Source of Acquisition NASA Marshall Space Flight Center

Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)

Abstract. An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).

George C. Marshall Space Fight Center

Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)

Anne E. Garber and Thomas J. Godfroy

NASA/Marshall Space Flight Center Nuclear Systems Branch/ER24 Early Flight Fission – Test Facility (EFF-TF)

LI mmary George C. Marshall Space Fight Center	cility (EFF-TF)								
ational Aeronautics and Breesentation Stu	• Early Flight Fission Test Fac	 Test Objectives 	 Test Configuration 	 Instrumentation 	• Initial Fill and Test	Test Results	Summary		

Nuclear Systems: lity George C. Marshall Space Fight Center	Fission Test Facility (EFF-TF) is ing facility in the U.S. capable of listic thermal hydraulic testing of using non-nuclear (electrical) heat sources.	
Non-Nuclear Testing of From Paper to Real	The Early Flight the only operation real nuclear systems to the systems to the test bed affection of the EFT-TF and ESTF.	
National Aeronautics and Space Administration	Provide the second seco	

÷

History Early Flight Fission Test Facility

George C. Marshall Space Fight Center

paper to reality

Test Objectives

George C. Marshall Space Fight Center

- A reactor concept shall be filled with liquid metal (NaK) and thermal hydraulically tested. This testing will:
- Provide the EFF-TF team with hands-on liquid metal systems experience.
 - Assist in the design of the Fission Surface Power Primary Test Circuit (FSP-PTC) and its subsystems.
- Specific objectives:
- Inclusion of a "test section" to evaluate components.
 - Preliminary flow analysis using simulation.
- Experimental data will flow into second-generation circuit design.
 - Personnel trained in the handling of NaK.
- Procurement and integration of a liquid metal cleaning system to enhance operation.

Liquid metal system inside 9-ft vacuum chamber

Space Administration

Test Configuration

George C. Marshall Space Fight Center

1/3 partial core from 100 kWt LANL design study

Core

- 37-pin assembly divided into 4 zones
 - Zones allow 44 kW to be applied to thermal simulators (in total)
- 12 zones allowable at maximum (giving 180 kW input power)
- NaK can be brought up to 1000°F (537°C) maximum

Zone 1 - 7 Heater Elements Zone 2 - 12 Heater Elements Zone 3 - 12 Heater Elements Zone 4 - 6 Heater Elements

Power Zones & Thermal Simulators

Test Configuration

George C. Marshall Space Fight Center

Heat exchanger

- NaK-to-GN₂ heat exchanger
- Inlet pressure and temperature can reach 185 psia and $\sim 400^{\circ}$ C
- Liquid metal pump provided by CEI.
- No moving parts; operates on F=JxB principle
- Capable of generating ~1.5 kg/s mass flow rate
- GN₂ flows through housing for pump cooling

Test Configuration

George C. Marshall Space Fight Center

- Lower reservoir
- Used in fill/drain operations
- Level sensors indicate presence of NaK
- Volume of 16928 cm³
- Upper reservoir
- Accomodates 17% expansion of NaK at 650°C
 - Volume of 3614 cm^3

Upper reservoir

Test Configuration

George C. Marshall Space Fight Center

- Test section can be used for:
 - Single channel element
 testing
- Liquid metal flowmeter
 evaluation
- Insertion of other
 components into circuit
 (e.g. pumps)

Test Section

Instrumentation

Vational Aeronautics and Space Administration

George C. Marshall Space Fight Center

- Test article instrumentation:
- \sim 75 type-K thermocouples
- 8 pressure measurements
- 9 level sensors (6 on LR, 3 on UR)
 - Liquid metal flowmeter
- Pressure, temperature, flow measurements for GN2 system
 - LabVIEW used for data acquisition and control

Pressure transducers

Liquid metal flowmeter

Thermocouples

National Aeronautics and

Space Admin

Initial Fill and Test

George C. Marshall Space Fight Center

- Lower reservoir was filled to a height of 4.5" above the bottom of the reservoir
 - Corresponds to ~15.3 L (~29.3 lbs) of NaK
- First Test
- Applied a maximum of 13.7 kW to the core
- Reached a temperature of $431^{\circ}C (\sim 700 \text{ K})$
 - Reached a maximum NaK flow rate of 12.8 GPM (0.66 kg/sec)
 - Heat exchanger was not used

II Space Fight Center																		
George C. Marsha			W X M	-	2	4	m		2	4	с С	-	2			ئى	10	
	datrix	p Voltage	200V	m	4	5	-	m	4	2	-	e	4	peratures less	F (571°C)	s over a range	AGTINT N TALA 0	ed
sting	ance Test N	EM Pum	140V	2	~	e	4	2	-	က္	4	2	~	fficient at tem	ζ-56 at 1060°	anufacturer nower setting		aried as need
Te	np Perform		100V	4	e	-	2	4	ო	-	2	4	e	sportedly inef 00°F (427°C)	avior for Nak	d by pump m	tures	ges may be v
	Pur		-	350°C	375°C	400°C	425°C	450°C	475°C	500°C	525°C	550°C	577°C	 Pump is re than ~8(Pump beh	provideTest a vari	tempera	• Tested ran
		-					Nak		Tomm			1						
National Aeronautics and Space Administration																		

* P 5

Test Results

Summary

George C. Marshall Space Fight Center

- Test article has been filled and NaK can be moved to and from the lower reservoir
- All components and instrumentation are functioning well
- Test article has been brought up to a maximum of 430°C (700 K)
- Flow rates of 12.8 GPM have been reached
- Liquid metal pump operates at X% efficiency above 427°C (800°F)
- Personnel have been trained to properly handle NaK
- Many lessons learned regarding the filling and draining of the circuit, NaK flow, changing out of components, and use of instrumentation

CS	⁷ olume 1, Liquid Metals, Atomic	or Concept for an Early-Flight Mission",	ion Program to Model Flow Distribution in	inite Volume Procedure for Generalized	ss Steel, Lithium Circuit Test	
George C. Marshall Space Fight Center	1964).	<i>il Forum – STAIF 2003</i> , American Institute	AIAA/ASME/SAE/ASEE Joint	h AIAA Aerospace Sciences Meeting	e Administration, Marshall Space Flight	
National Avernautics and Space Administration	Burdi, G. F., "SNAP TECHNOLOGY HANDBOOK" V International Report No. NAA-SR-8617 (August,	David I. Poston, "A 100-kWt NaK-Cooled Space React Space Technology and Applications Internationa of Physics (2003).	Majumdar, A. K., "A Generalized Fluid System Simulat Fluid Networks", Paper no. AIAA 98-3682, 34th Propulsion Conference and Exhibit (1999).	Majumdar, A.K., "A Second Law Based Unstructured Fi Flow Simulation", Paper no. AIAA 99-0934, 374 Conference and Exhibit (1999).	Godfroy, T.J., "Final Report – Documentation of Stainle Section Design", National Aeronautics and Space Center (2005). Internal report.	

÷.,

.

Vent's server among

gments George C. Marshall Space Fight Center	described within this report, in sy development and evaluation he author(s) and do not necessarily
Acknowledg	<u>it Prometheus</u> supported the work as part of the program's technolog opinions expressed are those of the s of Project Prometheus.
National Aeronautics and Space Administration	<u>NASA's Projec</u> whole or part, a activities. Any reflect the view

. . . .

George C. Marshall Space Fight Center

BACKUP CHARTS

Simulation

NaK Handling Training

George C. Marshall Space Fight Center

- Training sessions conducted by Creative Engineers, Inc.: at MSFC and at CEI facility in York, PA (CEI performed clean-up at Y-12)
- Activities:
- Observing NaK in argon gas and in air
- Stirring exposed NaK
- Wiping up small spills
 - Cleaning pipe fittings
 - Burning NaK in air
- Exposing NaK to large quantities of water
- ER24 has previous alkali metal experience (sodium purification, filling of sodium heat pipes, SAFE-30, SAFE-100A)

