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Abstract. We present the equatorial and bounce–average pitch–angle diffusion

coefficients for scattering of relativistic electrons by the H+–mode of EMIC waves. Both

the model (prescribed) and self–consistent distributions over the wave normal angle are

considered. The main results of our calculation can be summarized as follows: First, in

comparison with field–aligned waves, the intermediate and highly oblique waves reduce

the pitch–angle range subject to diffusion, and strongly suppress the scattering rate for

low energy electrons (E < 2 MeV). Second, for electron energies greater than ∼ 5 MeV,

the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite

their greatest contribution in case of field–aligned waves, cannot cause electron diffusion

into the loss cone. For those energies, oblique waves at |n| > 1 resonances are more

effective, extending the range of pitch–angle diffusion down to the loss cone boundary,

and increasing diffusion at small pitch–angles by orders of magnitude.
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1. Introduction

The flux of outer–zone relativistic electrons (above 1 MeV) is extremely variable

during geomagnetic storms. The competition between loss and acceleration, both of

which are enhanced during storm periods, determines the resulting relativistic electron

flux level in the Earth’s outer radiation belt (RB) [e. g., Summers et al., 2004; Reeves

et al., 2003; Green et al., 2004]. During the main phase, the relativistic electron flux

may decrease by up to two or three orders of magnitude. Analyzing 256 geomagnetic

storms during the period 1989–2000, Reeves et al. [2003] found that 53 % of the storms

lead to higher flux levels during the storm recovery phase in comparison to pre–storm

levels, 28 % produce no change, and 19 % lead to net decrease in flux levels. The large

electron flux decrease during the main storm phase is usually associated with either

the Dst effect, when the relativistic electrons adiabatically respond to the inflation of

the magnetic field lines caused by the formation of a partial ring current (RC) [Kim

and Chan, 1997], and/or the drift out the magnetopause boundary [Li et al., 1997],

and/or the nonadiabatic scattering into the loss cone due to cyclotron interaction with

electromagnetic ion cyclotron (EMIC) waves [Thorne and Kennel, 1971; Lyons and

Thorne, 1972; Summers and Thorne, 2003; Albert, 2003; Thorne et al., 2005].

Precipitation of the outer RB electrons due to resonant pitch–angle scattering by

EMIC waves is considered to be one of the more important loss mechanisms, so in the

present study we concentrate on this process only. This mechanism was suggested in

early theoretical studies three and half decades ago [Thorne and Kennel, 1971; Lyons
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and Thorne, 1972], however, direct experimental evidence of EMIC wave–induced

relativistic electron precipitation is scanty because of a lack of concurrent measurements

of low altitude precipitating electrons and magnetically conjugate equatorial waves.

Recently, data from balloon–borne X–ray instruments provided indirect but strong

evidence for EMIC wave–induced loss of outer–zone relativistic electrons in the late

afternoon–dusk MLT sector [Foat et al., 1998; Lorentzen et al., 2000; Millan et al., 2002].

These observations stimulated theoretical and statistical studies which demonstrated

that this mechanism for MeV electron pitch–angle diffusion can operate at the strong

diffusion limit, and can compete with relativistic electron depletion caused by the Dst

effect during the initial and main phases of a storm [Summers and Thorne, 2003; Albert,

2003; Loto’aniu et al., 2006; Meredith et al., 2003].

Although the effectiveness of relativistic electron scattering by EMIC waves depends

strongly on the wave spectral properties, unrealistic assumptions regarding the wave

angular spread were made in previous theoretical studies. That is, only field–aligned

or quasi field–aligned EMIC waves were considered as a driver for relativistic electron

precipitation (except Glauert and Horne [2005] where a calculation for prescribed

oblique wave distributions was presented for the H+–mode). At the same time, there

is growing experimental [Anderson et al., 1996; Denton et al., 1996] and theoretical

[Khazanov et al., 2006a; 2006b] evidence that EMIC waves can be highly oblique; EMIC

waves occur not only in the source region, i.e. at small wave normal angles, but also in

the entire region, even near 90 degrees. This can dramatically change the effectiveness

of relativistic electron scattering by EMIC waves. In the present study, we calculate the
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pitch–angle diffusion coefficients using the wave normal distributions provided by our

self–consistent RC–EMIC wave model [Khazanov et al., 2006a], and quantify the effect

of oblique EMIC waves on outer RB relativistic electron scattering.

This article is organized as follows: In Section 2 we outline some outstanding data

analysis issues which, in our opinion, should be addressed in order to extract the correct

polarization properties of EMIC waves from observations. In Section 3, using model

wave spectra and prescribed plasma parameters, we consider the effect of oblique EMIC

waves on relativistic electron scattering. In Section 4, we present the bounce–averaged

diffusion coefficients based on the wave spectra from a self–consistent RC–EMIC wave

model. Finally, in Section 5 we summarize.

2. Field–Aligned and Oblique EMIC Waves: Observations and

Theory

In order to estimate the wave normal angle, the minimum variance direction is

found from the wave observations. For a plane EMIC wave, the magnetic fluctuation,

δB, and wave vector k are related by k · δB = 0. So the fluctuation δB is entirely in

the plane perpendicular to k, and the minimum variance direction emin is parallel to k.

In this case, the angle between emin and external magnetic field (B0), θmin, gives the

angle between k and B0, θkB0 . Fraser [1985] and Ishida et al. [1987] found that θmin

was generally less than 30◦, and for most waves θmin < 15◦. Then, assuming that the

observed waves could be represented by a single plane mode, they related the derived
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angle to the wave normal angle as θkB0 = θmin.

Another important spectral wave characteristic is ellipticity, ε, which is closely

related to θkB0 . For a plane EMIC wave, ε determines θkB0 , and vice versa, if the plasma

properties and wave frequency are specified. The ellipticity is defined as the ratio of

the minor to the major axis of the wave polarization ellipse in the plane perpendicular

to B0 with ε = −1 for left circular, ε = 0 for linear, and ε = +1 for right circular

polarization. The EMIC waves observed near the equator are mainly linear or left–hand

polarized with some admixture of the right–hand polarization [Anderson et al., 1992;

Fraser and Nguyen, 2001; Meredith et al., 2003; Ishida et al., 1987]. There is a clear

tendency for the polarization to become more linear with increasing magnetic latitude.

The observation of a significant number of linear polarized events occurring near the

equator cannot be explained by the polarization reversal from left–handed through

linear to right–handed at the crossover frequency, as suggested by Young et al. [1981],

and is intriguing because of small θmin [Meredith et al., 2003]; waves should be highly

oblique for ε ≈ 0, which is inconsistent with the reported θkB0 (actually θmin) and ε.

Let us now outline the two outstanding data analysis problems which, in our

opinion, are closely related to the above inconsistency, and should be resolved first in

order to extract the correct wave polarization properties from the observations. Fast

Fourier Transform (FFT) analysis has become the conventional method for quantitative

determination of the wave polarization and minimum variance direction [Means, 1972;

Arthur et al., 1976]. Fourier analysis implicitly assumes that the analyzed signal is a

superposition of components with different frequencies and that during the analyzed
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time segment each component has no random phase variations (stationary signal) in

both time and orientation (for vector signal) [Anderson et al., 1996]. For example, FFT

analysis applied to a series of wave packets with the same frequency but with arbitrary

relative phases will produce a “broad” range of frequencies. Anderson et al. [1996]

showed that when the magnetic fluctuations are not stationary in time and, specifically,

when the axes of the wave polarization ellipse fluctuate in azimuth, then the FFT

analysis of the minimum variance direction and polarization are unreliable. The reason

is that the time window for analysis contains numerous randomly fluctuating wave

packets. The time window, in turn, is determined by the desired frequency resolution,

which is the reciprocal of the window length.To achieve acceptable frequency resolution,

time segments of several minutes or even much longer are typically used [Fraser, 1985;

Ishida et al., 1987].

Analyzing 46 EMIC events, each 30 to 60 minutes long, from 44 different days,

Anderson et al. [1996] found that polarization parameters vary over a time period of

a few wave periods. This allows them to conclude that significant polarization axis

fluctuations are a common feature of EMIC waves and hence that nonstationarity effects

are a general property of waves in magnetosphere. The stationarity timescales are too

short for standard FFT analysis, and to address this problem Anderson et al. [1996]

developed a minimum variance technique which operates on timescales of a few wave

periods. They called this technique a “wave step”, and showed how to determine which

method, FFT and/or wave step, is best for a given data set. Note that despite using

very short time windows, the wave step procedure achieves good frequency precision
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[Anderson et al., 1996]. Compared to the wave packet technique, the decomposition

of a nonstationary signal using the traditional FFT analysis can yield a dramatic

underestimate of the minimum variance polar angle (often more than 45◦) and an

overestimate of |ε|. The maximum disagreement occurs for linear polarization. This is a

significant problem because the minimum variance direction determines the EMIC wave

normal vector orientation which is crucial for resolving major outstanding questions of

the EMIC wave generation, propagation, and damping. Using the more reliable wave

step polarization results, Anderson et al. [1996] presented the first analysis of nearly

linear polarized waves for which the polarization properties have been determined. They

found a significant number of wave intervals with θmin > 70◦, the highest θmin ever

reported.

However, it should be noted that θmin 6= θkB0 if δB is due to a superposition

of plane waves with different azimuthal angles [Anderson et al., 1996; Hoppe et al.,

1982]. A quantitative analysis of the effects of superposition on the observed wave

polarization properties has been presented by Denton et al. [1996]. Using data from the

AMPTE/CCE spacecraft, Denton et al. [1996] made a detailed comparison between the

observed polarization properties of EMIC waves and those predicted by theory, where

the theoretical linear wave properties were based on the plasma parameters observed

during EMIC events, calculated using the linear dispersion code XWHAMP [Schwarz

and Denton, 1991]. Denton et al. [1996] analyzed the ellipticity, the ratio of parallel

(along B0) magnetic fluctuation δBz to the major axis component of the elliptical

perturbation in the perpendicular plane δBmajor, and the phase angle φz−major between
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δBz and δBmajor. They found that the observed polarization properties are inconsistent

with the assumption that the resultant observed waves are from a single plane wave.

Namely, (1) the observed ellipticity (εobs) data plotted versus θmin are at great variance

to the theoretical curves, (2) while δBz/δBmajor = εobs tan θmin if the single wave

assumption is valid, the observed distribution of δBz/δBmajor appears to be relatively

independent of εobs tan θmin, and (3) the distribution of φz−major, while peaked around

90◦ (that is consistent with the single wave assumption for guided mode), is often quite

broad. In order to explain the discrepancies, Denton et al. [1996] developed a simple

model with two constituent waves in various azimutal orientations and temporal phase

relations. They showed that the distribution of observed polarization properties can

be well accounted for as resulting from a superposition of more than one plane wave,

and furthermore, the required constituent waves have properties consistent with linear

dispersion theory. When there is a superposition of waves, the instantaneously observed

polarization characteristics do not reliably reflect the constituent wave properties and

the minimum variance direction cannot be associated with wave vector. Denton et

al. [1996] therefore concluded that wave polarization analysis, which assumes that the

observed fluctuations are due to the single plane wave, is not valid. Particularly, they

noted that determination of wave vector orientation by means of minimum variance

analysis is especially susceptible to error, since even the median value of θmin gives an

unreliable estimate to θkB0 .

The effects of wave superposition on the observed polarization characteristics are

generally as large or larger than the variations between parameters associated with
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linear wave dispersion. Nevertheless, although individual resultant wave properties can

be quite different from those of the constituent waves, the entire distribution from an

ensemble of resultant waves has some properties in common with the constituent waves.

Assuming that both constituent waves have the same ellipticity, εC , and wave normal

angle, tan θC
kB0

, Denton et al. [1996] showed that the median value of the resultant

ellipticity εR is equal to the constituent ellipticity εC . Similarly, they showed that the

median value δBR
z /δBR

major is close to εR tan θC
kB0

. In this way they inferred the essential

polarization properties of constituent waves from the observations. For example, for the

1985–018 EMIC wave event, they found εC = 0.07 and θkB0 = 77◦ that is consistent

with theoretical wave linear properties based on the plasma parameters observed during

the event.

In general, the observed EMIC waves have more than two constituent waves. So

even if the correct FFT and/or wave step method is used, there still exists an uncertainty

which has to be resolved in order to extract the correct polarization properties from

observations. (We should emphasize that the simple model of Denton et al. [1996] has

been remarkably successful at qualitatively explaining the distribution of the observed

polarization parameters.) So combinations of reliable data and theoretical models

should be utilized in order to obtain the power spectral density of EMIC waves over the

entire outer RB throughout the different storm phases.

Recently Khazanov et al. [2006a] presented the global self–consistent theoretical

model of interacting RC and EMIC waves. This model explicitly includes the wave

generation and damping, propagation, refraction, reflection and tunneling in a multi–ion
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magnetospheric plasma. To the best of our knowledge, this is the only model which

self–consistently obtains the spatial (3D), temporal and spectral characteristics of EMIC

waves on global magnetospheric scales during the different storm phases. This model

predicts that the equatorial wave normal angle distribution for He+–mode EMIC waves

can occupy not only the source region, i. e. the region of small wave normal angles,

but all wave normal angles, including those near 90◦. Although this contradicts to the

results of Fraser [1985] and Ishida et al. [1987], it is in qualitative agreement with the

results of the data analysis by Anderson et al. [1996] and Denton et al. [1996] which

were obtained with a more reliable technique.

3. Equatorial Pitch–Angle Diffusion Coefficient: Model

Calculations

To consider the effect of the wave normal angle distribution on the effectiveness of

relativistic electron scattering by EMIC waves, we first calculate the local pitch–angle

diffusion coefficient. The discussion and results related to the bounce and drift average

diffusion coefficients can be found, for example, in [Albert, 2003; Summers and Thorne,

2003; Loto’aniu et al., 2006]. In the present study, we use the relativistic form of the

diffusion coefficient from our previous papers [e. .g, Khazanov et al., 2003]. The recent

extensive statistical analysis of EMIC events by Meredith et al. [2003] showed that

in about 11 % of the observations, the minimum electron resonant energy fell below

2 MeV, and that most of these cases were associated with wave frequencies just below
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the helium gyrofrequency. So in what follows we take into account only the He+–mode

of EMIC waves. Although the model by Khazanov et al. [2006a] provides self–consistent

spectra for the He+–mode, in order to eliminate an unnecessary complication the

analysis in this Section is done for prescribed wave spectra and plasma parameters.

First, a Gaussian frequency spectrum,

B2 (ω) ∼ exp

{
−(ω − ωm)2

δω2

}
, ωLC ≤ ω ≤ ωUC , (1)

is assumed, where following Summers and Thorne [2003] and/or Albert [2003],

ωLC = ωm − δω, ωUC = ωm + δω, ωm = 3ΩO+ , and δω = 0.5ΩO+ , where ΩO+ is the

gyrofrequency of O+. Second, the wave normal angle distribution is assumed to be a

constant inside a specified region and zero otherwise. Below we consider the following

three cases,

Case A : 0◦ ≤ θ < 30◦, 150◦ < θ ≤ 180◦,

Case B : 30◦ ≤ θ < 60◦, 120◦ < θ ≤ 150◦, (2)

Case C : 60◦ ≤ θ ≤ 89◦, 91◦ ≤ θ ≤ 120◦,

which allow us to model field–aligned, intermediate and highly oblique wave spectra.

Note that the diffusion coefficient is a linear functional of the wave spectral intensity,

and the sum of cases A, B, and C describe a situation when EMIC wave energy is evenly

distributed in the entire wave normal angle region, 0◦ ≤ θ ≤ 180◦ (we excluded the

region near 90◦ because of the Landau damping by thermal electrons [e. g., Thorne and

Horne, 1992; Khazanov et al., 2006b]). For benchmark purposes we also calculate the
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diffusion coefficients for a Gaussian distribution over x = tan θ (0◦ ≤ θ ≤ 15◦) which has

been used by Albert [2003]. In each case, the wave amplitude is normalized to ensure

∫ ωUC

ωLC

dω
∫ π

0
dθB2 (ω, θ) = 1 nT2. (3)

Finally, to specify the ion content we follow Summers and Thorne [2003], Albert [2003],

Meredith et al. [2003], Loto’aniu et al. [2006], and just prescribe the storm time ion

composition to be 70% H+, 20% He+, and 10% O+.

Results of our calculation are presented in Figure 1. The first row shows the Figure 1

local (equatorial) pitch–angle diffusion coefficients, and the second row shows the

corresponding resonant numbers averaged with the following weights:

〈
n (E,α)

〉
=

∑
n n

∫ ωUC
ωLC

dω
∫ π
0 dθDn

αα (ω, θ, E, α)
∑

n

∫ ωUC
ωLC

dω
∫ π
0 dθDn

αα (ω, θ, E, α)
, (4)

where E and α are the electron kinetic energy and pitch–angle, and Dn
αα(ω, θ, E, α)

is the partial pitch–angle diffusion coefficient. Note that the resonances ±n come

together because the ω–term can be omitted in the quasilinear resonance condition,

ω − k‖v‖ − nΩe/γ = 0, [e. g., Summers and Thorne, 2003], and the wave spectra are

symmetric around θ = 90◦. The “Gauss” lines in Figure 1 show the result of a Gaussian

distribution over x, and reproduce the equatorial diffusion coefficients of Albert [2003,

Figure 6].

For all energies, Case A is slightly less than “Gauss” if only |n| = 1 resonances

operate but in the region of |n| > 1 it is about 5 times greater than “Gauss” (Figure 1(c)

and 1(d)). These dependencies are in good agreement with the previous results of Albert

[2003, Figure 10, the second row]. For both “Gauss” and Case A, as follows from the
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second row in the Figure 1, the contribution from n < 0 is negligible compared to the

contribution from n > 0, especially for lower electron energies (see Figure 1(a) and 1(b)).

Cases B and C further increase the EMIC wave normal angle, which further suppress

the resonances |n| = 1, and shrink the region of pitch–angles subject to diffusion for

low energies (see Figure 1(a) and 1(b)). At the same time, they increase by orders of

magnitude the contribution from |n| > 1 which operate for greater electron energies,

and increase the pitch–angle region subject to diffusion (see Figure 1(c) and 1(d)). The

growing contribution of resonances with n < 0 is more pronounced in Cases B and C

because EMIC waves become more elliptically polarized with the increase in the wave

normal angle. The above results are in good qualitative agreement with the results by

Glauert and Horne [2005] obtained for the H+–mode of EMIC waves.

Overall, compared to field–aligned waves, the intermediate and highly oblique

wave distributions decrease the pitch–angle range subject to diffusion, and reduce the

scattering rate by orders of magnitude for low energy electrons (E < 2 MeV) when only

principle |n| = 1 resonances operate. For greater electron energies (see Figure 1(c) and

1(d)), the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and

despite their greatest contribution for the field–aligned waves, cannot support electron

diffusion into the loss cone. In this case, the oblique waves with |n| > 1 resonances are

more effective, and extend the range of pitch–angle diffusion down to the loss cone. So

EMIC waves alone, if distributed over the entire wave normal angle region, are able to

cause local precipitation of energetic electrons.
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4. Bounce–Average Diffusion Coefficient: Self–Consistent

Calculations

4.1. Wave Normal Angle Distributions for He+–mode of EMIC Waves

To analyze the wave normal angle characteristics, in this Section we use the results

from a self–consistent thoretical model of RC and EMIC waves by Khazanov et al.

[2006a]. The model is governed by a set of quasilinear and ray tracing equations, which

explicitly includes the wave generation and damping, propagation, refraction, and

reflection/tunneling in a multi–ion magnetospheric plasma. From a simulation of the

May 1998 storm, Khazanov et al. [2006a] found that the equatorial He+–mode energy

distributions are not Gaussian over the wave normal angles, and that the wave energy

can occupy not only the source region, i. e. the region of small wave normal angles, but

all wave normal angles, including those near 90◦. This is caused by energy outflow from

the region of small wave normal angles to θ0 = π/2, which is due to the wave bouncing

between surfaces of the bi–ion hybrid frequency in opposite hemispheres. Because the

EMIC wave growth rate maximizes for the wave normal angle θ0 = 0, and because

electron Landau damping has a peak for θ0 close to 90◦, the resulting wave normal angle

distribution depends on ratios between the rates of wave growth (mostly in the region

of small θ0), Landau damping (mostly at large θ0), and energy outflow rate, θ̇0/θ0.

Figure 2 shows the energy distribution over the equatorial wave normal angle for the Figure 2

He+–mode EMIC waves. All the magnetic field spectra shown are in the postnoon–dusk

MLT sector, 48 hours after 0000 UT on 1 May, 1998. Case (a) demonstrates a typical
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quasi field–aligned wave normal angle distribution, where wave growth rate in the region

of small θ0 dominates the outflow toward greater θ0. The diametrically opposite case is

given by line (c), where EMIC wave energy is concentrated in the region of large θ0. An

intermediate case (b) corresponds to a situation when all the time scales have the same

order of magnitude. Although power spectral density in that case drops for θ0 > 40◦,

there is still a very large B2(ν, θ0), and we observe a broad distribution in the entire

wave normal angle region.

Figure 2 shows spectra at one time and at three spatial points only, but would be

interesting to see the wave power spectral density distributions on global spatial and

temporal scales. In order to provide such a global view during the May 1998 storm, we

calculate the average equatorial wave normal angle,

〈
θ0 (r0, ϕ, t)

〉
=

∫ ωmax
ωmin

dω
∫ π
0 dθ0B

2 (r0, ϕ, t, ω, θ0) θ0∫ ωmax
ωmin

dω
∫ π
0 dθ0B2 (r0, ϕ, t, ω, θ0)

, (5)

using the results from Khazanov et al. [2006a, Figure 6], where r0, ϕ, t, ω, θ0, and B

are the radial distance in the magnetic equatorial plane, MLT, time, wave frequency,

equatorial wave normal angle, and the wave magnetic field. Results are presented

in Figure 3. The highly oblique waves with 〈θ0〉 > 50◦ are mainly observed in the Figure 3

noon–dusk MLT sector for high L–shells (in the plasmaspheric drainage plume), and

an extremely oblique wave propagation with 〈θ0〉 > 80◦ is found in hour 33 (L=6.25,

MLT=14) and 34 (L=5.75, MLT=13) snapshots. Although events with 〈θ0〉 < 50◦ are

not well separated spatially from oblique waves, there is a tendency for them to be

localized preferentially along the more narrow nightside plasmapause (compare Figure 3
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with the density distribution in Figure 7 of Khazanov et al. [2006a]), especially for

field–aligned events with 〈θ0〉 < 30◦ (see the first row in Figure 3). The occurrences of

the oblique and field–aligned wave normal angle distributions appear to be nearly equal

during the May 1998 storm with slight dominance of oblique events.

The theoretical results clearly demonstrate that stormtime EMIC wave normal

angle distributions are highly variable both in space and time, and that equatorial

distributions range from field–aligned distributions through highly oblique distributions,

which are in qualitative agreement with the results of Anderson et al. [1996] and Denton

et al. [1996].

4.2. Diffusion Coefficient

To compare with Section 3, we now calculate the bounce–average pitch–angle

diffusion coefficients using the plasma and wave parameters from the self–consistent

model of Khazanov et al. [2006a, 2006b]. In order to calculate the diffusion coefficients,

we use the simulation results at 48 hours after 0000 UT on 1 May, 1998 only. The

He+–mode EMIC wave spectra are shown in Figure 2 (B2
(a) = 28.6 nT2, B2

(b) = 41.6 nT2,

and B2
(c) = 16.3 nT2) for this moment. The ion composition employed by Khazanov

et al. [2006a], is 77% H+, 20% He+, and 3% O+, and so will be used below for the

diffusion coefficient calculation. For selected points, the equatorial values of (ωpe/Ωe)
2

are in the range 105–160. So we expect the electron minimum resonant energy to

be greater than in Figure 1 (which depends on (ωpe/Ωe)
2, and for the He+–mode on

concentration of He+ [Summers and Thorne, 2003]). The results are shown in Figure 4. Figure 4
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While not as impressive as Figure 1, it has the advantage of being self–consistent. First

of all, we see that the oblique lowest frequency wave distribution in Figure 2(c) cannot

scatter electrons with energies below 10 MeV (actually, there are the regions of small

Landau scattering for all energies with 〈Dαα〉 < 10−4 sec−1), and spectra in Figures 2(a)

and 2(b) scatter only the electrons with energies near 5 MeV and above. Second, the

red lines in Figure 4 lie higher than the green lines, which is caused by the spectrum in

Figure 2(b) having less energy in the field–aligned normal angles than the spectrum in

Figure 2(a). This result for bounce–average coefficients is qualitatively consistent with

the results in Figures 1(a) and 1(b) for the equatorial diffusion coefficients.

5. Summary and Conclusions

Precipitation due to resonant pitch–angle scattering by EMIC waves is one of

the most important loss mechanisms of the outer RB electrons. Although suggested

about three and half decades ago, only recently have balloon–borne X–ray observations

provided strong evidence on the ability of EMIC waves to scatter outer RB relativistic

electrons. These observations stimulated theoretical and statistical studies which

demonstrated that this mechanism can operate in the strong diffusion limit for MeV

electrons, and can compete with the adiabatic Dst effect during the initial and main

phases of a storm.

Although the effectiveness of relativistic electron scattering by EMIC waves depends

strongly on the wave spectral properties, unrealistic assumptions regarding the wave

angular distribution were made in most previous theoretical studies. Namely, strictly
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field–aligned or quasi field–aligned EMIC waves were only considered. The growing

experimental and theoretical evidence that EMIC waves can be highly oblique has

compelled us to study the effect of the wave normal angle characteristics on the outer

RB relativistic electron scattering. In this study, we have calculated the equatorial

and bounce–average pitch–angle diffusion coefficients for those electrons using for the

H+–mode of EMIC waves both the model (prescribed) and self–consistent distributions

over the wave normal angle. Our results can be summarized:

1. In contrast to field–aligned waves, the intermediate and highly oblique wave

distributions reduce the pitch–angle range subject to diffusion, and strongly decrease

the scattering rate for low energy electrons (E < 2 MeV) when only principle resonances

|n| = 1 operate (see Figures 1(a) and 1(b)).

2. For electron energies greater than ∼ 5 MeV, the resonances |n| = 1 operate only

in a narrow region at large pitch-angles (see Figure 1(c) and 1(d)), and despite their

greatest contributions for field–aligned waves, cannot support electron diffusion into

the loss cone. For those energies, oblique waves operating the |n| > 1 resonances are

more effective, extending the range of pitch–angle diffusion down to the loss cone, and

increasing the diffusion at lower pitch–angles by orders of magnitude.
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Figure 1. Equatorial diffusion coefficients versus equatorial pitch–angle for scattering of

relativistic electrons by the He+–mode of EMIC waves. The wave spectrum parameters

and ion content are given in the text, L=4, and (ωpe/Ωe)
2 = 103, where ωpe and Ωe are

the electron plasma frequency and gyrofrequency (without Lorentz factor), respectively.

The curve “Gauss” is obtained for a wave normal angle distribution adopted by Albert

[2003]. The second row shows the corresponding average resonant numbers (see the text

for definition).

Figure 2. Equatorial power spectral densities for the He+–mode EMIC waves from sim-

ulation by Khazanov et al. [2006a]. All the squared magnetic field spectra are obtained

at 48 hours after 0000 UT on 1 May, 1998. (a) L=5.25, MLT=16, (b) L=5.75, MLT=15,

and (c) L=5.75, MLT=14.

Figure 3. Average equatorial wave normal angle for the He+–mode EMIC waves during

the May 1998 event. The specified hours are counted from 0000 UT on 1 May, 1998.

Figure 4. The bounce–average diffusion coefficients for relativistic electron scattering by

the He+–mode of EMIC waves. The wave spectra are taken from simulation by Khazanov

et al. [2006a], and shown in Figure 2. The ion percentage is 77% of H+, 20% of He+,

and 3% of O+, and the equatorial values for factor (ωpe/Ωe)
2 are 105, 160, and 138 for

the red, green, and blue lines, respectively.
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