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Derivation of Formulations 1 and 1A 
of Farassat

           F. Farassat
NASA Langley Research Center, Hampton, Virginia

Summary
Formulations  1  and  1A  are  the  solutions  of  the  Ffowcs  Williams-Hawkings  (FW-H)  equation  with
surface  sources  only  when the surface  moves  at  subsonic  speed.  Both  formulations  have  been success-
fully  used  for  helicopter  rotor  and  propeller  noise  prediction  for  many  years  although  we  now  recom-
mend using Formulation 1A for this purpose. Formulation 1 has an observer time derivative that is taken
numerically, and thus, increasing execution time on a computer and reducing the accuracy of the results.
After  some discussion  of the Green’s function  of the wave  equation,  we derive Formulation  1 which is
the  basis  of  deriving  Formulation  1A.  We  will  then  show  how  to  take  this  observer  time  derivative
analytically  to  get  Formulation  1A.  We  give  here  the  most  detailed  derivation  of  these  formulations.
Once you see the whole derivation, you will ask yourself why you did not do it yourself!

1- Primary References
Formulation 1 was first published in:

1- F. Farassat:  Theory of Noise Generation From Moving Bodies With an Application to Helicop-
ter Rotors, NASA Technical Report R-451, 1975
However,  the  derivation  of  this  formulation  in  this  reference  is  very  difficult.  Later,  I  found  a  much
simpler derivation which we will follow here. It was published in:

2-   F.  Farassat:  Linear  acoustic  formulas  for  calculation  of  rotating  blade  noise,  AIAA  Journal,
19(9), 1981, 1122-1130 
Formulation 1A was first published in:

3-  F.  Farassat,  G.  P.  Succi,  A review  of  propeller  discrete  frequency  noise  prediction  technology
with emphasis  on two current  methods for  time domain  calculations,  1980, Journal  of Sound and
Vibration, 71(3), 399-419



In  deriving  the  formulation  in  the  above  reference,  I  assumed,  as  it  was  common  then,  that  the  blade
surface  did not  move out  of the disc plane.  This assumption  was removed by Kenneth S. Brentner  and
was published in the following excellent NASA Technical Memorandum: 

4-  Kenneth  S.  Brentner,  Prediction  of  Helicopter  Discrete  Frequency  Rotor  Noise-  A  Computer
Program  Incorporating  Realistic  Blade  Motions  and  Advanced  Formulation,  October  1986,
NASA TM 87721
We refer  to the result  published  in this  paper  as Formulation  1A.  At  the time of writing  Reference  3,
we at  Langley  had not  started  numbering  and  identifying  our  formulations.  In hindsight,  it  was  a good
idea  to  identify  each  of  our  formulations  because  different  codes  use  different  results.  Our  numbering
system has worked for identifying what formulation is used in a code. Formulation 1A has been used in
helicopter  rotor noise  prediction  codes  WOPWOP  and PSU-WOPWOP,  and together  with our super-
sonic  Formulation  3,  in  our  advanced  propeller  noise  prediction  code  ASSPIN  (Advanced  Subsonic
and Supersonic Propeller Induced Noise).   

You will need much mathematical maturity to follow what we discuss here. To understand the mathemat-
ics behind our work,  I strongly  recommend  reading  Reference  1,  above,  and the following two NASA
publications:

5-  F.  Farassat,  Introduction  to  Generalized  Functions  With  Applications  in  Aerodynamics  and
Aeroacoustics, May 1994 (Corrected April 1996), NASA Technical Paper 3428
6- F. Farassat: The Kirchhoff Formulas for Moving Surfaces in Aeroacoustics  - The Subsonic and
Supersonic Cases, NASA Technical Memorandum 110285, September 1996
Reference 6 was written to clarify and fill in some gaps in the mathematical  analysis of Reference 5. It
should be read together with the latter reference.  

2- The Ffowcs Williams-Hawkings (FW-H) 
Equation
This equation was first published in:

7-  J.  E.  Ffowcs  Williams  and  D.  L.  Hawkings:  Sound  generated  by  turbulence  and  surfaces  in
arbitrary motion, Philosophical Transactions of the Royal Society, A264, 1969, 321-342 
This  paper  is  very  difficult  to  read  because  of  the  high  level  of  mathematics  needed  to  follow  the
authors’ reasoning. There are many original ideas in this paper such as the idea of imbedding a problem
in a larger domain to use the available  Green’s function of the larger domain to solve the original prob-
lem. Another idea put forward by Ffowcs Williams and Hawkings  is that conservation  laws in differen-
tial  form  are  also  valid  when  all  ordinary  derivatives  are  viewed  as  generalized  derivatives.  This  has
important  implications  about  the  jump  conditions  across  flow  discontinuities.  I  have  given  the  back-
ground mathematics needed to understand this paper in References 1, 5 and 6. 

Ffowcs Williams-Hawkings (FW-H) Equation as originally proposed in Reference 7 above: 
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(1)·2  p ' =


ÅÅÅÅÅÅÅÅ
 t

@r0  vn  dH f LD -


ÅÅÅÅÅÅÅÅÅÅÅ
 xi

@p ni dH f LD +
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 xi   xj

@HH f L TijD

Here  and elsewhere  in the paper,  we  will  use  the summation  convention  on the  repeated  index.  In  this
equation  ·2  is the wave  or  D’Alembertian  operator  in three dimensional  space.  The moving surface  is
described  by  f Hx, tL = 0  such  that  ıf = n ,  n  is  the  unit  outward  normal.  This  assumption  implies  that
f > 0  outside  the moving  surface  (see  Figure  1).  Also  p ' = c2  r ' = c2Hr - r0L ,  c  and r0  are  the speed
of  sound  and  density  in the  undisturbed  medium,  respectively.  Note  that  p£  can  only  be  interpreted  as
the  acoustic  pressure  if  r£ ê r0  << 1.  The  symbols  vn ,  p  and  Tij = r ui  uj - sij + Ip£ - c2  r 'M dij  are  the
local  normal  velocity  of  the  surface,  the  local  gage  pressure  on  the  surface  (in  fact  p - p0 ),  and  the
Lighthill  stress  tensor,  respectively.  In  the  definition  of  the  Lighthill  stress  tensor,  sij  is  the  viscous
stress  tensor  and  dij  is  the  Kronecker  delta.  The  Heaviside  and  the  Dirac  delta  functions  are  denoted
HH f L  and dH f L ,  respectively.  In  the  second  term on  the right  of  eq.  (1),  we have  neglected  the viscous
shear force over the blade surface acting on the fluid.

Figure 1- The definition of the moving surface implicitly  as f Hx, tL = 0 .  Note that ı f = n  where n
is the unit outward normal to the surface.
We note that we have artificially converted a nonlinear problem of noise generation by a moving surface
to  a  linear  problem  by  using  the  acoustic  analogy.  All  the  nonlinearities  are  lumped  into  the  Lighthill
stress tensor which is assumed known from near field aerodynamic calculations.  When we started work-
ing on helicopter and propeller noise in the early seventies, because of the limitations of digital comput-
ers,  the  most  we  could  expect  from  aerodynamic  calculations  was  the  blade  surface  pressure.  For  this
reason, using some physical  reasoning,  we neglected the quadrupole  volume sources in FW-H equation
and  concentrated  on  development  of  formulations  for  the  prediction  of  thickness  and  loading  noise.
Later  on,  as computers  became more powerful,  we included quadrupoles  in our noise  prediction.  There
was,  however,  another  theoretical  advance  which  led to  the use  of  purely  surface  sources  to  which  we
will turn next.  

It was Ffowcs Williams himself who proposed to use a penetrable (porous or permeable) data surface to
account  for  nonlinearities  in  the  vicinity  of  a  moving  surface.  We  again  assume  that  the  penetrable
surface defined by f  Hx, tL = 0 and the fluid velocity is denoted by u . The FW-H equation for penetra-
ble (permeable, porous) data surface, FW-Hpds , is:
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(2)Ñ 2  c2  r£ ª Ñ 2  p£ =


ÅÅÅÅÅÅÅÅ
 t

@r0  UnD dH f L -


ÅÅÅÅÅÅÅÅÅÅÅ
 xi

@Li  dH f LD +
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 xi   xj

@Tij  HH f LD

We have used the following notations in the above equation:

(3)Un = i
k
jj1 -

r
ÅÅÅÅÅÅÅÅÅ
r0

y
{
zz vn +

r unÅÅÅÅÅÅÅÅÅÅÅÅÅ
r0

(4)Li = p d ij  nj + r ui Hun - vnL
where  dij  is  the  Kronecker  delta.  As  in the  case  of  eq.  (1),  in the first  term on the right  of  eq.  (4),  we
have neglected  the viscous  shear  force  over the data  surface  acting  on the fluid  exterior  to the surface.
The philosophy  behind  using FW-Hpds  is to locate the data surface  f = 0  to enclose a moving surface,
in  such  a  way  that  all  quadrupoles  producing  non-negligible  noise  are  included  within  this  surface.
Therefore,  no volume integration  of the quadrupoles  outside  the data surface is necessary.  High resolu-
tion CFD calculation is performed in the near field region (including turbulence simulation if broadband
noise prediction is required). The data surface used for the acoustic calculation should be located within
the  region  of  high  resolution  CFD  computation.  The  optimal  location  of  the  data  surface,  particularly
when vortices cross the surface, is still the subject of research. One would like this surface to be as small
as  possible,  because  of  the  computer  intensive  nature  of  aerodynamic  and  turbulence  simulation  that
require fine grid sizes and small time steps. 

We will be concerned with the solution of the following two wave equations:

(5)Ñ 2  p£
T =


ÅÅÅÅÅÅÅÅ
 t

@r0  vn  dH f LD Thickness Noise Equation

(6)Ñ 2  p£
L = -


ÅÅÅÅÅÅÅÅÅÅÅ
 xi

@p ni dH f LD Loading Noise Equation

The source terms on the right of eqs. (5) and (6) are known also as monopole and dipole sources, respec-
tively.  This  terminology  is  misleading  for  sources  on  a  moving  surface  because  the  radiation  patterns
calculated  from the above equations  are not similar  to those  from stationary  monopoles  and dipoles.  In
fact,  we  can  show  mathematically  that  the  thickness  noise  is  equivalent  to  the  loading  noise  from  a
uniform surface  pressure  distribution  of  magnitude  r0 c2 .  For this  reason  we avoid using  the terminol-
ogy of monopole and dipole sources here.

Remark 1- We will now give an example of a moving surface defined implicitly by f = 0. A sphere of
radius a  moving at the speed v  along the x1-axis is described by the equation:

(7)f1 = Hx1 - v tL2 + x2
2 + x3

2 - a2 = 0

Note that  f1 > 0  outside  the surface,  and f1 < 0  inside  it.  Now let  us  test  the gradient  of  this  function.
We see that

(8)ı f1 = H2 Hx1 - v tL, 2 x2, 2 x3L  n = J x1 - v t
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

a
,

x2ÅÅÅÅÅÅÅÅ
a

,
x3ÅÅÅÅÅÅÅÅ
a
N
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We have †ı f1 § = 2 "######################################Hx1 - v tL2 + x2
2 + x3

2 . Therefore, we redefine the moving sphere by the equation:

(9)f Hx, tL =
f1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ†ı f1 § =

1
ÅÅÅÅÅ
2

 "#####################################Hx1 - v tL2 + x2
2 + x3

2 -
a2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 "#####################################Hx1 - v tL2 + x2

2 + x3
2

= 0

We give  the following general  rule:  if ı f  n  on the surface  f = 0, then  redefine  the same  surface  by
the implicit  equation  f ê †ı f § = 0.  We can  then show that  ı H f ê †ı f §L = n  on this surface.  The  proof is
simple.    

Note that a surface can be defined implicitly in more than one way satisfying the condition ı f = n . For
example,  for the above surface  a much simpler  representation  in implicit  form satisfying this  condition
is f Hx, tL = "######################################Hx1 - v tL2 + x2

2 + x3
2 - a = 0. 

We  have  not  said  anything  about  why  we  require  the  condition  †ı f § = 1  on  the  surface.  The  FW-H
equation as it was originally written in Reference 7 had the term †ı f §  in both the thickness and loading
terms.  We  have  been  assuming  †ı f § = 1  in  writing  the  FW-H  equation  in  all  of  our  publications  for
many years. To begin with, we notice that the term †ı f §  does not appear in both Formulations 1 and 1A.
In the process  of the derivation  of some of our more advanced formulations  where  the source time and
space  derivatives  of  †ı f §  were  required,  I  noticed  that  all  terms associated  with  these  derivatives  can-
celed  out  exactly  in  the  final  result.  After  considerable  search  for  the  reason  or  reasons  behind  this
cancellation, I discovered that †ı f § = 1  could be assumed to be true on any surface described implicitly
from the beginning of the derivation of FW-H equation. This explained the reason for cancellation of the
terms associated with the derivatives of †ı f §  in our advanced formulations. Although this assumption is
of  little  value  in  the  derivation  of  Formulation  1,  it  reduces  the  algebra  somewhat  in  the derivation  of
Formulation 1A and enormously in our advanced formulations.        (End of Remark 1)

3- Background Material and the Details of 
the Derivation
3.1- Green’s Function of the Wave Equation in Unbounded 
Three Dimensional Space
The Green’s function of the wave equation in the unbounded three dimensional space is:

(10)GHx, t; y, tL = ; 0 t > t
d Ht - t + r ê cL ê4 p r t b t

where r = † x - y § . Here Hx, tL  and Hy, tL  are the observer  and the source space-time variables, respec-
tively. In the above equation, the symbol dH ÿ L  stands for the Dirac delta function which is the most well-
known generalized  function.  We usually  use  the following  symbol:  g = t - t + r ê c .  We  will  discuss  in
Remark 3 below how we visualize and interpret the function g = 0. See also References 1 and 5 above.

The Green’s function given by eq. (10) is also known as the free-space Green’s function.
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Remark 2-  It is a good idea  to remember  the following two simple  results  because  they are frequently
encountered in algebraic manipulations:

(11)
 r

ÅÅÅÅÅÅÅÅÅÅÅÅ
 x i

= r̀i and
 r

ÅÅÅÅÅÅÅÅÅÅÅÅ
 y i

= - r̀i

where  r̀i  is the component of the unit radiation vector Hx - yL ê r .      (End of Remark 2)

Remark 3-  The surface  g = t - t + r ê c = 0  can be visualized as follows.  Keep the observer  space-time
variables  fixed.  Then let us first  rewrite  the equation of this  surface  as † x - y § = c Ht - tL .  In the source
space-time  variables,  this surface  is simply a sphere with center at  x  and radius  equal to c Ht - tL . Note
that  the  Green’s  function  of  the  wave  equation  is  nonzero  when  t b t ,  so  that  as  the  source  time
increases from t = -¶  to t = t , the radius of this sphere shrinks from infinitely large value to zero. For
this reason  this sphere  is known as the collapsing sphere.  The rate of  contraction  of the radius  of this
sphere is the speed of sound c .

Mathematically, the collapsing sphere is the characteristic cone of the wave equation with the vertex at
Hx, tL  and  the  cone  pointing  towards  the  past.  Causality  rules  out  using  the  part  of  the  cone  pointing
towards the future. Can you think of a reason why this surface is called a cone? See Reference 6, above
for the answer.     (End of Remark 3)

3.2- Solution of the Wave Equation With Sources on a Mov-
ing Surface 
We are interested in the solution of the equation:

(12)Ñ 2  p£ = QHx, tL dH f L
We  will  derive  the  solution  of  this  equation  using  the  free-space  Green’s  function  given  by  eq.  (10).
This will show the interconnection between the variables that confuses novices in the field of aeroacous-
tics. The formal solution of eq. (12) is:

(13)4 p p£  Hx, tL = ‡ QHy, tL dH f L dHgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
 d y d t

The limits of the integral in this equation are given below: 

(14)‡ ... .. d y d t = ‡
-¶

t

‡
!3

... .. d y d t = ‡
-¶

t

‡
-¶

¶

‡
-¶

¶

‡
-¶

¶

... .. d y1  d y2  d y3  d t

We emphasize  at  this  point  that  the x - frame  and the  y - frame  are  fixed to  the undisturbed  medium.
For the next analytic step, such a frame is not the most appropriate frame to interpret  the solution of eq.
(12)  as  we  will  show  below.  It  is  important  to  remember  that  from  now  on,  the  observer  space-time
variables Hx, tL  are kept fixed in all algebraic manipulations. Therefore, for all practical purposes, we are
dealing with four variables Hy, tL . 
For  problems  of  interest  in  aeroacoustics,  such  as  propeller  and  helicopter  rotor  noise  prediction,  one
can always describe the surface (generally a blade) in a frame fixed relative to the surface. We will call
this frame the h - frame. Such  a frame is used by the manufacturer  to describe  the design of  the blade
surface  to  the  technicians  who  build  the  blade.  We  call  the  variable  h  the  Lagrangian  variable  of  a
point  on the moving  surface.  If we  mark a  point  on the surface,  say  by a  red  dot,  then we have  essen-
tially identified a point with the fixed variable h  on the moving surface.   In general,  in the h-frame the
moving surface  is time independent  although this does  not have to be so in the following mathematical
manipulations. The thing to realize at this point is that once the motion of the blade is specified, then the
trajectory of a point on the surface described by a fixed h  is specified in space-time in the y-frame, i.e.,
in space. This trajectory is given by the relation: 
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For  problems  of  interest  in  aeroacoustics,  such  as  propeller  and  helicopter  rotor  noise  prediction,  one
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(15)y = y Hh, tL
The inverse transformation is given by:

(16)h = h Hy, tL
Note that the equation of the moving surface f Hy, tL = 0 in the h-frame is f Hy Hh, tL, tL = f

è
 Hh, tL = 0. In

practice, f
è

= 0  is independent of time, i.e., the surface is described as f
è

 HhL , and this is what we assume
here.  Later on we will  see that it is customary to use f  when we should properly use f

è
 for designating

the  moving  surface  in an  analytic  expression  (e.g.,  see  eq.  (29)).  This is  an  abuse  of  notation  which  is
acceptable  for  the reason that we will discuss  in the paragraph  following eq. (31).  You should keep in
mind that, in general, the analytic expressions  for f  and f

è
 are different. For example, in the example of

a  moving  (rigid)  sphere  in  Remark  1,  we  have  f Hy, tL = "######################################Hy1 - v tL2 + y2
2 + y3

2 - a = 0  while

f
è

 HhL = "########################h1
2 + h2

2 + h3
2 - a = 0. Here, we are assuming that the h-frame has its origin at the center of the

sphere  with  its  axes  parallel  to  corresponding  axes  of  the  y-frame.  However,  this  distinction  does  not
matter  to us here because  we are  not able  to integrate  any of  the acoustic  integrals  here  in closed  form
for any nontrivial moving surface. We always evaluate our surface integrals numerically by finite differ-
ence scheme after we divide a data or a blade surface into panels.    

For problems  of interest  to us in aeroacoustics,  the transformations  described  by eqs. (15)  and (16)  are
isometric, i.e., distance preserving,  because they involve translations and rotations only. For this reason,
the Jacobians of transformation are unity, that is, we have 

(17)det ik
jj  y

ÅÅÅÅÅÅÅÅÅÅ
h

y
{
zz = 1 and det ik

jj hÅÅÅÅÅÅÅÅÅÅ
 y

y
{
zz = 1

If  you  have  trouble  accepting  this,  then  use  the  translation  transformation  y = h + v t  for  a  constant
velocity v  used in Remark 1 (where v = v e1 and e1 is the basis vector along h1 - axis) to test the valid-
ity of eq. (17). We now go back to the integration of the Dirac delta functions  of eq. (13). We first use
the transformation y Ø h  in this equation to get

(18)
4 p p£  Hx, tL =

‡ QHyHh, tL, tL dH f
èL dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r †det Hh ê  yL§  dh d t = ‡

-¶

t
 ‡

!3
Q
è

 Hh, tL dH f
èL dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r

 dh d t

where we have defined Q
è

 Hh, tL = QHyHh, tL, tL.  Next we use the transformation  t Ø g . The Jacobian of
this transformation is g êt . Here the variable h  is kept fixed in this partial differentiation.  We will do
the algebra in detail below. First we have  
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(19)g = t - t +
† x - y Hh, tL §
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c
The partial differentiation with respect to variable t  gives

(20)
g
ÅÅÅÅÅÅÅÅÅ
t

= 1 +
1
ÅÅÅÅÅ
c

 
r

ÅÅÅÅÅÅÅÅÅÅÅ
yi

 
 yiÅÅÅÅÅÅÅÅÅÅÅ
t

= 1 -
r̀i  viÅÅÅÅÅÅÅÅÅÅÅÅ

c
= 1 - Mr

where M r = r̀ i  vi êc  is the Mach number of the point h  in the radiation direction at the time t . Here r̀i  is
the component of unit radiation vector Hx - yL ê r  and vi = yi Hh, tL êt  is the component of the velocity
v  of the point h  with respect to the y - frame fixed to the undisturbed medium. 

Using the above results in eq. (18) and assuming that   is a small positive number, we get

(21)

4 p p£  Hx, tL = ‡ Q
è

 Hh, tL dH f
èL dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r †g ê t§  dh d g =

‡
!3
‡

- 



 Q
è

 Hh, tL dH f
èL dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r †1 - Mr §  d g dh = ‡

!3

i
k
jjj Q

è
 Hh, tL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r †1 - Mr §  dH f

èLy{
zzz

g=0
 dh

Note that the limits of the inside integral  (with respect to g) of the expression  after the second equality
sign are from -  to   (  > 0) because dHgL  could only contribute  to the integral  in this  region. In what
follows, we will drop the absolute value sign around †1 - Mr §  because for surfaces moving subsonically,
we always have 1 - Mr > 0. The expression  1 - Mr  is known as the Doppler factor.  Let us now inter-
pret  what  exactly  the condition  g = 0  imposes  on  us.  Remember  that  we have  used  the transformation
t Ø g . This means that, from eq. (19), the condition g = 0 makes the source time dependent on the other
variables Hx, t; hL . This function is found analytically by solving for t  from the equation 

(22)g = t - t +
† x - y Hh, tL §
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c
= 0 HHx, tL kept fixedL

Before we go further,  let us see what this source time signifies. Remember that when we fix h , it means
that we have marked a fixed point on the moving surface,  say,  with a red dot. Therefore,  the trajectory
of this  red  dot  in  space-time  is  known from the relation  y = y Hh, tL .  That  is,  given any  source  time  t ,
we know where the red dot is on its trajectory in space. But from eq. (22), we have 

(23)† x - y Hh, tL § = c Ht - tL
Let us write te  = t Hx, t; hL  and ye = y Hh, teL . We will shortly say what the subscript e stands for. With
these notations, eq. (23) can be written as 

(24)re ª † x - ye § = c H t - teL
Clearly,  the  source  time  te  is  the  emission  time,  ye = y Hh, teL  is  the emission  position,  and re  is  the
emission distance  of the source point  h  to the observer  position x .  Both the emission  position and the
emission  distance  are  viewed  in  the  y - frame  fixed  to  the  undisturbed  medium.  See  Figure  2  for  an
illustration  of  some  of  the  terms  we  use  here.  It  can  be  shown  that  for  a  subsonically  moving  source,
there is only one emission time for a given source point h . In practical problems of rotating blade noise
prediction,  we  cannot  find  a  closed  form  analytic  expression  for  t = te Hx, t; hL  because  eq.  (23)  is  a
transcendental  equation  involving  sines  and  cosines.  However,  we  can find  te  numerically  easily  by a
shooting technique.  Roughly  speaking,  here is what we do.  At the observer  time t ,  we know where  the
source (the red dot)  position is and its trajectory in space.  This position is called the visual position  of
the source.  Walk in small  time steps along the trajectory back in (source)  time, i.e., for t < t ,  and each
time  check  to  see  if  eq.  (23)  is  satisfied.  You  may  be  overshooting  the  emission  position  y Hh, teL .  In
that  case,  walk  along  the  trajectory  towards  the  visual  position  of  the  source  in  smaller  time  steps  till
you  find  the  emission  time  and  position  satisfying  eq.  (23).  In  practice,  this  method  can  be  refined
considerably to speed up the computation of the emission time.
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Clearly,  the  source  time  te  is  the  emission  time,  ye = y Hh, teL  is  the emission  position,  and re  is  the
emission distance  of the source point  h  to the observer  position x .  Both the emission  position and the
emission  distance  are  viewed  in  the  y - frame  fixed  to  the  undisturbed  medium.  See  Figure  2  for  an
illustration  of  some  of  the  terms  we  use  here.  It  can  be  shown  that  for  a  subsonically  moving  source,
there is only one emission time for a given source point h . In practical problems of rotating blade noise
prediction,  we  cannot  find  a  closed  form  analytic  expression  for  t = te Hx, t; hL  because  eq.  (23)  is  a
transcendental  equation  involving  sines  and  cosines.  However,  we  can find  te  numerically  easily  by a
shooting technique.  Roughly  speaking,  here is what we do.  At the observer  time t ,  we know where  the
source (the red dot)  position is and its trajectory in space.  This position is called the visual position  of
the source.  Walk in small  time steps along the trajectory back in (source)  time, i.e., for t < t ,  and each
time  check  to  see  if  eq.  (23)  is  satisfied.  You  may  be  overshooting  the  emission  position  y Hh, teL .  In
that  case,  walk  along  the  trajectory  towards  the  visual  position  of  the  source  in  smaller  time  steps  till
you  find  the  emission  time  and  position  satisfying  eq.  (23).  In  practice,  this  method  can  be  refined
considerably to speed up the computation of the emission time.

Figure 2- Sketch of the trajectory of a source point h  (the red dot) as seen by an observer fixed to
the medium (x- or y-frame) and the definitions of visual and emission positions of the source

With the above notations, eq. (21) can be written as:   

(25)4 p p£  Hx, tL = ‡
!3

Q
è

 Hh, teLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
re  H1 - Mre L  dA f

è
 HhLE dh

where we have defined Mre = MHh, teL ÿ r̀e  and MHh, teL = vHh, teL ê c . Now note that 

(26)Q
è

 Hh, teLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
re  H1 - Mre L = y Hx, t; hL
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where  the  function  y Hx, t; hL  shows  the  dependence  on  variables  of  the  expression  on  the  left  of  eq.
(26).  We can show  that for  an arbitrary  integrable  function  qHyL ,  we  have  the following  easily remem-
bered and beautiful result (See References 5 and 6): 

(27)‡
!3

qHyL dH f L d y = ‡
f =0

 qHyL d S  Hassuming that †ı f § = 1L

Note that y  is a dummy variable here. Therefore, integrating the delta function in eq. (25) gives

(28)4 p p£  Hx, tL = ‡
f
è

= 0

Q
è

 Hh, teLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
re  H1 - Mre L  d S

It is customary, but confusing and not entirely correct, to write the above result as:

(29)4 p p£  Hx, tL = ‡
f = 0

C Q Hy, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL G ret

 dS

where the subscript ret  stands for the retarded time. The reason that this result is not entirely correct is
that  the expression  on  the  left  of  eq.  (26)  is  not  obtained  simply  by replacing  the  source  time  t  in the
integrand of eq. (29) by t - r ê c  which is what the subscript  ret  implies.  Although it is always true that
te = t - re ê c ,  re  itself  is  given by the expression  † x - y Hh, te  Hx, t; hLL §  which  shows that  the retarded
time notation of  eq. (29),  and even the use of the source  variable  y  in its  integrand,  is  not permissible.
Also note that in this equation we have used the notation f = 0 instead of  the correct notation f

è
= 0. In

summary,  for a moving surface, we define:

(30)C Q Hy, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL G ret

= C Q Hy, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL  Hx; h, tLG

t = te  Hx, t;hL
ª

Q
è

 Hh, teLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
re  H1 - Mre L

where  in  the  second  square  brackets,  Q  and  M  are  functions  of  Hh, tL ,  and   r  and  r̀  are  functions  of
Hx; h, tL  and  then  the whole  thing  is  evaluated  at  the emission  time.  Other  symbols  are  defined  as  fol-
lows: 

(31)Q
è

 Hh, te  L = QHyHh, teL, teL, re = † x - ye §, ye = yHh, teL, Mre = MHh, teL ÿ r̀e

This  means that the left  side of eq. (30) is a shorthand notation  for  its  right side utilized to avoid the
introduction  of many new symbols,  such as h , f

è
, Q

è
 Hh, teL , etc.  However,  as you will see below, when

we seek the solution of FW-H equation, we always end up with integrals of the type in eq. (28). We will
use the shorthand notation of eq. (29) repeatedly below without warning.  Unfortunately,  the notation of
eq.  (29)  is  the  source  of  considerable  confusion  if  one  does  not  understand  that  the  integrand  of  this
equation  is  not  to  be  interpreted  by  the  conventional  meaning  of  retarded  time  notation  for  stationary
sources. For this reason, we have given here a detailed derivation of the solution of eq. (12). 

We emphasize here that, in general,  we cannot get analytic expressions  for the quantities in eq. (31) for
most problems of interest  in aeroacoustics.  However,  all these quantities can be found numerically with
arbitrary precision. Combining the analytic solution of FW-H equation with the power of modern digital
computers  allows  us  to  use  the  exact  geometry  and  kinematics  of  rotating  blade  machinery.  This
approach has been enormously successful in all areas of aeroacoustics. 
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We emphasize here that, in general,  we cannot get analytic expressions  for the quantities in eq. (31) for
most problems of interest  in aeroacoustics.  However,  all these quantities can be found numerically with
arbitrary precision. Combining the analytic solution of FW-H equation with the power of modern digital
computers  allows  us  to  use  the  exact  geometry  and  kinematics  of  rotating  blade  machinery.  This
approach has been enormously successful in all areas of aeroacoustics. 

Remark 4-  When a  source moves rectilinearly  at uniform speed,  then the source time can be found in
closed form by solving eq. (22). Furthermore,  we discover that we have one emission time for subsonic
motion and two emission times for supersonic motion of the source.     (End of Remark 4) 

3.3- Derivation of Formulation 1
We will now derive Formulation 1. As will be seen, for thickness noise, we will have no trouble writing
the solution.  Based  on what  we know about  the solution  of  eq. (12),  the solution  of eq.  (5),  the thick-
ness noise part of Formulation 1 can be written as:  

(32)4 p p£
T  Hx, tL =


ÅÅÅÅÅÅÅÅ
 t

 ‡
f = 0

C r0  vnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL G ret

 dS

We will  say  more  about  the  mathematics  behind  keeping  the time  derivatives  outside  the integral  sign
later (See Remark 5). 

We  will  now  derive  the  loading  noise  part  of  Formulation  1.  We know  that  for  an  observer  in  the  far
field, we have the following approximation:  

(33)


ÅÅÅÅÅÅÅÅÅÅÅ
 xi

> -
r̀ iÅÅÅÅÅÅÅ
c

 


ÅÅÅÅÅÅÅÅ
 t

Can one derive the exact result? The affirmative answer was found by Farassat in Reference 1. We will
give  here  the  derivation  in Reference  2  which  is  shorter  and  more elegant.  Let  us  start  by  writing  the
formal solution of eq. (6) using the free-space Green’s function (See Remark 6): 

(34)4 p p£
L  Hx, tL = -


ÅÅÅÅÅÅÅÅÅÅÅ
xi

 ‡ p ni  dH f L dHgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
 d y d t = -‡ p ni  dH f L 

ÅÅÅÅÅÅÅÅÅÅÅ
xi

 K dHgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
O d y d t

Now we will use the following identity which can be proven by carrying out the differentiation  on both
sides: 

(35)


ÅÅÅÅÅÅÅÅÅÅÅ
 xi

 K dHgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
O = -

1
ÅÅÅÅÅ
c

 


ÅÅÅÅÅÅÅÅ
 t

 ik
jj r̀ i  dHgLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
y
{
zz -

r̀ i  dHgLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2

If we take the partial derivatives on both sides, we get 

(36)


ÅÅÅÅÅÅÅÅÅÅÅ
 xi

 K dHgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
O =

1
ÅÅÅÅÅ
c

 
r̀ i  d£HgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
-

r̀ i  dHgLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 ,

1
ÅÅÅÅÅ
c

 


ÅÅÅÅÅÅÅÅ
 t

 ik
jj r̀ i  dHgLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
y
{
zz = -

1
ÅÅÅÅÅ
c

 
r̀ i  d£HgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
This proves the identity of eq. (35). Let us now use this identity on the right of eq. (34) and then take the
observer time derivative out of the first integral. We obtain:
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(37)
4 p p£

L  Hx, tL =
1
ÅÅÅÅÅ
c

 ‡ p ni  dH f L ÅÅÅÅÅÅÅÅ
 t

 ik
jj r̀ i  dHgLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
y
{
zz d y d t + ‡ p ni  r̀ i  dH f L dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2  d y d t =

1
ÅÅÅÅÅ
c

 


ÅÅÅÅÅÅÅÅ
 t

 ‡ p ni  r̀ i  dH f L dHgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
 d y d t + ‡ p ni  r̀ i  dH f L dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2  d y d t

See  Remark  6  about  an  important  mathematical  point  in  relation  to  this  equation.  Again  using  the
solution of eq. (12), we write the solution of eq. (6) which is the loading noise part of Formulation 1
as:

(38)4 p p£
L  Hx, tL =

1
ÅÅÅÅÅ
c

 


ÅÅÅÅÅÅÅÅ
 t

 ‡
f = 0

C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL G ret

 dS + ‡
f = 0

C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 H1 - MrL G ret

 dS

where cos q =  ni  r̀ i ,  i.e.,  q  is the local  angle between normal  to the surface  and radiation  direction  r̀  at
the emission time. 

Formulation 1 of Farassat is the sum of eqs. (32) and (38):

(39)
4 p p£  Hx, tL = 4 p Hp£

T  Hx, tL + p£
L  Hx, tLL =


ÅÅÅÅÅÅÅÅ
 t

 ‡
f = 0

C r0  vnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL +

p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c r H1 - MrL G ret

 dS + ‡
f = 0

C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 H1 - MrL G ret

 dS

The  observer  time  differentiation  of  Formulation  1  is  always  taken  numerically  in  the  applications  of
this result. 

Remark 5- The solution of the wave equation with derivatives acting on the inhomoge-
neous  source term
Equations (5) and (6) are of the following types:

(40)·2  f =
q
ÅÅÅÅÅÅÅÅÅ
 t

and ·2  fi =
q

ÅÅÅÅÅÅÅÅÅÅÅ
xi

Ix e !3, q differentiable in x and tM
Let us consider the first equation. Assume that we find the solution of the following wave equation:

(41)·2  y = q

Then, by taking the time derivatives of both sides of eq. (41), we have the following result:

(42)
ÅÅÅÅÅÅÅÅ
 t

 ·2  y = ·2  
y
ÅÅÅÅÅÅÅÅÅÅ
 t

=
q
ÅÅÅÅÅÅÅÅÅ
 t

Comparing this equation with the first wave equation in eq. (40), we have 

(43)f Hx, tL =
y Hx, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

 t
This is the result we used in writing down eq. (32). Similarly, we have
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(44)


ÅÅÅÅÅÅÅÅÅÅÅ
 xi

 ·2  y = ·2  
y
ÅÅÅÅÅÅÅÅÅÅÅ
xi

=
q

ÅÅÅÅÅÅÅÅÅÅÅ
xi

When this result is compared with the second wave equation in eq. (40), we conclude that

(45)fi Hx, tL =
y Hx, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

 xi

This is the result used in eq. (34).   

We make two further important comments here. First deriving the results in eqs. (43) and (45) using the
Green’s  function  solution  of  the  wave  equations  of  eq.  (40)  in  the  integral  form  as  it  is  often  done  in
books  and  technical  journals,  is  difficult  and  involves  much  more  algebraic  manipulations.  Second,  if
we relax the differentiability  of the source function qHx, tL  in eq. (40), then the results expressed by eqs.
(43)  and (45)  are  valid  if  all  the derivatives   ê t  and   ê xi  on  the right  sides  of eqs.  (40),  (43),  and
(45) are  treated  as generalized  derivatives  (See References  5 and 6).  In fact,  it  is always  more conve-
nient  to  work  in  the  space  of  generalized  functions  because  of  their  powerful  operational  properties
(ease of exchanging limit processes without worrying about differentiability, etc.). As a matter of fact, in
many  practical  problems,  differentiability  or  even  the  continuity  of  the  source  term  cannot  be  guaran-
teed. However, using generalized functions can overcome most, if not all, the mathematical  ambiguities
and difficulties.      (End of Remark 5)

Remark  6-  In  eq.  (37),  we  have  taken  the  observer  time  derivative  out  of  the  integral  sign  after  the
second  equality  sign.  But  we  note  that  the  integral  sign  in  this  equation  stands  for  a  four  dimensional
integral  as  given  by  eq.  (14).  The  upper  limit  of  the integration  with  respect  to  the source  time is  t .  A
keen  reader  would  recognize  that  the Leibniz  rule  of  differentiation  under  an  integral  sign  (see  Refer-
ence 8 below)  must  be used to establish  the validity  of the operation  in eq.  (37). We will  now demon-
strate how to do this.     

Let  us  use  the  notation  Q = p ni  r̀ i .  We  start  with  the  following  integral  appearing  on  the  right  of  eq.
(37):

(46)I =


ÅÅÅÅÅÅÅÅ
 t

 ‡ Q Hy, tL dH f L dHgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
 d y d t =


ÅÅÅÅÅÅÅÅ
 t

 ‡
-¶

t
 ‡

!3
 Q Hy, tL dH f L dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r

 d y d t

Now take the time derivative inside the integral applying Leibniz rule:

(47)I = ‡
-¶

t
 ‡

!3
 
Q Hy, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
dH f L dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 t

 d y d t + ‡
!3

 
Q Hy, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
d@ f Hy, tLD dJ r

ÅÅÅÅÅ
c
N d y

We will now show that the second integral is zero. First note that d Hr ê cL = c d HrL . So we must show that
the following integral vanishes: 

(48)I1  HxL = ‡
!3

 
Q Hy, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
d@ f Hy, tLD dHrL d y

We  use  the  spherical  polar  coordinates  Hr, j, JL  with  center  at  the  observer.  We  have
d y = r2  sin J d r d j dJ . Therefore, the above integral can be written as:
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(49)I1  HxL = lim
 Ø 0‡0

p

 ‡
0

2 p

 ‡
0

¶

 Q Hy, tL d@ f Hy, tLD r sin J dHr - L d r d j d J = 0

The reason is that r d Hr - L =  d Hr - L  and, thus, the above triple integral is of the order of   and goes
to zero as  Ø 0. Therefore, we have shown that 

(50)


ÅÅÅÅÅÅÅÅ
 t

 ‡ Q Hy, tL dH f L dHgL
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
 d y d t = ‡ Q Hy, tL dH f L ÅÅÅÅÅÅÅÅ

 t
 K dHgL

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r

O d y d t

Note that even though r  is  not a function  of the observer  time, we like to always associate  r  with  dHgL
and write the observer time derivative operating on dHgL ê r  in the integrand of eq. (50). 

For Leibniz rule of differentiation under an integral sign, I recommend volume 1 of the following book:

8-  R.  Courant:  Differential  and  Integral  Calculus,  2 volumes,  Interscience  Publishers,  1936.  (Pub-
lished also more recently in Wiley Classic Library Series)

This  book  is  considered  by  some  mathematicians  as  perhaps  the  best  calculus  book  of  the  twentieth
century.  A somewhat  modernized  version  of this  book  is by R.  Courant  and F. John (in two volumes).
Both  versions  are  treasure-troves  of  the most  useful  calculus  results  for  applications.  Volume  2  of  this
book also includes  all  the fine points  of the subjects  of transformation  of variables,  n-dimensional  vol-
umes and surfaces that one needs to understand the present work. These are difficult subjects that are no
longer  emphasized  in  calculus  courses.  They  are  discussed  by  Courant  without  the  use  of  excessive
abstract  language  employed  by  some  modern  authors  of  books  and  articles  on  mathematics.  One  must
pay careful  attention  to all  of  the  footnotes  in  the above  calculus  book  because  of  the  many important
examples and comments there.     (End of Remark 6) 

3.4- Derivation of Formulation 1A
Derivation  of  this  result  is  based  on Formulation  1.  As  will  be  seen,  the  discussions  in  Subsection  3.3
make the derivation of this  formulation  an exercise in partial  differentiation,  albeit a fairly complicated
one algebraically. 

Let us look again at eq. (30):

(51)E Hx, t; hL = C Q Hy, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL G ret

= C Q Hy, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL  Hx; h, tLG

t = te

We have shown that only the emission time te  is a function of the observer time. Therefore,  if we need
to take the observer time derivative of the above expression, we must use the chain rule as follows: 

(52)K 
ÅÅÅÅÅÅÅÅ
 t

O
x

= C t Hx, t; hL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

 t
 


ÅÅÅÅÅÅÅÅÅ
t

G
t=te

where t Hx, t; hL  is simply the solution of t - t + † x - y Hh, tL§ ê c = 0.

Remark 7- Whenever you see a partial derivative with respect to a variable, stop and ask yourself what
other  variables  are kept fixed. The notation of partial differentiation  can be very confusing  when work-
ing with the wave equation with sources on a moving surface. We note that:   

1- In deriving this equation, we assume that the moving surface f = 0 is defined in a Lagrangian frame
h  fixed  to  the  surface.  This  frame  is  also  called  the  blade-fixed  frame.  We  have  y = y Hh, tL ,  so  that
r = r H x, y Hh, tLL . Also note that the surface integration is most conveniently carried out in the h-frame,
i.e., we are really integrating over the surface f

è
 HhL = 0.
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1- In deriving this equation, we assume that the moving surface f = 0 is defined in a Lagrangian frame
h  fixed  to  the  surface.  This  frame  is  also  called  the  blade-fixed  frame.  We  have  y = y Hh, tL ,  so  that
r = r H x, y Hh, tLL . Also note that the surface integration is most conveniently carried out in the h-frame,
i.e., we are really integrating over the surface f

è
 HhL = 0.

2- We have also shown that the emission time is analytically  written as follows t = te Hx, t; hL  although
we cannot find this function explicitly for rotating blades. 

Therefore, in partial differentiation of the left side of eq. (52), we are keeping the variables Hx, hL  fixed.
All these also mean that we need to find te ê t  on the right side of eq. (52) keeping the variables Hx, hL
fixed.     (End of Remark 7)

Now we find t ê t . We have shown above that the emission time satisfies the following equation:  

(53)g = t - t + r H x, y Hh, tLL ê c = 0
where  h  is  a given fixed  point  on the moving  surface.  By taking partial  derivative  with respect  to t  of
eq. (53), we get

(54)K t
ÅÅÅÅÅÅÅÅÅ
 t

O
Hx, hL

- 1 +
1
ÅÅÅÅÅ
c

 K r
ÅÅÅÅÅÅÅÅÅ
 t

O
Hx, hL

 = K teÅÅÅÅÅÅÅÅÅÅÅÅ
 t

O
Hx, hL

- 1 - M r K t
ÅÅÅÅÅÅÅÅÅ
 t

O
Hx, hL

= 0

where M r  is the Mach number of the point h  in the radiation direction at the time t . Here we have used
the following relations: 

(55)K r
ÅÅÅÅÅÅÅÅÅ
 t

O
Hx, hL

= K r
ÅÅÅÅÅÅÅÅÅ
t

O
Hx, hL

 K t
ÅÅÅÅÅÅÅÅÅ
 t

O
Hx, hL

(56)K r
ÅÅÅÅÅÅÅÅÅ
t

O
Hx, hL

=
r

ÅÅÅÅÅÅÅÅÅÅÅ
 yi

 ik
jj yiÅÅÅÅÅÅÅÅÅÅÅ
t

y
{
zz
Hx, hL

= - r̀i  vi = - vr

where r̀i  is the component  of unit  radiation  vector and vr  is the velocity  of the point  h  in the radiation
direction.

From eqs. (54-56), we find 

(57)K t
ÅÅÅÅÅÅÅÅÅ
 t

O
Hx, hL

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - M r

This result leads to the following important formula:

(58)


ÅÅÅÅÅÅÅÅ
 t

@qHx, y, tLD
ret

=


ÅÅÅÅÅÅÅÅ
 t

@qHx, y Hh, tL, te Hx, t; hLLD = C 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - M r

 
qHx, y, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
G

ret

We warn the readers  once  more that  the right  side  of eq.  (58)  is  a shorthand  notation  which must  be
interpreted as:
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(59)C 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - M r

 
qHx, y, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
G

ret
=
Ä
Ç
ÅÅÅÅÅÅÅ

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - M rHx; h, tL  

qHx, y Hh, tL, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t

É
Ö
ÑÑÑÑÑÑÑ t=te

This analytic expression seems complicated and intimidating. But the physical interpretation is simple if
we  work  in  the  h-frame  but  continue  using  the  notations  we  use  in  the  y-frame  to  reduce  confusion.
Equation (59) can be simply rewritten as:  

(60)C 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - M r

 
qHx, y, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
G

ret
=
Ä
Ç
ÅÅÅÅÅÅÅ

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - M rHx; h, tL  

qHx, h, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t

É
Ö
ÑÑÑÑÑÑÑ t=te

Since  we  perform  noise  prediction  by  dividing  a  blade  surface  into  panels  and  compute  the   contribu-
tions  of  the  sources  on  each  panel  separately,  we  are  indeed  working  with  a  fixed  h  for  each  panel.
Therefore, the physical meaning of every term in eq.(60) is quite clear and pertain to physical properties
of a given panel  at  the emission  time. In particular,  when  we deal  with the loading source of Formula-
tion  1A,  p Hh, tL  is  precisely  the  unsteady  blade  surface  gage  pressure  that  a  transducer  fixed  to  the
blade surface at position h  measures. Therefore, in this formulation p° =  p Hh, tL êt . We discuss these
ambiguities  in  notation  because  in  some  of  our  other  formulations,  the  surface  pressure  p  stands  for
p Hy, tL  which is the unsteady gage pressure measured by a transduced fixed to the undisturbed medium.
Note  that  p Hh, tL = p Hy Hh, tL, tL  and,  if  we  had  not  abused  the  notation,  we  should  have  used
pè Hh, tL = p Hy Hh, tL, tL .     
We are now just one short step away from Formulation 1A. We use Formulation 1, eq. (39), and take the
observer time derivative inside the first integral to obtain: 

(61)
4 p p£  Hx, tL =

‡
f = 0

 


ÅÅÅÅÅÅÅÅ
 t

C r0  vnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL +

p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c r H1 - MrL G ret

 dS + ‡
f = 0

C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 H1 - MrL G ret

 dS

Next we use eq.(60) inside the first integral to get

(62)

4 p p£  Hx, tL = 4 p Hp£
T  Hx, tL + p£

L  Hx, tLL =

‡
f = 0

 ; 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - M r

 


ÅÅÅÅÅÅÅÅÅ
t

C r0  vnÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL +

p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c r H1 - MrL G ?te

 dS +

‡
f = 0

C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 H1 - MrL G te

 dS

Now we must remember  that everything inside the integrand  of the first  integral,  before the variable t
is replaced with te , is a function of either Hh, tL  or Hx; h, tL . First note that cos q = n  r̀  and Mr = M  r̀ .
The variables vn , M, p, and n  are functions of Hh, tL , and the variables r and r̀  are functions of Hx; h, tL .
To evaluate the integrand of the first integral of eq. (62), we need the source time derivatives of all these
seven variables as we will see below.  

We have  already  talked  about  the meaning  of  the time derivative  of  the surface  pressure  p† .The  source
time derivative of vn  will be derived next. We have the following algebra  
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(63)v† n ª


ÅÅÅÅÅÅÅÅÅ
t

 Hv nL = v† n + v n† = an + v wän

where a = v† = v êt = c M
†

 is the acceleration of the point h  and w  is the angular velocity of the blade
surface. Note that, in general, v wän  0 on a blade. We can now easily show the following results: 

(64)
r
ÅÅÅÅÅÅÅÅÅ
t

=
r

ÅÅÅÅÅÅÅÅÅÅÅ
yi

 
 yi  Hh, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

t
= - r̀  v = vr

(65) r̀iÅÅÅÅÅÅÅÅÅÅ
t

=
r̀i  vr - viÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r

(66)MrÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
t

=
1

ÅÅÅÅÅÅÅÅÅ
c r

 Iri  v† i + vr
2 - v2M = r̀i  M

†
i +

c IMr
2 - M2M

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r

We can  next  perform  the  tedious  source  time  differentiation  in  eq.(62)  and  utilize  the above  results  in
the  algebra.  Here  we  separate  the  thickness  and  loading  noise  results  as  in  Reference  4.  The  Thick-
ness and Loading noise components of Formulation 1A is  

(67)

4 p p£
T  Hx, tL =

‡
f = 0

 
Ä
Ç
ÅÅÅÅÅÅÅÅÅ

r0  v† nÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL2

+
r0  vn  r̀i  M

†
iÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r H1 - MrL3
É
Ö
ÑÑÑÑÑÑÑÑÑret

 d S + ‡
f = 0

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

r0  c vn IMr - M2M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r2 H1 - MrL3
É

Ö
ÑÑÑÑÑÑÑÑÑret

 d S

(68)

4 p p£
L  Hx, tL = ‡

f = 0
 
Ä
Ç
ÅÅÅÅÅÅÅÅÅ

p†  cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c r H1 - MrL2

+
r̀i  M

†
i  p cos q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
c r H1 - MrL3

É
Ö
ÑÑÑÑÑÑÑÑÑret

 d S +

‡
f = 0

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

p Hcos q - Mi  niLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 H1 - MrL2

+
IMr - M2M p cos q

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 H1 - MrL3

É

Ö
ÑÑÑÑÑÑÑÑÑret

 d S

We  have  written  these  equations  differently  from  those  in  Reference  4  by  separating  the  near  field
terms  (order  1 ë r2 )  from  the far  field  terms  (order  1 ê r ).  We  have  left  out  much  algebraic  manipula-
tions in obtaining the above results. The derivation of Formulation 1A has been checked many times by
acoustic researchers.  We mention here that although the combination of  variables  Mr

2 - M2  appears in
eq.(66), the appearance of the combination of variables Mr - M2  in eqs.(67) and (68) is correct. 

Remark  8-  The  loading  noise  part  of  Formulation  1A can  be  derived  in  other  ways.  For  example,  we
have 
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(69)

4 p p£
L  Hx, tL = -


ÅÅÅÅÅÅÅÅÅÅÅ
xi

 ‡
f =0

 C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL  Hx; h, tLG

t = te  Hx, t;hL
 d S =

-‡
f =0

 


ÅÅÅÅÅÅÅÅÅÅÅ
xi

C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL  Hx; h, tLG

t = te  Hx, t;hL
 d S =

-‡
f =0

 
lom
no
K 

ÅÅÅÅÅÅÅÅÅÅÅ
 xi

O
Hh,tL

C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL  Hx; h, tLG +

t
ÅÅÅÅÅÅÅÅÅÅÅ
xi

 K 
ÅÅÅÅÅÅÅÅÅ
t

O
Hx;hL

C p cos q
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
r H1 - MrL  Hx; h, tLG|o}

~ot = te  Hx, t;hL
 d S

Now, From eq. (53), we find 

(70)
t

ÅÅÅÅÅÅÅÅÅÅÅ
 xi

+
r̀iÅÅÅÅÅÅ
c

- Mr  
t

ÅÅÅÅÅÅÅÅÅÅÅ
 xi

= 0

From this, we find 

(71)
t

ÅÅÅÅÅÅÅÅÅÅÅ
 xi

= -
r̀iÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c H1 - MrL
Use this result in eq. (69) and carry out all the differentiation with respect to xi  to get the loading part of
Formulation  1A.  Note  that  in this  derivation,  we  do  not  need  to  use  the Leibniz  rule  of  differentiation
under the integral sign when we take the observer space derivative inside of the integral in eq. (69).

We did not follow this procedure originally because we already had Formulation 1 in our possession and
only  the  observer  time  differentiation  had  to  be  performed  analytically  for  both  thickness  and  loading
noise  results.  There  were  some  unexpected  applications  of  the   procedure  of  converting  the  observer
space  derivative  to  observer  time  derivative.  Farassat  and  Brentner  used  this  procedure  to  derive  a
formulation for quadrupole  noise prediction similar to Formulations  1 which should properly have been
called Formulation  Q1 (Reference  9,  eq.  (14),  Reference  10,  eq.  (4)).  Later,  Brentner  derived  a  sec-
ond  formulation  for  quadrupole  noise  prediction  similar  to  Formulation  1A  called  Formulation  Q1A
(Reference  10,  eq.  (17)) .  This latter result  has been successfully  used in helicopter  rotor noise predic-
tion. The primary references to these works are: 

9- F. Farassat and Kenneth S. Brentner: The uses and abuses of the acoustic analogy in helicopter
rotor noise prediction, Journal of the American Helicopter Society, 1988, 33, 29-36
10- K. S. Brentner:An efficient  and robust method for predicting helicopter  high-speed  impulsive
noise, Journal of Sound and Vibration, 1997, 203(1), 87-100 
Had we not developed  the analytic technique  of converting  the observer  space derivative exactly  to the
observer  time  derivative  to   derive  the  loading  noise  component  of  Formulation  1,  we probably  would
not have been able to obtain our quadrupole noise formulations.     (End of Remark 8)  
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 3.5- Moving Observer
In most applications, we want to compute the noise in a frame moving with the aircraft, i.e., as measured
by  a  microphone  attached  to  the  aircraft.  All  propeller  and  helicopter  rotor  noise  prediction  codes  at
Langley  Research  Center  have  this  capability.  It  is  important  to  realize  that  the  observer  variable  x  in
Formulations  1  and 1A is  in the frame fixed to the medium.  Let us  attach  a frame fixed to the aircraft
with axes parallel to the medium-fixed x-frame. We will call this X-frame. Assume that at the time t = 0
the two frames coincide.  Let the velocity  of the aircraft  be VHtL .  Then the origin of the X-frame will be
at the point  

(72)X0HtL = ‡
0

t
 VHt£L d t£

Now a point X  in the X-frame will be at the point x = X + X0HtL  at the time  t .  Therefore,  if we want to
find the acoustic  pressure  pè £  HX, tL  as a function  of time in the X-frame  from our formulations,  we use
the following formula:

(73)pè £  HX, tL = p£  HX + X0HtL, tL
The interpretation of this result is simple. To calculate the acoustic pressure pè £  HX, tL  in the aircraft fixed
frame, make sure you compute first where the observer (or the microphone) is in the x-frame at the time
t. Then use that observer position in the formulations given by eq. (73).  

4- Concluding Remarks
Langley Research Center researchers have been involved in the prediction of the noise of rotating blades
since  the  nineteen  thirties.  It  was  after  the  introduction  of  high  speed  digital  computers  in  nineteen
sixties  that  it  was  possible  to  use  realistic  geometry  and  kinematics  of  the  rotors  and  propellers  in  the
noise prediction  process.  The pace of aeroacoustic  research  increased since the early nineteen seventies
because  of  the  public  pressure  to  reduce  aircraft  noise  particularly  around  airports.  Both  the  govern-
ments and the aircraft industry around the world realized that aeroacoustic  research can lead to substan-
tial  aircraft  noise  reduction.  The  invention  of  high  speed  digital  computers  played  a  major  role  in  this
effort in the areas of  aeroacoustic  modeling,  transducer  design,  data analysis,  full scale  flight  and wind
tunnel  tests.  Advanced  mathematics  have  played  a  vital  role  in  all  these  areas  although  this  fact  is  not
mentioned often by the researchers. 

In developing  noise  prediction  models  at  Langley Research  Center  for  propellers  and helicopter  rotors,
we  used  primarily  the  acoustic  analogy  based  the  FW-H  equation.  We developed  general  solutions  of
this equation which allowed  using realistic  blade geometry  and kinematics.  We also did not want to be
limited  to problems that  generated  periodic  acoustic  waveforms.  Finally,  we required  that  our formula-
tions  be  valid  in  both  near  and  far  fields.  These  conditions  could  be  met  if  we  worked  in  the  time
domain and then applied  a Fourier transform in time to obtain frequency domain results. This approach
has been very fruitful so far and is being followed by many other researchers around the world.          

The current trend in aircraft noise prediction appears to be toward using FW-Hpds  for all helicopter rotor
and propeller  noise  prediction.  This would make Formulation  1A even more useful  in the future for all
rotating blade noise prediction problems. For example, it makes sense to use this formulation for predict-
ing supersonic propeller noise when an advanced unsteady aerodynamic code becomes available. This is
what we are proposing at present for this problem. 
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The current trend in aircraft noise prediction appears to be toward using FW-Hpds  for all helicopter rotor
and propeller  noise  prediction.  This would make Formulation  1A even more useful  in the future for all
rotating blade noise prediction problems. For example, it makes sense to use this formulation for predict-
ing supersonic propeller noise when an advanced unsteady aerodynamic code becomes available. This is
what we are proposing at present for this problem. 

Now I would like to give some practical advice for developing a noise prediction code based on my own
experience at Langley Research Center:

1-  Always  derive  fully  the  acoustic  formulation  you  want  to  use.  This  way  you  understand  the  exact
meaning of all the terms in the formulation  as well  as its subtleties,  e.g., the fluid velocities are defined
relative  to  what  frame.  Also,  it  is  possible  that  some misprints  in the  printed  reference,  such  as  a  sign
error, can cause serious errors in acoustic calculations.  

2- Spend a lot of time designing the algorithms you want to use and studying the flow of information in
the  code.  This  is  the  most  important  step  in  the  reduction  of  computation  time  and  it  should  be  given
serious attention. We give some examples below:

– Use advanced surface integration techniques such as Gauss-Legendre integration . 

–  Emission  time  computation  can  be  very  time  consuming  on  a  computer.  A  well-designed  algorithm
here is essential for an efficient code.

– Sometimes  a do loop in the wrong place in the code can increase  the computation  time considerably.
This is where the experience of the code developer becomes important.

3- Since we have derived exact results  here, the readers  should realize  that in the near field the Fourier
transform of the computed acoustic pressure can have a large constant term. This term is negative on the
suction side of the rotor or propeller disc and positive on the pressure side as the physics of the problem
would  dictate.  This  is  confusing  to  a  novice  in the  field  of  aeroacoustics  because  the measured  results
generally  do  not  show  this  constant  value  (called  DC  shift  by  experimenters).  Most  commonly  used
microphones  cannot  measure  this  shift.  These  microphones  are  said  to be  AC coupled  and remove  the
DC shift.
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