Plasma Environments and Spacecraft Charging for Lunar Programs

Joseph I. Minow(1), Richard L. Altstatt(2), and William C. Blackwell, Jr.(2)

(1)NASA, Marshall Space Flight Center, Huntsville, AL (2) Jacobs Engineering, ESTS Group, Marshall Space Flight Center, Huntsville, AL

Space systems interacting with the space plasma environment charge to potentials of a few tens of volts positive in interplanetary space or on the lunar surface in daylight, a few hundred volts negative in the dark lunar plasma wake and in some regions of the Earth's radiation belts, and to multiple kilovolt negative potentials for worst case conditions in the Earth's magnetosphere near geostationary orbit. Good design practices are required to assure that space systems operate successfully in these environments without detrimental effects due to transient currents and insulator failure produced by electrostatic discharges. Cold lunar environments in particular are challenging because detrimental effects of charging are often exacerbated by cold, highly resistive dielectrics which can integrate charge for long periods of time. We will describe the cold plasma and energetic particle environments relevant to lunar missions responsible for surface and bulk charging of space systems and discuss program requirements under development for assuring that systems operate successfully in these environments.
Plasma Environments and Spacecraft
Charging for Lunar Programs
Joseph I. Minow
NASA, Marshall Space Flight Center
Richard L. Altstatt and William C. Blackwell, Jr.
Jacobs Engineering, MSFC Group
NASA, Marshall Space Flight Center
umиot wuopwury suopwoyddy isopouyoaz amdS

Overview

- What plasma environments are relevant, of concern for lunar
missions?
- How different are lunar environments compared to the well
characterized LEO, GEO environments?

Overview

- Time dependent current balance on surfaces
plasma

(Garrett and Minow, 2004)
STAIF 2007 12-15 February 2007 Albuquerque, $\mathbf{N M}$
- Radiation charging of insulators, isolated conductors

n
STAIF 2007 12-15 February 2007 Albuquerque, NM

Plasma Environments

(225

[^0]Magnetosphere and Lunar Orbit

N STAIF $2007 \quad$ 12-15 February 2007
Albuquerque, $\mathbf{N M}$

surface charging

STAIF 2007 12-15 February 2007 Albuquerque, $\mathbf{N M}$

Near Earth Plasma Regims

Ion Foreshock Region

Plasma/radiation environments to $\sim \mathrm{MeV}$ energies responsible for surface and bulk charging

STAIF 2007 12-15 February 2007 Albuquerque, $\mathbf{N M}$

Lunar Prospector Electron Reflectometer

Spin average electron
 flux
 $\sim 40 \mathrm{eV}$ to $\sim 20 \mathrm{keV}$

April 1998

- Earth's magnetotail
- $\begin{aligned} & \text { Solar energetic particle } \\ & \\ & \text { event }\end{aligned}$
STAIF $2007 \quad$ 12-15 February 2007
Albuquerque, $\mathbf{N M}$

$$
\begin{aligned}
& \theta_{\mathrm{gw}} \\
& \text { a) } \\
& \text { b) }
\end{aligned}
$$

Charging in Lunar Wake
Wake properties relative to ambient solar wind

Solar wind

Lunar photoelectron sheath Vysklov (1976) reported lunar "ionosphere" using radio occultation technique from Luna 22 with peak electron densities of $500-1000 \# / \mathrm{cm}^{3}$ at altitudes of $5-10 \mathrm{~km}$ above sunlit lunar surface In-situ measurements from Apollo 12, 15, 15 Suprathermal Ion Detector Experiment (SIDE) and Apollo 14 Charged Particle Lunar Environment Experiment (CPLEE) show $10^{4} \# / \mathrm{cm}^{3}$ up to altitudes of 100 m (Reasoner and Burke, 1972) For comparison.....

Lunar Debye length ~ 1 meter

Photoelectrons dominate daytime charging environments within
a few meters of surface

[wy] apmuly

 +o y t opo

$\sim 85 \mathrm{~K}$ in night just before sunrise $\sim 40 \mathrm{~K}$ to 50 K in permanently dark \quad polar craters
Insulator charging in these
environments will integrate
charge for extended periods of
time

Charging design environments:

 Trans-lunar injection orbit [Fennell et al., 2000]

Parameter	Case" Environment ${ }^{\text {b }}$ Electrons ${ }^{\text {E }}$ lons	
Number density (\#/Cm ${ }^{3}$)	3.00	3.00
Current density ($n \mathrm{~A} / \mathrm{cm}^{2}$)	0.501	0.016
Number density, population 1 ($\# / \mathrm{cm}^{3}$) Parallel Perpendicular	$\begin{gathered} 1 \\ 0.8 \\ \hline \end{gathered}$	$\begin{array}{r} 1.1 \\ 0.9 \\ \hline \end{array}$
Temperature, population $1(\mathrm{eV})$ Parallel Perpendicular	$\begin{array}{r} 600 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & 400 \\ & 300 \\ & \hline \end{aligned}$
Number density, population $2\left({ }^{\#} \mathrm{~cm}^{3}\right)$ Parallel Perpendicular	$\begin{aligned} & 1.40 \\ & 1.90 \end{aligned}$	$\begin{array}{r} 1.70 \\ 1.60 \\ \hline \end{array}$
Temperature, population $2(\mathrm{eV})$ Parallel Perpendicular	$\begin{aligned} & 25100 \\ & 26100 \\ & \hline \end{aligned}$	$\begin{aligned} & 24700 \\ & 25600 \\ & \hline \end{aligned}$

[^0]: Sun-Earth L1, L3, L4, L5 all in solar wind
 Sun-Earth L2 located nominally near edge of magnetotail with

 ## Earth-Moon L1, L2, ..., L5 all pass through the magnetosheath and

 magnetotail once a month but spend most time ($\sim 75 \%$ in solar wind)
 STAIF 2007 12-15 February 2007
 Albuquerque, $\mathbf{N M}$

