, a duct 

terminated with a complex boundary TZ , from Eq. (C-21), one has  
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 ( )
( ) ( )

( ) ( )
( )

2
0 0 0 0 0 01

1 0 0 0 0

cos sin cot
sin cos cot
T T

T T

Z kl j c S kl c Z j kl S c SP
Q j kl Z c S kl Z c j kl S

ρ ρ ρ
ρ ρ

+ − +
= =

+ + −
. (D-3) 

When 1kl << , Eq. (D-3) reduces to 

 ( ) ( )
( )

( )2 2
0 0 0 0 0 01

1 0 0

cot ( )
cot 1 ( )

T T aC

T T aC

c Z j kl S c S Z j C c SP
Q Z c j kl S Z j C

ρ ρ ω ρ
ρ ω

− + +
=

+ − +
� , (D-4) 

where 2
0 0aCC cρ= ∀ .  Furthermore, when ( ) ( )2

0 0T aCZ j C c Sω ρ>> , one has 

 1

1

( )
1 ( )

T aC

T aC

Z j CP
Q Z j C

ω
ω+

� , (D-5) 

which is the LEM of the system. 
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Figure D-1. (a) Schematic of a duct terminated with sound-soft.  (b) Schematic of a duct 

with sound-hard termination.  (c) Schematic of a duct with complex 

termination 

 



 73

Appendix E.  Summary On NASA 2DOF Liner Mimic 

Equation Section (Next) 

Introduction 
 

The efforts have been made to mimic the second layer of the NASA 2DOF liner using 

the compliant diaphragm.  The nominal specific acoustic impedance of the second layer 

of the NASA DDOF is shown in Figure E-1.  Firstly, the mimic is performed using a 

clamped compliant diaphragm to match the target reactance.  Proper materials are chosen 

accordingly.  Second, a thin PVDF is attached to the compliant diaphragm.  In 

comparison with PZT, PVDF is light-weighted and more flexible.  A thin PVDF attached 

to the compliant diaphragm will not change it mimic behavior very much. 

 

Lumped element modeling of a clamped compliant diaphragm 
 

Unlike a rigid plate, the compliant diaphragm has finite acoustic compliance and 

mass.  Next, the lumped element model of a clamped compliant diaphragm is briefly 

introduced. 

Under a uniform pressure P , the deflection of a clamped compliant circular 

diaphragm with radius a  and thickness h  is given by 

 ( ) ( )
22

0 1 rw r w
a

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, (E-1) 

where ( )0w  is the deflection of the center point of the compliant diaphragm and given by 

 ( )
4

0
64
Paw

D
= , (E-2) 

where D , the flexural rigidity, is defined by 

 
( )

3

212 1
EhD

v
=

−
, (E-3) 

where E  is the elastic modulus, v  is the Poisson’s ratio. 

It is assumed that the diaphragm is under the excitation of a harmonic signal 

 ( ) ( )0, 0 j tw t w e ω=  (E-4) 
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the physically distributed compliant diaphragm can be lumped into equivalent mass and 

compliance at the center point as long as 1kd ≤  and the excitation frequency is up to first 

resonant frequency of the diaphragm, where 0k cω=  is the wave number and d  is the 

diameter of the diaphragm.  Firstly, the acoustic mass of the compliant diaphragm is 

determined via computing the kinetic co-energy.  The incremental kinetic co-energy 

KE
W ∗ contained in a single ring of the transverse deflection is 

 ( ) ( )

2

22

Mass
Velocity

1 2 0 1
2kE

rdW h rdr j w
a

ρ π ω∗

⎡ ⎤
⎢ ⎥⎛ ⎞⎛ ⎞⎢ ⎥= −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎢ ⎥
⎣ ⎦

14243
144424443

. (E-5) 

Thus, the total 
KE

W ∗  is  

 ( )
222

0 0

0 1
a a

KE KE

rW dW h j w rdr
a

πρ ω∗ ∗

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥= = −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫ , (E-6) 

 

thus 

 ( )
2

21 0
2 5KE

aW j w h πω ρ∗

⎛ ⎞
= ⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠
 (E-7) 

which must equal the lumped acoustic 
KE

W ∗  

 ( )
2

221 1 0
2 2 5a KE

aM Q W j w h πω ρ∗

⎛ ⎞
= = ⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠
, (E-8) 

where aM  is acoustic mass, and Q  is the volume velocity  

 ( ) ( )
22 2

0

0 1 2 0
3

a r aQ j w rdr j w
a

πω π ω
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥= − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫ . (E-9) 

The acoustic mass is 

 2

9
5a

hM
a
ρ
π

= . (E-10) 

The Eq. (E-9) also indicates that the effective area of the clamped diaphragm is  

 21
3effA aπ= . (E-11) 
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 Then, the specific acoustic mass, s
aM , is given by 

 3
5

s
a a eff

hM M A ρ
= = . (E-12) 

Next, the acoustic compliance is derived via lumping the total potential energy to the 

center point.  Under the pressure P , the incremental potential energy, PEdW  is given by 

 ( ) ( ) ( )
Force Deflection

2PEdW PdAdw r P rdr dw rπ= =
14243123

. (E-13) 

Moreover, from Eq. (E-1) 

 ( ) ( )
( ) ( ) ( )

22

0 1 0
0

w r rdw r dw dw
w a

⎛ ⎞∂ ⎛ ⎞= = −⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
, (E-14) 

 and from Eq. (E-2) 

 ( )
4

64 0Dw
P

a
= . (E-15) 

So, 

 ( ) ( ) ( )
22

4

128 0
2 1 0PE

Dw rdW P rdrdw r rdrdw
a a

π
π

⎛ ⎞⎛ ⎞= = −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
, (E-16) 

and 

 

 ( ) ( )
( )

( )
20 2

2

4 2
0 0

128 0 1 641 0 0
2 3

wq

PE

Dw r DW rdrdw w
a a a

π π⎛ ⎞⎛ ⎞= − = ⎡ ⎤⎜ ⎟⎜ ⎟ ⎣ ⎦⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫ , (E-17) 

which should equal the lumped acoustic potential energy 

 ( ) 22
2

1 1 1 64 0
2 2 3PE

a

DW w
C a

π
∀ = = ⎡ ⎤⎣ ⎦ , (E-18) 

where aC  is the acoustic compliance, and ∀ is the volume displacement 

 ( ) ( ) ( )
22 2

0 0

2 0 1 2 0
3

q a r aw r rdr w rdr w
a

ππ π
⎛ ⎞ ⎛ ⎞⎛ ⎞∀ = = − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ . (E-19) 

Thus 
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6

192a
aC

D
π

= . (E-20) 

Then, the specific acoustic compliance is  

 
( )2 44

3

3 1
64 16

s a
a

eff

v aC aC
A D Eh

−
= = =  (E-21) 

Eqs. (E-12) and (E-21) give the specific acoustic mass and compliance of the 

compliant diaphragm.  Clearly, the specific acoustic mass is the function of the density 

and thickness of the diaphragm, while the specific acoustic compliance relates to the 

radius, thickness, elastic modulus and Poisson’s ratio of the diaphragm.  

 

Mimic the second layer of NASA 2DOF liner 
To perform the mimic, a curve-fitting method is adopted to obtain set of the specific 

acoustic mass and compliance which satisfy the NASA 2DOF requirements.  The curve-

fitting function is set as 

 ( )0 0
1s

c a s
a

F j M c
j C

ω ρ
ω

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

 (E-22) 

Then, adding 10%±  tolerance to the target value of the curve fitting function (see Figure 

E-1), the curving fitting results (thus a mimic region) are obtained as shown in Figure E-2, 

and the range of the acoustic mass and compliance as shown in Figure E-3. 

As mentioned above, the acoustic mass and compliance relate to the geometry and 

material properties of the diaphragm.  Then, following the range of the specific acoustic 

mass and compliance, if the geometry parameters of the diaphragm are given, then the 

material properties can be determined. From Eq. (E-12), 

 5
3

s
aM

h
ρ = . (E-23) 

From Eq. (E-21),  

 
( )2 4

3

3 1
16 s

a

v a
E

h C
−

= . (E-24) 

Thus, if the range of the radius and thickness of the diaphragm are given by 

 0.04 3 2 3e h e− ≤ ≤ −  [m], (E-25) 

and 
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 2 3 10 3e a e− ≤ ≤ −  [m], (E-26) 

The range of the density of the diaphragm is then obtained as shown in Figure E-4.  

Similarly, the range of the elastic modulus can also be obtained if the range of the radius 

and the thickness of the diaphragm are given.  Then, when the range of the geometry 

parameters and material properties are obtained, the next step is to search materials for 

the diaphragm to satisfy the requirement.  

 
Choice of the materials—Polymer 

Following the guidelines set in section above, one possible polymer material is 

Polytheretherketone (PEEK).  The PEEK has high temperature resistance, good 

resistance to wear, dynamic fatigue.  The material properties of the PEEK are listed in 

Table E-1. 

 
Table E-1.  Material properties of the PEEK 

Density 

Kg/m3 

Young’s Modulus 

109 N/m2 

Poisson’s ratio 

 

1260 - 1320 3.7 - 4 0.34 

 

Firstly, the diaphragm is not attached with PVDF film.  Then, following the range of 

the specific acoustic mass given in last section and Eq.(E-23), the thickness of the PEEK 

film is  

 0.1 3 0.127 3e h e− ≤ ≤ −  [m]. (E-27) 

The thickness of the PEEK diaphragm is chosen as 0.125e-3 m due to the availability of 

the commercial product.  Thus, from Eq. (E-23), one has 

 0.0945s
aM =  (E-28) 

with the range of the specific acoustic compliance is (shown in Figure E-3) 

 2.3 7 2.9 7s
ae C e− ≤ ≤ − . (E-29) 

The best mimic result happens at 

 2.46 7s
aC e= − , (E-30) 

as shown in Figure E-5.  From Eq. (E-21), the radius of the PEEK diaphragm is  

 10.2 3a e= −  [m] (E-31) 
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Now assuming that the PEEK diaphragm is loaded by a uniformly distributed load of 200 

N/m, the maximum stress is then given by  

 [ ] ( ) 2
max 2center

6 200 1 6.69 5
16

a e
h

σ ν= + =  [Pa] (E-32) 

 [ ] 2
max 2edge

6 200 9.99 5
8

a e
h

σ = =              [Pa] (E-33) 

which is much less than the tensile strength of the PEEK (70-100 MPa),  

Next, a thin metalized PVDF is attached to the PEEK diaphragm, as shown in Figure 

E-6.  The metalized PVDF film consists of PVDF metalized on both sides with aluminum.  

The thickness of the commercial metalized PVDF is 0.009e-3 m or 0.11e-3 m.  Here, we 

choose the metalized PVDF film with the thickness of 0.009e-3 m.  The material 

properties of the metalized PVDF are listed in Table 6.  Because the density, Poisson’s 

ratio and Young’s modulus of the PVDF are similar to the PEEK, the thin PVDF film 

attached to the PEEK diaphragm doesn’t change the mimic behavior very much.  The 

mimic behavior of the PEEK diaphragm attached with thin PVDF film is shown in Figure 

E-7.  The results show that one can mimic the acoustic behavior of the second layer of the 

NASA DDOF liner pretty well.  However, further investigation find that the frequency 

shift between open-circuit and short-circuit of the PEEK-PVDF diaphragm is very small 

because the PVDF has relative weak electromechanical transduction in comparison with 

PZT material.  Thus, work in the future will focus on the improvement of the frequency 

shift by increasing the thickness of the PVDF or adopting annular PVDF diaphragm 

(ring-like). 

 

Choice of the materials—Metal 
In comparison with Polymer materials, some light-weighted and flexible metals, such 

as Aluminum/Magnesium alloy, brass alloy and Titanium alloy, are more attractive in 

consideration of the operation temperature and fatigue.  Section 6 presents the application 

of Titanium alloy to mimic the 2DOF liner.  More metals will be taken into account in 

future. 
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Figure E-1.   Nominal specific acoustic impedance of NASA DDOF liner 
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Figure E-2.  Curve fitting (mimic region) for target acoustic reactance 

 



 80

7 7.5 8 8.5 9 9.5 10
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Specific acoustic mass (10-2)

S
pe

ci
fic

 a
co

us
tic

 c
om

pl
ia

nc
e 

(1
0 -7

)

 
Figure E-3.  Mimic range of the specific acoustic mass and compliance 
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Figure E-4  Range of the density of the diaphragm corresponding to specific acoustic mass range and 

a given thickness range of the diaphragm. 

 



 81

500 1000 1500 2000 2500 3000
-3

-2

-1

0

1

2

3

4

Freq. [Hz]

χ

 

 

Mimic
Target value

 
Figure E-5.  Mimic behavior of the PEEK diaphragm 

 

 

 
Figure E-6.  Schematic of composite diaphragm 
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Figure E-7  Mimic behavior of the PEEK diaphragm attached with PVDF film 
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Appendix F.  Impedance prediction code – ZKTL 

 

This MATLAB code is rewritten based on NASA ZKTL Fortran code.  The code was 

developed to calculate acoustic impedance for kinds of acoustic liners and the EMHR.  

The code consists of five subroutines listed below: 

• Single channel impedance calculation (linear)—SCIC 
• Single channel impedance calculation (nonlinear)—SCICNL 
• Multi-channel, multi-segment, multi-layer impedance calculation (linear)—

MCMSML 
• Multi-channel, multi-segment, multi-layer impedance calculation (nonlinear)—

MCMSMLNL 
• EMHR  

 

Main menu 

Executing zktl on MATLAB command window results in:  

  

 

  

 

 

 

 

Entering selection (1-5) will choose related computing module for acoustic impedance 

calculation for acoustic liner / resonator.  Each module has detailed help information.  

 

SCIC routine 

Choosing (1) on main menu will calculate single channel impedance linearly.  In this 

routine, the acoustic impedance of a single channel is independent on the incident sound 

pressure level (SPL) and grazing flow speed.  A single channel liner can consist of 

several layers.  Each layer consists of one open channel, a perforated plate or foam.  

There are two kinds of geometry for one open channel--tube and split, shown in Figure F-

1.  The changes of diameter of the open channel from one layer to another layer are 

allowed if the channel is in the form of the tube.  For perforated plate, it’s assuming that 

Main Menu:                                             

(1)Single Channel - Linear (SCIC)                     

(2) Single Channel - Nonlinear (SCICNL)                

(3) Multi-Channel/Segment/Layer - Linear (MCMSML)      

(4) Multi-Channel/Segment/Layer - Nonlinear (MCMSMLNL) 

(5) EMHR – Electromechanical Helmholtz resonator  
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the plate is infinitely thin.  There are two types of input information to define the 

characteristics of the plate.  These are: 

• Flow resistance, in this case, the perforated plate only adds an acoustic resistance 

component to the acoustic impedance calculation. 

• Pressure drop across the plate in the complex form, ( ) ( ) ( )dp f A f iB f= +  where 

A and B are frequency dependent coefficients. 

For a foam layer, the thickness and flow resistance should be included in the input 

parameters.  The conclusion for input parameters for SCIC is shown in Figure F-2. 

 

SCICNL routine 

The option (2) in main menu is to nonlinearly compute the normalized acoustic 

impedance of a single channel liner.  SCICNL takes account for the effect of SPL, 

grazing flow and bias flow on the acoustic impedance.  In SCICNL routine, a single 

channel also consists of layer(s).  Each layer has an open channel or perforated plate or 

both.  The foam (layer) is not used in this case.  The input information for SCICNL is 

almost the same as the SCIC, except for  

• Grazing flow speed 

• Bias flow speed 

• Input file contains data to define frequency-dependent SPL 

• Coefficients for the definition of changes of impedance across the perforated 

sheet during the nonlinear computing pass.  

 

MCMSML routine 

Choosing option (3) on main menu will execute MCMSML routine.  MCMSML 

routine is used to calculate linearly the acoustic impedance of the liner which consists of 

numbers of channels, segments or layers, shown in Figure F-3.  The liner can have a 

group of segments.  It is assumed that all segments have the same span-wise width.  Each 

segment consists of series of vertical elements.  A single element includes open channel 

(s), perforated plate (s) or foam, as same as what described in SCIC routine.  The element 

length distribution in each segment can be linear or on Quadratic residue series.  The 

input logic for MCMSML is depicted in Figure F-4. 
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MCMSMLNL routine 

The option (4) on main menu is to run MCMSMLNL module to computing acoustic 

impedance of multi-channels/segments/layers liner using nonlinear acoustic method.  The 

liner geometry is the same as what is depicted in Figure F-4, except for that the foam 

(layer) is not used in this case.  In addition to what are included in the input information 

for MSMSML, some extra input parameters are needed to define MSMSMLNL routine: 

• Bias flow velocity 

• Grazing flow velocity 

• Input file which contains data to define frequency-dependent SPL 

• Coefficients for the definition of changes of impedance across the perforated 

sheet during the nonlinear computing pass.  

 

EMHR routine 

Choosing option (5) on main menu will execute EMHR routine.  The EMHR routine 

uses LEM or TM to predict the acoustic impedance of the EMHR.  The input parameters 

include: 

• Dimensions of the EMHR 

• Material properties of the piezoelectric composite backplate 
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Figure F-1: Channel geometry for SCIC/SCICNL 
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Figure F-2: Input parameters for SCIC 
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Figure F-3: Liner geometry for MCMSML/MCMSMLNL 
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Figure F-4: Input logic for MCMSML 

 

 
 


