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Popular Summarv 

Satellite remote sensing data has significant potential use in analysis of natural 
hazards such as landslides. Relying on the recent advances in satellite remote sensing and 
geographic information system (GIS) techniques, this paper aims to map landslide 
susceptibility over most of the globe using a GIs-based weighted linear combination 
method. First , six relevant landslide-controlling factors are derived from geospatial 
remote sensing data and coded into a GIS system. Next, continuous susceptibility values 
from low to high are assigned to each of the six factors. Second, a continuous scale of a 
global landslide susceptibility index is derived using GIS weighted linear combination 
based on each factor's relative significance to the process of landslide occurrence (e.g., 
slope is the most important factor, soil types and soil texture are also primary-level 
parameters, while elevation, land cover types, and drainage density are secondary in 
importance). Finally, the continuous index map is further classified into six susceptibility 
categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, 
the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and 
parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are 
shown to have landslide-prone areas. This first-cut global landslide susceptibility map 
forms a starting point to provide a global view of landslide risks and may be used in 
conjunction with satellite-based precipitation information to potentially detect areas with 
significant landslide potential due to heavy rainfall. 
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Use of Satellite Remote Sensing Data in the Mapping of Global Landslide 
Susceptibility 

Abstract 

Satellite remote sensing data has significant potential use in analysis of natural hazards 

such as landslides. Relying on the recent advances in satellite remote sensing and 

geographic information system (GIs) techniques, this paper aims to map landslide 

susceptibility over most of the globe using a GIs-based weighted linear combination 

method. First, six relevant landslide-controlling factors are derived from geospatial 

remote sensing data and coded into a GIS system. Next, continuous susceptibility values 

from low to high are assigned to each of the six factors. Second, a continuous scale of a 

global landslide susceptibility index is derived using GIs weighted linear combination 

based on each factor’s relative significance to the process of landslide occurrence (e-g., 

slope is the most important factor, soil types and soil texture are also primary-level 

parameters, while elevation, land cover types, and drainage density are secondary in 

importance). Finally, the continuous index map is further classified into six susceptibility 

categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, 

the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and 

parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are 

shown to have landslide-prone areas. This first-cut global landslide susceptibility map 

forms a starting point to provide a global view of landslide risks and may be used in 

conjunction with satellite-based precipitation information to potentially detect areas with 

significant landslide potential due to heavy rainfall. 
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1. Introduction 

Shallow landslides, often called mudslides or debris flows, are rapidly moving flows 

of mixed rocks and mud that move downlll at speeds of 35 miles per hour or more, kill 

people and destroy homes, roads, bridges, and other property. They are caused primarily 

by prolonged, heavy rainfall on saturated hill slopes (Baum et al., 2002). For example, 

hurricane Mitch caused catastrophic landslides throughout the Caribbean and Central 

America area in October, 1998. It was reported that 6,600 persons were killed and 8,052 

injured. Approximately 1.4 million people were left homeless. More than 92 bridges had 

been destroyed, and nearly 70 percent of crops were damaged. Although landslide events 

occur frequently worldwide, unfortunately, no map or guideline currently exists to assess 

the relative landslide potential throughout the globe. Although it is still difficult to predict 

a landslide event in space and time, an area may be ranked according to the degree of 

potential hazard from landslides in order to possibly minimize damage (Saha et al., 2005). 

Landslide occurrence depends on complex interactions among a large number of 

partially interrelated factors. These parameters, according to Dail et al. (2002) can be 

grouped into two categories: (1) preparatory variables including slope, soil properties, 

,elevation, aspect, land cover, lithology etc; and (2) the triggering variables such as heavy 

rainfall and glacier outburst. A field survey, conventionally, is the most exact method to 

assess landslide susceptibility (LS). However, analyzing landslide potential that might 

occur in a large area is very difficult and expensive in terms of time and money. This is 

especially true in developing countries where expensive ground observation networks are 

prohibitive and in mountainous areas where access is difficult. In many countries, remote 

sensing information may be the only possible source available for such studies. Currently 
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available satellite data may provide useful and accurate information on earth surface 

features and dynamic processes involved in landslide occurrence. 

This paper takes the opportunity to use high-resolution satellite remote sensing 

products to attempt a global-scale landslide hazard assessment. Information from 

remotely sensed data is digitally processed and integrated with other ancillary 

information using a Geographical Information System (GIs). By using GIs-based map 

overlay techniques, it is possible to quantitatively combine several layers of different 

parameters (e.g. elevation, slope, land use, etc.) to produce spatial patterns of LS on a 

global scale. This first-cut global LS map may form a starting point to provide a global 

assessment of landslide hazards and could be used in conjunction with satellite-based 

precipitation information to predict landslides triggered by heavy rainfall over susceptible 

areas. 

The outline of this paper is as follows: landslide-controlling factors and geospatial 

data sets are described in section 2; development of the global LS map is presented in 

section 3, followed by discussion of results in section 4. 

2. Satellite Remote Sensing and Geospatial Datasets 

2.1 landslide controlling factors 

Landslide occurrence depends on complex interactions among a large number of 

factors. Table 1 lists landslide controlling factors: geologic setting, geomorphic feature, 

soil property, land cover characteristics, and hydrological and human impacts. According 

to Dai et al. (2002), these factors can also breakdown into two interactive categories: 

static and dynamic factors. Factors that trigger mass movements are called dynamic 
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factors, mainly rainfall and earthquakes. Basic surface-related characteristics that are 

related to sliding are called static factors or primary factors (Silde and Ochiai, 2006). 

Static factors are the determinants of landslide susceptibility, and can be derived from 

surface characteristics. 

2.2 Geospatial data sets 

Remote sensing products can be utilized for deriving various parameters related to 

landslide controlling factors. Several geospatial data sets were used in this study and their 

spatial scales arrange from 30-meter to 0.25 degree grid sizes. Brief descriptions of the 

data sets are below. 

2.2. I Digital elevation model data and its derivatives 

The basic digital elevation model (DEM) data set used in this study includes National 

Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission 

(SRTM; htt~:Nwww2.ipl.nasa.~ov/srtm/) dataset. The SRTM data are a major 

breakthrough in digital mapping of the world (with 30m horizontal spatial resolution and 

vertical error less then 16m), and provides a major advance in the availability of high 

quality elevation data for large portions of the tropics and other areas of the developing 

world. SRTM data are distributed in two levels: SRTMl (for the U.S. and its territories 

and possessions) with data sampled at one arc-second intervals in latitude and longitude, 

and SRTM3 (60°N-60's) sampled at three arc-seconds. The horizontal resolution of 

SRTh4l has about 30-meter resolution and SRTM3 has 90-meter resolution in equator 

areas. A description of the SRTM mission can be found in Farr and Kobrick (2000). 
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DEM data can be used to derive topographic factors, other than simply elevation, 

including slopes, aspects, hill shading, slope curvature, slope roughness, slope area and 

qualitative classification of landforms (Fernandez et al., 2003). DEM data can be also 

used to derive hydrological parameters (flow direction, flow path, and basin and river 

network basin). Figure 1 shows the Puerto Rico 30-meter SRTM DEM map and slopes 

calculated at various resolutions. Table 2 lists the statistics of their slopes derived from 

30-m, 90-m, and 1000-m spatial resolution of DEM over Puerto Rico, respectively. 

The United States Geological Survey's GTOPO30 DEM 

(http://edcdaac.usgs.~ov/gtopo30/gtopo30.html), - with a 1-km horizontal resolution is 

used in this study to fill the SRTM gaps. The SRTM data covers all land between 56 

degrees south and 60 degrees north latitude, about 80% of global land. 

2.2.2 Land cover data 

MODIS (Moderate Resolution Imaging Spectroradiometer) is a key instrument 

aboard the Terra and Aqua satellites. Terra's orbit around the Earth is timed so that it 

passes from north to south across the equator in the morning, while Aqua passes south to 

north over the equator in the afternoon. MODIS is viewing the entire Earth's surface 

every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths 

(http://modis.gsfc.nasa.gov/index.php). These data improve our understanding of global 

dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. 

The global land cover data from MODIS are used as a simple surrogate for vegetation 

and land use types. The MODIS land cover classification map is available at the highest 

resolution available, 250-meter. This land cover product uses the classification scheme 
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proposed by the International Geosphere Biosphere Programme (IGBP). The MODIS 

land cover products describe the geographic distribution of the 17 IGBP land cover types 

based on an annual time series of observations (Fridel et al., 2002). For each spatial 

resolution there is a land cover type classification layer (with numbers from 0 to 17), a 

classifier confidence assessment layer, and 17 associated layers that provide the 

percentage, from 0 to 100, of each land cover type per cell. The data set also provides the 

fraction of each of the 17 classes within the coarser resolution cells. 

2.2.3 F A 0  digital soil map 

Information on soil properties is obtained from the Digital Soil of the World 

published in 2003 by Food and Agriculture Organization (FAO) of the United Nations 

(http://www.fao.org/AG/agl/agll/dsmw.htm). The soil parameters available include soil 

type classification, clay mineralogy, soil depth, soil moisture capacity, soil bulk density, 

soil compaction, etc. This product is not based on satellite information directly, but is 

based primarily on ground surveys and national databases. 

2.2.4 Soil characteristics 

A second non-satellite database is the International Satellite Land Surface 

Climat ol ogy Project (ISM CP) Initiative II Data Collection 

(http://www.~ewex.ordislscp.html), which provides gridded data of 18 selected soil 

parameters. Theses data sets are distributed by the Oak Ridge National Laboratory 

Distributed Active Archive Center (http://daac.ornl.g;ov/) at quarter degree resolution. 

One important parameter for this study is the soil texture. Following the U.S. Department 

of Agriculture soil texture classification, the 13 textural classes reflect the relative 

proportions of clay (granules size less than O.O02mm), silt (0.002 - 0.05mm) and sand 
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(0.05 - 2mm) in the soil. Three textural categories are recognized b o n g  the 13 original 

texture classes: coarse (1): sands, loamy sands and sandy loams with less than 18 percent 

clay and more than 65 percent sand; medium (2): sandy loams, loams, sandy clay loams, 

silt loams, silt, silty clay loams and clay loams with less than 35 percent clay and less 

than 65 percent sand (the sand fraction may be as high as 82 percent if a minimum of 18 

percent clay is present); and fine (3): clay, silty clays, sandy clays, clay loams, with more 

than 35 percent clay. Note that these soil texture classes are interpolated to the highest 

DEM spatial scale. 

3. Development of the global landslide susceptibility map 

Landslide susceptibility can be mapped out using various methods depending on 

the data availability (Guzzentti et al., 19991. However, is it possible for a landslide 

susceptibility map to be produced with limited data? Fabbri et al. (2003) and Coe et al. 

(2004) suggest that this is not only possible, but more accurate. More information does 

not necessary lead to better results, depending on the quality of the data. Coe et al. (2004) 

evaluated the effectiveness of a landslide susceptibility map derived from four 

topographic parameters (elevation, slope angle, curvature, and aspect) and found two of 

these, a combination of elevation and slope angle, best portrayed landslide susceptibility. 

Similarly, Fabbri et al. (2003) found three data layers (slope, elevation, and aspect) 

derived exclusively - from a DEM provided better results than six data layers (including 

other geology, surficial materials, and land use). These results seemingly indicate that 

topography was the dominant control in determining location of landslide occurrence. 
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The statements below describe the landslide susceptibility mapping process used in this 

study: 

1) classifying landslide-controlling factors into nominal categories with a continuum 

of increasing susceptibility to shallow landslides; 

2) assigning susceptibility values from zero to one for each factors; and 

3) mapping the landslide susceptibility using weighted linear combination methods. 

3.1 Assignment of numerical values for landslide-controlling factors 

Based on the aforementioned geospatial data sets, a number of landslide- 

controlling parameters are derived, including elevation, slope, aspect, curvature, 

concavity, percentage of soil types (including clay, foam, silt, and sand etc.), soil texture, 

land use classification, and hydrological variables (drainage density, flow accumulation, 

and flow path). All parameters have been downscaled or interpolated to the SRTM 

elemental horizontal scale of 30-meter. Due to the lack of global landslide occurrence 

data, landslide -factor selection and assignment of numerical values are based on the 

referenced studies and on information availability. Among these factors, previous studies 

(Dai et al., 2002; Carara et al., 1991; Anbalagan et al., 2992; Larsen and Torres Sanchez, 

1998; Lee and Min, 2001; Saha et al., 2002; Fabbri et al., 2003; Sarkar and Kanungo, 

2004; Coe et al., 2004) demonstrated that six parameters, slope, type of soil (clay, soam, 

percentage of clay), soil texture, elevation, MODIS land cover, and drainage density, are 

closely associated with landslide occurrences. 

The first step is to classify each landslide-controlling factor into various 

categories. For example, using an approach published by Larsen and Torres-Sanchez 
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(1998), land cover can be discretized into several general categories: (a) forested land; (b) 

shrub land; (c) grass land; (d) pasture and/or cropland, and (e) developed land and/or road 

corridors. These land use/land cover categories describe a continuum of increasing 

susceptibility to shallow landslides. In this study, following the same approach, the 17 

MODIS land cover types are classified into 11 categories (Table 3), which describe 

increasing landslide susceptibility to shallow landslides. Therefore, landslide 

susceptibility values from zero to one are assigned to each category, respectively. The 

effect of slope, soil type, and soil texture on landslides was widely documented by Dai et 

al. (2002) and Lee and Min (2001). In many regions, elevation according to Coe et al. 

(2004) is approximately a proxy for mean rainfall that increases with height due to 

orographic effects and high elevation areas are preferentially susceptible to landslides 

because they receive greater amounts of rainfall than areas at lower elevations. Drainage 

density provides an indirect measure of groundwater conditions, which have an important 

role to play in landslide activity (Sarkar and Kanungo, 2004). Sarkar and Kanungo (2004) 

also found an inverse relationship between landslides and drainage density which may be 

due to high infiltration in weathered gneisses causing more instability in the area. Based 

on these previous studies, assignment of landslide susceptibility values for other 

parameters is based on several empirical assumptions: (1) higher slope, higher 

susceptibility; (2) coarser and looser soil, higher susceptibility; (3) higher elevation, 

higher susceptibility, and (4) decreasing susceptibility for larger drainage density. Under 

assumption (I), for example, the slope map units are given zero suscembility value for 

class of flat slopes and susceptibility value one is assigned to the class of steepest slopes. 
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Thus, numerical values xk( i ,  j , t )  of parameter k are normalized from zero to one, as 

shown in Equation 1: 

where x k ( i ,  j ,t)is the original numerical value of kth factor at pixel location (i, j) 

at time t and y k ( i ,  j , t )  is the numerical value normalized from x k ( i ,  j , t )  . Where x r  
(xp ) is the upper (lower) numerical value limit of k'h factor. As pointed out above, these 

landslide-controlling factors are semi-static so that the time t only represents the sampling 

time of these geospatial data sets. Final landslide susceptibility values are combined 

results of the numerical values assigned to each of the landslide-controlling parameters. 

3.2 Weighted Linear Corn bination 

To represent and interactively examine these factors, a series of thematic maps 

have been created, using the GIS overlay concept of weighted linear combination (WLC). 

WLC is a method where landslide-controlling factors can be combined by applying 

primary- and second-level weights (Ayalew et al., 2004). In this study, the weighted 

linear combination method is performed to derive the final susceptibility values, as 

shown in Equation 2. 

n 

Z(i, j ,  t )  = Z W k  Y k  (i, j ,  t) ,  where Z wk = 1 (2) 
k=l k=l 

Z(i,  j ,  t )  is final susceptibility value for pixel (i , j) and wk is the linear combination 

weight for krh factor, where k=l-6 in this study. Next step is to determine the weight for 

each parameter. 
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Both Coe et al. (2004) and Fabbri et al. (2003) found that topography was the 

dominant control in determining location of landslide occurrences. Dai et al. (2002) and 

Lee and Min (2001) reported slope steepness has the most influence on shallow landslide 

likelihood, followed by soil texture and soil types that mantles the slope. The other 

parameters, land covers (Larsen and Torres-Sanchez, 1998), elevation (Coe et al., 2004), 

and drainage density (Sarkar and Kanungo, 2004), also play important but secondary 

roles in determining landslide potentials. Following these analysis, among the six 

parameters, we find that the slope is the most important factor and soil types and soil 

texture are also primary-level parameters, while the elevation, land cover types, and 

drainage density are of secondary-level importance. Several WLC susceptibility models 

were tried reflecting different weights combinations. Results were inter-compared with 

existing regional susceptibility maps (http://landslides.usm.gov) and Figure 2. The best 

model obtained was the one with weight determination (0.3,0.2,0.2,0.1,0.1, and 0.1) for 

the six parameters (slope, type of soil, soil texture, elevation, MODIS land cover type, 

and drainage density), respectively. The consequent range in susceptibility values is 

normalized from zero to one. The larger the Susceptibility value, numerically, the greater 

the potential to produce landslide. 

3.3 The Global Landslide Susceptibility Map 

This continuous scale of numerical indices of landslide susceptibility can be 

further classified into several categories (Sarkar and Kanungo, 2004). A judicious way 

for such classification is to search the category boundaries at abrupt changes in histogram 

of the landslide susceptibility values (Davis, 1986). As shown in Figure 2-3, the global 
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landslide susceptibility index is divided into six categories of landslide susceptibility: -1- 

water bodies; 0-permanent snow or ice; 1-very low; 2-low; 3-moderate; 4-high; 5-very 

high susceptibility. One can see that the North America landslide susceptibility map 

produced from this approach Figure 2d) captures most of the landslide-prone areas 

according to USGS North American study (Figure 2e-f). Figure 2 (d-f) shows that 

landslides can occur in all of the contiguous 48 states, but more often in the coastal and 

mountainous areas of California, Oregon, and Washington, as well as Rocky Mountain 

states, and mountainous and hilly regions of the East. 

The resulting global LS map (Figure 3a) demonstrates the hot spots of the high 

landslide potential regions: the Pacific Rim, the Alps, the Himalayas and South Asia, 

Rocky Mountains, Appalachian Mountains, and parts of the Middle East and Africa. 

India, China, Nepal, Japan, the USA, and Peru are shown to be landslide-prone countries. 

These results are similar to those reported by Sidle and Ochiai (2006). Figure 3b-c also 

shows the percentage of five categories. The categories of very high and high 

susceptibility account for 3.2% and 14.6% out of global land areas (Table 4), respectively. 

These two categories are dominated by areas with steep slopes, high elevations, high 

concentration of clay, and fine soil texture. Excluding the permanent snow and ice over 

land, the very high susceptibility category (Category 5) accounts for approximately 5%of 

the land area (Table 4, row 6). The majority of the land is placed into the moderate or low 

landslide-prone categories. 

4. Conclusion and Discussion 

A major outcome of this work is the development of a global view of landslide 

susceptibility, only possible because of the utilization of satellite products. By using GIs- 
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based map overlay techniques, the derived landslide susceptibility values are the 

weighted linear summation of the slope, soil type, soil texture, elevation, vegetation cover, 

and drainage density. The global LS map will provide guidelines to assess the spatial 

distribution of potential landslides by identifying landslide-prone areas. For example, 

areas identified as “high potential for landslides” could be scrutinized more thoroughly 

from the ground than would those with “low potential”. Improved susceptibility 

information would be available for these candidate areas after a site inspection. This 

landslide susceptibility information should provide a useful new tool for study and 

evaluation of landslide occurrence. 

The LS map provides a starting point to give a global view of landslide hazard 

information by combining with satellite-based, real-time rainfall measuring system 

(http://trmm.gsfc.nasa.gov) to monitor when areas with significant landslide potential 

receive heavy rainfall which might initiate landslides in those susceptible areas. For 

example, an empirical landslide-triggering rainfall intensity-duration threshold can be 

calibrated using the TRMM-based Multi-satellite Precipitation Analysis (TMPA) 

(Huffman et al., 2006) with the global landslide susceptibility map. This rainfall 

calibration could be done globally (Caine 1980; Figure 4a) or for major climatologic 

regions (Larsen and Simon, 1993; Godt et al. 2004). Figure 4b shows a satellite rainfall 

example associated with the recent landslide triggered by heavy rainfall on the Philippine 

Island of Leyte on Feb 17, 2006, with at least 1800 reported deaths. Therefore, the 

landslide hazard (H) can be expressed as a function of landslide susceptibility (z) and the 

rainfall intensity-duration (I-D) at continuously over a time-space domain (Equation 3). 
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The location and timing of any threshold exceedence can then be identified and compared 

to reports of actual occurrences. 

The quality of the LS map obtained, will rely heavily on accuracy and scale of 

information derived from the geospatial data. The first-cut global landslide susceptibility 

map produced here needs validation from local inventory data and we believe that the 

iterative verification processes can correct and enhance this map with many existing local 

inventory datasets. The LS map can be updated whenever new or better geospatial 

datasets become available. The LS map can also behave semi-dynamically by routinely 

updating it from information of monthly land cover change and/or antecedent 

precipitation conditions. The procedure can be systematic and applicable over the globe. 

In addition, more information (e.g. lithology) could be incorporated into this LS map in a 

general or site-specific fashion as they become available. Additionally, soil moisture 

conditions from NASA Aqua AMSR-E and TRRII1LI will be examined for usefulness in a 

planned quasi-global landslide prediction system. We expect that the accuracy of such 

susceptibility maps will increase in time. 
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Table 1 landslide controlling factors 

Geology 

Geomorphology 

Soil 

Land cover 

Hydrology 

Human impact 

Controlling factors 

Lithological makeup, rock units (mudstone, sandstone, 

limestone and greentuffes), tectonics, bedrock structure 

Elevation, Slope, slope shape, aspect, curvature, 

concavity 

Soil types (clay, silt, foam, sand...), soil texture, soil 

depth, 

Vegetated, barren, built-up, developed, shrub, grass.. . 

Rainfall, Soil moisture, snowmelt, drainage density or 

flow accumulation, flow direction(s1iding path), 

infiltration 

Urban build-up, road construction, deforestation 

(burning), irrigation, mining, artificial vibration.. . . 

Availability 

Local 

Global 

Global 

Global 

Global 

Regional 
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Table 2 the statistics of slopes derived from Qfferent resolution DEM over Puerto Rico 

1000-m I 

Slope property(degree) 
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Table 3 Assignment of numerical values of landslide susceptibility for different land 

cover types 

CATEGORY 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ASSIGNMENT OF 

SUSCEPTIBILITY 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

3.7 

3.8 

3.9 

1 .o 

ORIGIONAL MODIS 

CLASSES 

0,15 

11,1,2 

394 

5 

10 

12 

14 

16 

13,17 

CONTENTS 

Water bodies; permanent snow and ice 

Evergreen Forests, permanent wetland 

Deciduous Forests or mixed forested lands 

Mixed forests 

Open or closed Shrub lands 

Woody Savannas or Savannas 

Grass land 

Croplands 

Cropland and/or Natural Vegetation Mosaic 

Barren or Sparsely Vegetated land 

Developed land, road corridors, coastal area 

21 



Table 4 Distribution of Landslide Susceptibility Map 

Category -1 0 1 2 3 4 5 

Susceptibility Water snowlice Very low Low Moderate high Very high 

Numerical -1 0 0-0.18 0.19-0.29 0.3-0.4 0.4-0.55 >=OS5 

Values 

%(globe) 66.42 11.53 3.31 5.51 6.62 5.51 1.10 

%(land) NIA 34.35 8.84 18.33 20.69 14.60 3.19 

%(land) NIA NIA 13.46 27.90 31.51 22.22 4.86 
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Figure Captions 

Figure 1. Slope derived from NASA Shuttle Radar Topography Mssion data over mierto 

Rico. Top Panel-Slope derived from 30-, 90-, and 1000-meter DEM; Bottom panel- 

histogram of slope distribution. 

Figure 2. North America geospatial data such as (a) DEM; (b) slope; (c) MODIS land 

cover classification, (d) landslide susceptibility indices derived from this study, and (e-f) 

landslide susceptibility map from USGS. All rescaled to lkm for display purpose. 

Figure 3. (a) Global landslide susceptibility map derived from surface multi-geospatial 

data; (b) histogram of global landslide susceptibility at continuous numerical values from 

zero to one; (c) histogram of global landslide susceptibility classified into 6 categories. 

Figure 4. (a) An empirical antecedent precipitation accumulation threshold derived from 

Caine 1980; (b) the rainfall accumulation observed from NASA TRMM multi-satellite 

precipitation for Philippine landslide event on Feb 17, 2006. Star indicates the timing of 

landslide occurrence. 
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figures 
-Click here to download colour figure: NHAZ-SI-Hongetal-20060814-ppt.ppt 
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Figure 1. Slope derived from NASA Shuttle Radar Topography Mission 
data over Puerto Rico. Top Panel-Slope derived from 30-, 90-, and 1000- 
meter DEM; Bottom panel-histogram of slope distribution. 



0 1000 2000 3000 

0 2 4 6 8 10 12 14 16 

0 2 4 6 8 1 0  

(d) 

Figure 2. North America geospatial data such as (a) DEM; (b) slope; (c) MODIS land 
cover classification, (d) landslide susceptibility indices derived from this study, and 
(e-9 landslide susceptibility map from USGS. All rescaled to I km for display 
purpose. 
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Figure 3. (a) Global landslide susceptibility map derived from surface multi- 
geospatial data; (b) histogram of global landslide susceptibility at continuous 
numerical values from zero to one; (c) histogram of global landslide 
susceptibility classified into 6 categories. 
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Figure 4. (a) An empirical antecedent precipitation accumulation threshold 
derived from Caine 1980; (b) the rainfall accumulation observed from NASA 
TRMM multi-satellite precipitation for Philippine landslide event on Feb 17, 
2006. Star indicates the timing of landslide occurrence. 


