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Uncertainty Analysis of Historical Hurricane Data 

Lawrence L. Green* 
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An analysis of variance (ANOVA) study was conducted for historical hurricane data 
dating back to 1851 that was obtained from the U. S. Department of Commerce National 
Oceanic and Atmospheric Administration (NOAA).  The data set was chosen because it is a 
large, publicly available collection of information, exhibiting great variability which has 
made the forecasting of future states, from current and previous states, difficult.  The 
availability of substantial, high-fidelity validation data, however, made for an excellent 
uncertainty assessment study.  Several factors (independent variables) were identified from 
the data set, which could potentially influence the track and intensity of the storms.  The 
values of these factors, along with the values of responses of interest (dependent variables) 
were extracted from the data base, and provided to a commercial software package for 
processing via the ANOVA technique. The primary goal of the study was to document the 
ANOVA modeling uncertainty and predictive errors in making predictions about hurricane 
location and intensity 24 to 120 hours beyond known conditions, as reported by the data set.  
A secondary goal was to expose the ANOVA technique to a broader community within 
NASA.  The independent factors considered to have an influence on the hurricane track 
included the current and starting longitudes and latitudes (measured in degrees), and 
current and starting maximum sustained wind speeds (measured in knots), and the storm 
starting date, its current duration from its first appearance, and the current year fraction of 
each reading, all measured in years.  The year fraction and starting date were included in 
order to attempt to account for long duration cyclic behaviors, such as seasonal weather 
patterns, and years in which the sea or atmosphere were unusually warm or cold.  The effect 
of short duration weather patterns and ocean conditions could not be examined with the 
current data set. The responses analyzed were the storm latitude, longitude and intensity, as 
recorded in the data set, 24 or 120 hours beyond the current state.  Several ANOVA 
modeling schemes were examined.  Two forms of validation were used: 1) comparison with 
official hurricane prediction performance metrics and 2) cases studies conducted on 
hurricanes from the 2005 season, which were not included within the model construction 
and ANOVA assessment.  In general, the ANOVA technique did not perform as well as the 
established official prediction performance metrics published by NOAA; still, the technique 
did remarkably well in this demonstration with a difficult data set and could probably be 
made to perform better with more knowledge of hurricane development and dynamics 
applied to the problem.  The technique provides a repeatable prediction process that 
eliminates the need for judgment in the forecast.  

Nomenclature 
ANOVA = Analysis of Variance 
CDF = Cumulative Distribution Function 
LSD = Least Significant Difference 
NOAA = U. S. Department of Commerce National Oceanic and Atmospheric Administration 
NHC = National Hurricane Center 
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Street, Mail Stop 462, Senior Member of AIAA. 

https://ntrs.nasa.gov/search.jsp?R=20070005162 2019-08-30T00:18:29+00:00Z



 AIAA-2007-1101 – Lawrence L. Green 

 
American Institute of Aeronautics and Astronautics 

 

2

 

I. Introduction 
 

 
 

 
Figure 1.  Hurricane 
Katrina near peak 

strength on 8/28/05.  

The devastating effects of tropical storms, especially Hurricane Katrina as shown in 
Figure 1, during the 2005 hurricane season have been well documented by the news 
media over the past years.  Some of the losses produced by the storm are described 
on the Wikipedia website (http://en.wikipedia.org/wiki/Hurricane_Katrina) in the 
following quote: 

It is possible that Katrina was the largest hurricane of its strength to approach the 
United States in recorded history; its sheer size caused devastation over 100 miles 
from the center. The storm surge caused major or catastrophic damage along the 
coastlines of Louisiana, Mississippi, and Alabama, including the cities of Mobile, 
Alabama, Biloxi and Gulfport, Mississippi, and Slidell, Louisiana. Levees separating 
Lake Pontchartrain from New Orleans, Louisiana were breached by the surge, 
ultimately flooding roughly 80% of the city and many areas of neighboring parishes. 
Severe wind damage was reported well inland, and hurricane force wind gusts were 
reported from Baton Rouge, Louisiana to Dothan, Alabama. Katrina is estimated to 
be responsible for over $115 billion (2005 US dollars) in damages, making it the 
costliest disaster in U.S. history. The storm has killed at least 1,604 people, making it 
the deadliest U.S. hurricane since the 1928 Okeechobee Hurricane. 

The following list of staggering statistics was made available by the Department of Homeland 
Security website (http://www.dhs.gov/interweb/assetlibrary/katrina.htm): 

•  Approximately 90,000 square miles were hit by the storm – roughly the size of Great 
Britain – directly affecting 1.5 million people. Commercial infrastructure was heavily 
damaged, with ports – of which one-quarter of all U.S. imports and exports pass 
through – closed after sustaining damage. Airports, railroads, bridges, warehouses, 
wharves, offshore facilities, roads, schools and hospitals were also closed after getting 
hit. 

•  The Coast Guard rescued 33,000 people -- six times higher than the number of rescues 
in all of 2004.  

•  The U.S. Department of Homeland Security’s Federal Emergency Management 
Agency (FEMA) coordinated the rescue of more than 6,500 people and for the first 
time deployed all 28 of its Urban Search and Rescue teams for a single event. 

•  Through USDA’s various feeding programs and in partnership with many faith-based 
and community organizations, over 20 million pounds of food were delivered and 
served to displaced residents, including almost 2 million pounds of baby food.  

•  Nearly 1.9 million households were signed up to receive close to $900 million in 
USDA food stamps. 

•  More than 700,000 households have received apartment rental assistance under 
FEMA’s Individuals and Households Assistance Program ($1.7 billion committed).  

•  85,000 households affected by…hurricanes have received temporary lodging through 
FEMA ($560 million).  

•  180,000 damaged roofs have been covered by the U.S. Army Corps of Engineers under 
FEMA’s “Blue Roof” program, allowing families to remain in their homes as 
rebuilding occurs.  

•  Over 10,000 displaced residents were placed in housing across the country primarily 
near the hurricane region by the USDA, working with U.S. Department of Housing 
and Urban Development (HUD).  

•  Nearly $17.4 billion has been paid out to National Flood Insurance Program 
policyholders.  
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•  More than 1.8 million housing inspections have been completed in Alabama, 
Louisiana, Mississippi and Texas.   

For NASA, Hurricane Katrina also produced severe consequences in the forms of lost productivity, damaged 
facilities, and devastating and demoralizing effects for NASA civil servants and contractors.  The following 
September quote from the U.S. Department of State website (http://usinfo.state.gov/gi/Archive/2005/Sep/12-
666063.html), following the late August 2005 hurricane, sums up the damage to NASA: 

NASA's Stennis Space Center, a sprawling facility on the Mississippi Gulf Coast where 
space shuttle main engines are tested, and Michoud Assembly Facility, where space 
shuttle external fuel tanks are manufactured east of New Orleans, are in the storm-
ravaged areas…Facilities at Stennis and Michoud suffered some significant damage but 
are largely intact. Inspections revealed the potential for only minimal damage to flight 
hardware.  A large number of workers lost their homes; transportation is a problem due 
to flooded roads and washed-out bridges leading to both facilities.  A preliminary 
estimate indicates damage to NASA facilities and other costs associated with the 
hurricane could reach $1.1 billion, with an estimated $600 million in costs at Stennis and 
$500 million at Michoud. 

Although numerous Space Shuttle launch delays are attributed to the effects of bad weather, relatively few have 
been due directly to hurricanes, so far, as described in this quote from the article “SHUTTLE SCRUBS - An 
Analysis of STS Launch Delays, 1981-2000” (http://www.abo.fi/~mlindroo/spacemarkets/STSSCRUB.HTM): 

Bad weather is the most common reason why Shuttle launches are delayed (31 scrubs -- 
but only five pre-Challenger -- out of 111, or 28 per cent). However, the launch rarely 
has to be suspended for more than 1-2 days (the only exception being STS-79 which had 
to be rolled back into the VAB for protection from Hurricane Fran in October 1996; the 
delay lasted three weeks). 

 
The Federal Government has already provided NASA an additional $126 million dollar supplement during FY2005 
for hurricane damage that occurred during 2004, and another $328.4 million dollars that were part of an October 28, 
2005 reallocation package for losses incurred during FY2005 by Katrina (The Library of Congress Congressional 
Research Service November 17, 2005 Report for Congress, http://www.fas.org/sgp/crs/space/RS22063.pdf).   So, 
clearly, NASA has an interest in hurricane prediction. 
 
Analysis of variance (ANOVA) is a statistical technique that subdivides the total variation of a set of data into 
component parts associated with specific sources of variation1-4.  The technique is widely used in some fields, most 
notably in medical and pharmaceutical studies, but has only been applied in engineering studies infrequently, 
particularly at NASA.  For example, a recent search of the NASA Technical Report Server revealed only 323 
citations using the words “Analysis of Variance” compared to the almost 1 million citations in the data base dating 
from about 1964.  Other techniques that are used to make hurricane forecasts include: 1) dynamics models which 
use the physical laws and principles to models the atmospheric dynamic phenomena and numerical models to solve 
the primitive equations of mass conservation, momentum and energy conservation, 2) statistical models which use 
classification tools to identify from the history which storms exhibit similar behavior to the current storm and 
estimate the displacement and/or intensity based on historical information, and 3) dynamical statistical models 
which are mixtures of the dynamical and statistical models where the outputs from numerical models are used to 
estimate the atmospheric dynamic conditions of the storm and this atmospheric analysis is input into the statistical 
model to derive the final prediction5.  Several 2005 hurricanes are examined using a dynamical statistical model in 
Ref. 5.  Another paper introduces the importance of microphysics in forecasting the track and intensity of a 
hurricane6.  Others have looked to potential of improved measurement capabilities7 to improve hurricane prediction.  
Another paper8 discusses the potential uncertainty in hurricane track forecasting, which will be discussed more later 
in this paper.  The ANOVA method presented here is one of the statistical techniques, as described in Ref. 5. 
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The primary goal of the study was to document the ANOVA modeling uncertainty and predictive errors in making 
predictions about hurricane location and intensity 24 to 120 hours beyond known conditions, as reported by the data 
set.  A secondary goal was to expose the ANOVA technique to a broader community within NASA.  The application 
of ANOVA to historical hurricane data is, perhaps, an extremely challenging uncertainty analysis problem since the 
predictability of hurricane tracks and intensity is limited.  The U. S. Department of Commerce National Oceanic and 
Atmospheric Administration (NOAA) website provides measures of the ability of the National Hurricane Center 
(NHC) to accurately predict the track and intensity of North Atlantic Basin hurricanes.  For example, the average 
error (50%) for their 48-hour track prediction has steadily decreased from about 300 nautical miles (nm) in 1970 to 
about 110 nm in 2004, as shown in Figure 2.  Over the same period, the average error for the 48-hour intensity 
prediction has only decreased slightly, from about 17 knots (kt) in 1970, to about 14 kt currently, as shown in Fig. 3.  
And, about 5% of the track and intensity errors for 48-hour predictions are still of a magnitude of about 300 nm and 
40 kt, respectively, as shown in Figures 4 and 5.  The 48-hour forecast is often important for emergency managers 
and preparedness actions and is the only forecast for which a 2009 goal is published, that being the average track 
error of no more than 125 nm, despite achieved performance slightly better that this goal in 2004.   

 

Figure 2.  National Hurricane Center Official Annual 
Average Track Errors. 

  

Figure 3.  National Hurricane Center Official Annual 
Average Intensity Errors. 

 

Figure 4.  National Hurricane Center Official Track 
Error Cumulative Distribution Function. 

 

Figure 5.  National Hurricane Center Official 
Intensity Error Cumulative Distribution Function. 
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II. Uncertainty Analysis Method 
 
The Design-Expert software9-12, version 6.0.10, from Stat-Ease, Inc. was used to perform the ANOVA analysis.  
Hurricane track and intensity data dating from 1851 to the beginning of 2006 were obtained from the NOAA/NHC 
website http://hurricane.csc.noaa.gov/hurricanes/download.html.  The data set included a total of 37234 data points 
providing track and intensity data for 1353 storms.  The data were loaded into Microsoft Excel for pre-processing, 
which consisted of rearranging the data into a convenient form for use with the Design-Expert software, and 
performing a few minor calculations, such as creating a time stamp for each entry from the year, month, date and 
hour entry of each record.  From the original data set, 532 storms (39%) never became hurricanes on the Saffir-
Simpson Hurricane scale shown in Table 1 during their lifetimes [i.e., the storms did not attain maximum sustained 
winds in excess of 74 miles per hour (mph) or 64 kt].  About 23% of the storms recorded became Category 1 
strength hurricanes during their lifetimes, 16% became Category 2 hurricanes, 12% became Category 3 hurricanes, 
7% became Category 4 hurricanes, and only 3% became Category 5 hurricanes.  Those storms which never became 
hurricanes were excluded from the ANOVA modeling and processing.  Also, data from an additional 15 storms that 
did become hurricanes during calendar year 2005, including four that reached Category 5 status (Emily, Katrina, 
Rita, and Wilma) were excluded from the ANOVA modeling and processing, in order to serve as the basis of the 
post-analysis validation studies. Remaining were a total of 26671 recorded measurements, taken at six-hour intervals 
during the lifetimes of 809 North Atlantic Basin hurricanes dating back to 1851, available for this demonstration. 
From these measurements, 23490 could be used to make 24-hour predictions, 20368 could be used to make 48-hour 
predictions, and only 11958 could be used to make 120-hour predictions.  The storms analyzed were not chosen in 
any particular way and thus included a wide variety of storm tracks, with no apparent common patterns across the 
entire data set.  Sample hurricane track data (as discrete points) are shown in Fig. 6, along with a crude 
approximation to the eastern seaboard of the United States of America, and the tracks of two particular storms 
(shown in purple and pink) that will be discussed subsequently.  The point coloring in Fig. 6 indicates the month of 
the year from June through November, and the point size is correlated with the hurricane category, as described in 
the Saffir-Simpson scale, shown in Table 1.    
 
The factors chosen for this demonstration were: 1) a year fraction computed from the current month, day and hour, 
divided by the maximum number of days in the year of record – provides a timeline through a typical year to track 
cyclic behavior on a seasonal basis, 2) the current duration of the storm as measured in six-hour increments as a 
fraction of a year from its inception, 3) the starting date including the year, month, day of the month and hour – 
provides a timeline through all the records to track cyclic behavior on an annual basis, 4) the starting longitude 
value, 5) the starting latitude value, 6) the starting maximum wind speed, 7) the current longitude value, 8) the 
current latitude value, and 9) the current wind speed.  The responses for this demonstration were the actual hurricane 
longitude, latitude and wind speed values ranging from 24 and 120 hours after the input record. 
 
Data typical for each storm is shown in Table 2, in this case, the track and intensity of Hurricane Emily (July 2005).  
Table 2 shows the reading number of the storm, the date and time in universal time or hours Zulu (Greenwich Mean 
Time), the longitude and latitude (in degrees) and maximum sustained wind speed (in knots) of the hurricane, all as 
functions of time. Also shown are the longitude 24 and 48 hours after the current reading, i.e., the first number in 
column seven is the fifth number of column four; the first number of column eight is the ninth number in column 
four.  The specific use of these future states is discussed subsequently. 
 
Three types of uncertainty studies were conducted: 1) one temporal factor (the current longitude, latitude, or wind 
speed) was used to predict a similar response 24 to 120 hours in advance, 2) two or more temporal factors of the 
same type (the current and some previous longitudes, latitudes, or wind speeds) were used to predict a similar 
response 24 to 120 hours in advance, and 3) multiple factors at a given time were used together to predict each of the 
three responses 24 to 120 hours in advance.  The data from Table 2 is used to illustrate these three types of studies.  
In the first analysis type, for example, longitude data (column 4) from Readings 1 through 38 are used to predict the 
longitude data (column 7) for Readings 1 through 38, respectively (24-hour predictions).   In the second type of 
analysis, for example, longitude data from Readings 1 through 34 of columns 4 and 7 are used together to predict the 
data in column 8 (24-hour predictions using storm history data).  Although other variants are possible, this second 
type of analysis will only be shown for data at 24-hour increments, as described, since that is the way the data has 
been arranged for the other studies.  The third type of analysis could use together the longitude, latitude, and wind 
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speed data (columns 4, 5 and 6) from Readings 1 through 38 are used together to independently predict, for 
example, the longitude data of column 7 (24-hour predictions). 
 
In a matter of seconds, a numerical model of user-specified order (linear, 2-factor interference, quadratic, or cubic) 
was calculated to fit the input data.  The model is a polynomial fit to the input data (responses as functions of the 
factors) using a regression process.  Design-Expert computes 95% confidence intervals for each coefficient in the 
polynomial, i.e., each coefficient is given terms of a nominal value, as well as upper and lower bounds which 
represent the range in which the coefficient is expected to lie with 95% confidence.  Because the model is a “best 
fit” to the input data, it does not necessarily pass through all the input data points.  The model is then evaluated at all 
the input conditions, and  residuals (differences between the model value at a given input set and the actual response 
value for the same input set) are produced at each of the input conditions.  A statistical analysis of the model and the 
distribution of the model output values across all of the input sets are also computed.  The software also provides a 
collection of graphical diagnostics which help the user to evaluate the suitability of the input data set for use within 
the ANOVA process and which examine the behavior of the resultant computed data, suggesting transformations 
which should be applied to the data to potentially reduce the modeling uncertainty and/or predictive errors.  Post-
analysis validation studies were also conducted, in which a model generated from selected input data sets was used 
to predict the behavior of other hurricanes not included in the modeling and ANOVA. 
 
For the purposes of this paper, the term “model uncertainty” is used to refer to that range of possible polynomials 
described by the 95% confidence intervals of each polynomial coefficient.  The term “predictive error” is used to 
refer to the difference between a model value at some input set and the actual response value for the same input set; 
this term includes both predictions for the data used to construct the model, as well as predictions for validation data 
sets that were not used to construct the model.   In all cases, the data was used in a predictive sense to determine, as 
though the storms were progressing and data were being measured in real time, if the ANOVA method could 
provide useful 24- to 120-hour predictions of the storm track and intensity.  Another way to use the data would be to 
analyze the data in reverse, to see if the ANOVA method can determine starting or early development hurricane 
characteristics of particularly strong or devastating storms such as Katrina.  The goal of such a study would be to 
identify starting or early development characteristics of storms likely to develop into very strong or devastating 
hurricanes, in order to increase the potential time available to perform evacuations or preventive ground operations 
for the Space Shuttle or other NASA programs.  This technique was not demonstrated for this paper, but a technique 
which examines the predictability of storms from their onset conditions is discussed. 
 
Figure 7, includes track data for hurricanes, tropical storms and tropical depressions, all of which are tracked by 
NOAA/NHC, as well as 50, 100, and 200 mile radius circles (the bulls-eye in the upper left-hand corner) centered at 
Hampton, VA, the site of NASA Langley Research Center.  It should be clear from Figures 6 and 7 that it would be 
difficult to define a “typical” storm path or progression; some storms form in the Gulf of Mexico, some in 
Caribbean, some near the west coast of Africa; some storms form near 10 degrees latitude, while other form at 20 
degrees latitude or more.  Many storms progress from east to west, trending across the Atlantic Ocean toward the 
United States or North America, but a significant number do not follow this pattern and may even circle or go the 
opposite direction.  Again, no attempt was made to select well behaving storms in this demonstration, but unreported 
limited research in eliminating troublesome storms from consideration did improve the prediction errors.  Returning 
to Figure 6, the path of Tropical Storm Josephine (Oct. 1996) is highlighted in purple with large connected circular 
symbols; the storm formed near the western edge of the Gulf of Mexico and moved steadily to the Northeast, and 
happened to pass very close to Hampton, VA.  This storm had the western-most starting point of the storms 
analyzed.  Also highlighted in Figure 6 in pink with large connected square symbols is the path of Hurricane Lili 
(Dec. 1984), which formed in the mid North Atlantic, moved South and East, circled back to the North, then finally 
moved to the South and West.  These two storms are about as atypical as possible, compared to the rest of the storm 
tracks considered, but are certainly representative of the diversity of storms that may occur, and hence, must be 
considered within a statistical analysis. 
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Figure 6.  North Atlantic Basin Hurricanes, Sized by 

the Saffir-Simpson Hurricane Scale. 

 
Figure 7.  North Atlantic Basin Hurricanes and 

Tropical Storms, with Hampton, VA. 
 
The NOAA/NHC hurricane forecast verification procedure is described in detail in numerous web pages beginning 
at http://www.nhc.noaa.gov/verification/verify2.shtml. In particular, Figures 2-5 were all presented there and 
discussed.  As mentioned previously, the stated goal of the NHC is an average 48-hour track forecast prediction 
error of no more than 125 nm, to be achieved by 2009.  Their achieved average 48-hour track forecast prediction 
error was just 107 nm in 2003, better that the stated goal.  The achieved accuracy of 2003 is unusually good, not 
representative of their anticipated accuracy. 
 

The official forecasting process of the NHC draws upon 
many computational models, analyst expertise and 
perhaps, even, intuition.  As shown in Figure 8, at least 
14 different models are currently available for 
predictions early in the lifetime of a storm.  The 48-hour 
annual average (50%) forecast error of these various 
models (symbols) from 1994 through 2004 is compared 
with the average official forecast error (black solid line), 
and the average forecast error from the statistical 
CLIPER5 model (black dashed line) dating from 1972.  
It can be seen that the average 48-hour modeling forecast 
error in 2004 varied from about 160 nm to about 90 nm, 
with the official 48-hour forecast error at about 95 nm.  
Ref. 8 described the 48-hour track prediction uncertainty 
as about 122-145 nm, and indicates that circular areas,  
drawn around the official forecasts, with static radii 
based on NHC’s official forecast error for the last ten 
years of 150 nm at 48 hours, contained the verifying 

Tropical Cyclone position 67-71% of the time8.  Increasing the radius to 250 nm at 48 hours, the circular area 
contained the verifying Tropical Cyclone position 73-76% of the time8.  The official NHC modeling errors will be 
compared with current results later in this paper.  The term “average” as used by the NHC with respect to model 
uncertainties and forecast errors shown in Figures 2-5 and 8 is simply the 50% point on the specific hour prediction 
as shown on a CDF such as in Fig. 4, where half of all the predictions made exceed this value, some by a great 
extent. 

 
Figure 8.  A homogeneous selection of NHC 

"early" models annual average model track errors 
for the period 1994-2004 with NHC official and 
CLIPER5 model errors shown for comparison. 
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III. Results 
 

For simplicity, the ANOVA analysis and prediction technique will first be demonstrated for a tiny subset of all the 
data available, namely the track and intensity data for Hurricane Emily (July 2005) given in Table 2.  This storm 
was chosen for the initial illustration for several reasons: 
 

1) it was the first of four Category 5 hurricanes (Emily, Katrina, Rita, and Wilma) from the 2005 season, as 
shown in Figure 9 along with a crude representation of the eastern seaboard of the United States 

2) it was one of only 72 hurricanes since 1851, and the only hurricane from 2005, that moved monotonically 
from the Southeast of the Atlantic Ocean to the Northwest and toward North America which should 
minimize prediction errors 

3) the author happened to be vacationing on Grand Cayman Island, the tiny spec in the Caribbean Sea of    
Fig. 9, at the time Hurricane Emily was moving through the region. 

 
Figure 10 shows an image representative of what could be observed during television coverage while Hurricane 
Emily approached Grand Cayman Island (center of the red circle).  An online article from Sun-Sentinel 
(http://www.sun-sentinel.com/news/weather/weblog/hurricane/archives/2005/07/index.html) provided the image 
shown in Figure 11, and discussed the official modeling of Hurricane Emily: 
 

Up until now, the computer models have been remarkably consistent in their predictions 
for Tropical Storm Emily.  However, in the last few hours the UKMET model has shifted 
radically northward (the UKMET is the orange line on the attached map, Figure 11).  
The models often disagree, so the National Hurricane Center isn't attaching much 
significance to the change. But it is interesting, especially to the paranoid among us. 
 

The grid in Figure 11 represents five degree blocks of latitude and longitude.  Thus, the track prediction variability 
shown in Fig. 11 is about 10 to 15 degrees longitude at constant latitude, or about 5 to 7 degrees of latitude at a 
constant longitude.  A more detailed discussion of the official track and intensity models used for hurricane 
forecasting can be found at http://www.nhc.noaa.gov/modelsummary.shtml.  Up to nine factors were chosen, or 
created, from the data available (illustrated in Table 2) that could potentially influence the track and intensity of 
hurricanes as they develop and progress.  However, no information was available within this data set regarding local 
atmospheric or water temperatures, or short duration weather patterns which would logically be expected to 
influence the storm development and path.  The demonstration will then be expanded to the full data set described 
previously.  Finally, validation studies will be described for the four Category 5 hurricanes from calendar year 2005. 
 
Figure 12 shows a plot generated by the Design-Expert software for the Hurricane Emily data taken from Table 2, 
where the longitude at 24 hours after a given input point is to be predicted as a function only of the current longitude 
(one independent variable set, one dependent variable set).  The normal probability plot indicates whether the 
studentized residuals (prediction error determined as a difference between the actual measurement and the model 
prediction, divided by the standard deviation of the residuals) follow a normal distribution, in which case the points 
will follow the straight line.  The software warns to expect some scatter even with normal data, and to look for 
definite patterns like an "S-shaped" curve, which indicates that a transformation of the response may provide a better 
analysis.  In this case, the data points follow the straight line quite well indicating a normal distribution which 
departs from a straight line behavior at about 10% and 95% probability.  Figure 12 is interpreted to mean that most 
of the data analyzed for this storm can be reasonably considered to be normally distributed about a mean.  This 
assumption is not necessary for the analysis to be conducted, but is an underlying assumption of the ANOVA 
technique and simplifies discussion of the results.  An additional assumption of the ANOVA technique is that of 
constant variance.  For cases such as this, with very few data points, the assumptions of normality and constant 
variance may not be strictly true, but the validity of the assumptions generally increases substantially as more data 
points are considered.   
 
Figure 13 provides a guideline for selecting the correct power law or logarithmic transformation to be applied to the 
input responses.  A recommended transformation may be listed, based on the best lambda value, which is found at 
the minimum point of the curve generated by the natural log of the sum of squares of the residuals.  If the 95% 
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confidence interval (Low and High C.I. on the figure) around this lambda includes 1, as in the case shown, then the 
software does not recommend a specific transformation.   In this case, the software has recommended that a square 
root transformation with additive constant (k = 110.55) be applied to input responses.  The affect of applying this 
transformation will be discussed subsequently. 

 
 

 
 

Figure 9.  Category 5 hurricanes from 2005. 
 

 
 
 
 
 

 
Figure 10.  Hurricane Emily approaching Grand 

Cayman Island. 
 
 
 
 
 
 

 
Figure 11.  Variation Among Official Track 

Prediction Models for Hurricane Emily. 
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Figure 12.  Design-Expert plot of 

Studentized Residuals vs. the Run Number.
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Figure 13.  Design-Expert Box-Cox plot 

For Power Transformations. 
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Figure 14.  Design-Expert One-Factor plot 
Showing Lng+24 as a function of CurrLng. 

 
 
Figure 14 illustrates the Design-Expert prediction model (solid line) and actual input data responses (circles) used to 
construct the model.  In this case, the software generated the curve by fitting a quadratic to the input data.  The 
independent variable for the cubic curve at each point was the current longitude (CurrLng), and the dependent 
variable at each point was the longitude at 24 hours beyond the current longitude (Lng+24).  For response, the terms 
like Lng24 and Lng+24 are use interchangeably, specifically the former is used in the summary tables.  The error bar 
at the upper right-hand corner of the plot is the 95% least significant difference (LSD) bar, which indicates the 
smallest resolvable differences in the functional values given just the information from the input data sets.  An error 
bar of exactly the same size is also present at the lower-left hand corner of the plot, but has been highlighted with the 
mouse (blue square) to reveal its value of 0.554492 degrees of longitude at the CurrLng value of -96.9 degrees 
longitude, and predicted response value Lng+24 of -100.472; the actual response value at this point had a value of    
-100.5 degrees longitude.  The LSD should be considered the 95% confidence measure of the mean model 
uncertainty.  In addition, as the model does not perfectly replicate all of the input design points, so a prediction error 
must be considered. 
 
At this point, it is necessary to make a digression to discuss how the accuracy of the results in this paper will be 
presented, and how modeling uncertainties and/or prediction errors in longitude are handled.  In order to compare 
results from this paper to the NHC official hurricane forecasts, the results must first be presented in comparable 
units.  The NHC track forecasts have accuracy described in nautical miles, as shown in Figs. 2 and 4.  In Fig. 4, the 
forecast error is presented as a cumulative distribution function (CDF).  Thus, it is expected, for example, that 50% 
of the 96-hour storm track forecast errors (orange curve) will be less than or equal 200 nm.  Similarly, it is expected 
that 95% of the 96-hour storm track forecast errors will be less than or equal about 550 nm.  These bounds include 
all forecasts made, for all storms at all longitudes and latitudes.  Therefore, Design-Expert track errors given in 
degrees longitude and degrees latitude must be converted to nautical miles from the correct storm locations. 
 
From the global convention of defining longitude and latitude, it should be obvious that an error in degrees of 
longitude translates into a nonlinear function in miles (or nautical miles) depending upon the degrees latitude at 
which the error is assessed.  For the calculations in this paper, the Earth is assumed to be perfectly spherical with a 
radius of 4000 miles (3476 nautical miles, 1 mile = 0.868976 nm).  Thus, the circumference of the Earth at zero 
latitude is about 25133 miles or about 21840 nm.  At latitude of 30 degrees, a circle drawn around the earth of 
constant latitude has a circumference of 21766 miles (18914 nm).  The radius of such a circle is proportional to the 
cosine of the latitude angle.  Thus, an error or uncertainty of one degree of longitude is about 70 miles (61 nm) at the 
equator, and about 60 miles (53 nm) at 30 degrees of latitude.  An error or uncertainty of one degree of latitude is 
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always equal to about 70 miles (61 nm).  The modeling uncertainty and the prediction error in degrees of longitude 
and latitude must be combined to determine a total uncertainty or error in nm.   For individual forecast points, it is a 
simple matter to compute the correct longitude uncertainty or error associated with a given prediction latitude.  
However, because the model development is associated with many storms that each move over a different range of 
longitude and latitude during its lifetime, (in general, all the hurricanes recorded from 1851 to 2004) it is unclear 
how to correct for longitude uncertainty or error.  Since the bulk of the eastern seaboard of the United States lies 
between 25 and 45 degrees north latitude (as shown in Figure 2, the northern shore of the Gulf of Mexico is at about 
30 degrees longitude), longitude corrections will only be shown at 30 degrees latitude unless otherwise noted.  The 
NHC also reports wind speed forecast errors in knots (nm/hour), so that from Table 1, a Category 1 hurricane ranges 
in wind speed from about 74 miles per hour (64 knots) to about 95 miles per hour (83 knots). 
 
Returning to the example above, it is instructive to examine a piece of the ANOVA output from Design-Expert, as 
shown in Figure 15.  Line 1 simply identifies the response being analyzed, in this case, Lng+24, the longitude 24 
hours after the input longitude.  Line 2 indicates the order of polynomial that was fitted to the input data using 
regression methods, here a quadratic.  Lines 4 through 10 provide information about the model terms estimating 
factor effects and the residual (prediction error).  Specifically, (quoting again from the Design-Expert Help screens) 
the Sum of Squares (SS) is the total of the sum of squares for the terms in the model, as reported on the Model 
screen for a response surface method, such as this example.  The Degrees of Freedom (DF) for the model is the 
number of model terms, including the intercept, minus one.  The Mean Square (MS) is an estimate of the model 
variance, calculated by the model sum of squares, divided by model degrees of freedom.  The F Value shows the test 
for comparing model variance with residual (error) variance.  If the variances are close to the same, the ratio will be 
close to one and it is less likely that any of the factors have a significant effect on the response.  The F Value is 
calculated by Model Mean Square divided by Residual Mean Square.  The Prob > F is Probability of seeing the 
observed F value if the null hypothesis is true (i.e., there is no factor effect and the F Value is obtained purely by 
chance).  Small probability values call for rejection of the null hypothesis.  The probability equals the proportion of 
the area under the curve of the F-distribution that lies beyond the observed F value.  The F distribution itself is 
determined by the degrees of freedom associated with the variances being compared.  In "plain English", if the 
Prob>F value is very small (less than 0.05) then the terms in the model have a significant effect on the response. 
 
Lines 12 through 15 give a collection of summary statistics for the model.  The Std Dev: (standard deviation or Root 
Mean  Square Error, MSE) is the square root of the residual mean square described above, which is essentially an 
estimate of the standard deviation associated with the experiment.  The Mean is the overall average of all the 
response data.  The C.V. is Coefficient of Variation, i.e., the standard deviation expressed as a percentage of the 
mean, which is calculated by dividing the Std Dev by the Mean and multiplying by 100.  The PRESS is Predicted 
Residual Error Sum of Squares, which is a measure of how the model fits each point in the design.  The PRESS is 
computed by first predicting where each point should be from a model that contains all other points except the one 
in question.  The squared residuals (difference between actual and predicted values) are then summed.  The R-
Squared is a measure of the amount of variation around the mean explained by the model.  The adjusted R-squared 
(Adj R-Squared) is a measure of the amount of variation around the mean explained by the model, adjusted for the 
number of terms in the model; it decreases as the number of terms in the model increases, if those additional terms 
don’t add value to the model.  The predicted r-squared (Pred R-squared) is a measure of the amount of variation in 
new data explained by the model.  When the predicted r-squared and the adjusted r-squared differ by more than 
0.20, the user should look for outliers, consider transformations, or consider a different order polynomial to reduce 
the model uncertainty and/or predictive errors associated with the model.  Adequate Precision (Adeq Precision) is a 
signal-to-noise ratio; values greater than 4 indicate adequate model discrimination. 
 
A Factor is one of the experimental variables selected for inclusion in the predictive model.  Lines 17-21 provide 
statistics for each of the factors currently in the model, in coded form.  The coded form variables are a scaling of the 
independent variable values, produced by the software, to allow the calculations to be performed independent of the 
units for each factor; these always range from  -1 to +1 for each factor in the model.  The Coefficient Estimate is the 
regression coefficient representing the expected change in a response per unit change in a specific Factor when all 
remaining factors are held constant.  The DF is the Degrees of Freedom for the term, equal to one for testing 
coefficients.  The Standard Error is the standard deviation associated with the coefficient estimate.  The 95% 
Confidence Intervals (CI) High and Low represent the range that the true coefficient should be found in 95% of the 
time.  If this range spans 0 (one limit is positive and the other negative) then the coefficient of 0 could be true, 
indicating the factor has no effect.  The Variance Inflation Factor (VIF) measures how much the variance of the 
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model is inflated by the lack of orthogonality in the design.  For orthogonal factors, the VIF is one; VIF > 10 
indicates that the factors are too correlated to be treated as independent.  The term “A-CurrLng” in line 20 is a 
combination of Design-Expert’s notation for factors (A, B, C, …) and the user’s name for the factor, in this case, the 
current longitude of a hurricane (CurrLng).  Similarly, A2 in lines 21 and 28 is simply the value of A squared; 
CurrLng2 in line 35 is simply the value of CurrLng squared.  Lines 25-28 represent the quadratic model in coded 
form; lines 32-35 represent the quadratic model in actual variable values. 
 

Line ANOVA       
Number Output       

1 Response: Lng+24      

2 ANOVA for Response Surface Quadratic Model   

3 Analysis of variance table [Partial sum of squares]    

4  Sum of  Mean F   

5 Source Squares DF Square Value Prob > F  

6 Model 10309.994 2 5154.9971 25042.75 < 0.0001 significant 

7 A 10307.179 1 10307.179 50071.824 < 0.0001  

8 A2 18.828866 1 18.828866 91.469803 < 0.0001  

9 Residual 7.2046761 35 0.2058479    

10 Cor Total 10317.199 37     

11        

12 Std. Dev. 0.4537046  R-Squared 0.9993017   

13 Mean 
-
76.194737  

Adj R-
Squared 0.9992618   

14 C.V. -0.595454  
Pred R-
Squared 0.9991306   

15 PRESS 8.9697562  
Adeq 
Precision 412.0728   

16        

17  Coefficient  Standard 95% CI 95% CI  

18 Factor Estimate DF Error Low High VIF 

19 Intercept 
-
76.324323 1 0.1141498 -76.55606 

-
76.092587  

20 A-CurrLng 26.265519 1 0.1173787 26.027228 26.503811 1.000688 

21 A2 2.1177315 1 0.2214277 1.6682093 2.5672537 1.000688 

22        

23 Final Equation in Terms of Coded Factors:    

24        

25  Lng+24 =     

26  
-
76.324323      

27  26.265519 * A     

28  2.1177315 * A2     

29        

30 Final Equation in Terms of Actual Factors:    

31        

32  Lng+24 =     

33  4.6444104      

34  1.3611452 * CurrLng     

35  0.0028519 
* 
CurrLng2      

Figure 15.  Sample Design-Expert Output. 
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Lines 23-28 show the predictive model equation in coded form.  It is convenient to consider the model uncertainty at 
the average input location, since this point is near most of the input data, and hence is representative of the design 
space.  Moreover, since all the terms in the model, except the intercept, will be multiplied by products of the input 
factors always equal to zero in coded terms, they contribute nothing to the model uncertainty independent of the 
model chosen, or the number of factors.  The one-sided 95% model uncertainty is simply the difference between the 
High 95% CI and the mean value, for the Intercept, translated to appropriate units.   
 
Here, the 95% CI difference is about 0.463 degrees longitude, so the one-sided 95% model uncertainty is about 
0.232 degrees longitude, i.e., 14 miles or 12 nm (1 mile = 0.868976 nm), when evaluated at 30 degrees longitude, as 
described above.  This convention will be used to report the one-sided model uncertainty as simply the difference 
between the 95% CI High minus the Coefficient Estimate, for the intercept, converted to appropriate units.  The 
value of the LSD = 0.554492 degrees of longitude could alternatively be used to evaluate the model uncertainty (half 
above the mean value, and half below the mean value, here providing a one-sided uncertainty bound of 15 nm).  
This is proportional to the intercept uncertainty method, but has three distinct disadvantages relative to using the 
model intercept uncertainty described above: 1) the calculation of the LSD involves matrix operations, compared to 
a scalar calculation above, and 2) the calculation of the LSD is only performed by the software at the bounds of the 
domain of interest, possibly far away from many of the input points, with the consequent loss of accuracy relative to 
an average point, and 3) the LSD calculation has an intermittent, known bug in version 6 of the Design-Expert 
software which was acknowledged by a company statistician after the author contacted them with specific question 
regarding the LSD calculation; the bug allows the LSD to be calculated inconsistently in certain situations, 
depending on the state of the computer memory, and has reported been fixed in version 7 of the software.   
 
The predictive error will also be evaluated so as to bound the mean of a normal distribution by 50% and 95%, using 
the mean and standard deviation reported in lines 12 and 13 of Fig. 15.  Specifically, the one-sided 50% predictive 
error will be computed using the Excel function NORMINV(0.75,Mean Value, Std Dev) = NORMINV(0.75,-
76.195,0.454) = -75.88 degrees longitude; the change from the mean value is 0.440 degrees longitude, or 16 nm, 
evaluated at 30 degrees latitude, as described above.  Similarly, the 95% predictive error will be computed using the 
Excel function NORMINV(0.975,Mean Value, Std Dev) = NORMINV(0.975, ,-76.195,0.454) = -75.30 degrees 
longitude; the change from the mean value is 1.02 degrees longitude, or 47 nm, evaluated at 30 degrees latitude, as 
described above.  These procedures provide clear, simple, repeatable, representative, and consistent means to 
evaluate both the model uncertainty and the prediction error across many diverse cases. 
 

The use of transformations suggested by the software to 
ensure the assumption of constant variance (here to use a 
square root transformation with additive constant of 
110.55) is also henceforth dispensed with, because the 
practice makes comparisons with the reference NHC 
forecast goals less clear and frequently does not 
noticeably change the conclusions drawn from the 
results.  Figure 16 illustrates the Design-Expert 
prediction model (solid line) in the transformed space.  
In this case, the software generated the curve by fitting a 
cubic to the transformed input response data (circles).  
The independent variable for the cubic curve at each 
point was the current longitude (CurrLng), and the 
dependent variable at each point was the square root of 
the quantity 110.55 added to the longitude at 24 hours 
beyond the current longitude.  In many cases, the 
transformation does reduce the model coefficient 
uncertainty range, or reduce the predictive errors 
associated with the use of a given model, but not in all 
cases.  Here, the standard deviation in the transformed 
space would be about 0.034 and the one-sided 
confidence interval about the intercept would be about 
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Figure 16.  Design-Expert One-Factor plot 
Showing Lng+24 as a function of CurrLng.
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0.02; as shown in Fig. 16, the LSD is reduced to about 0.052.  In order to understand how this transformation would 
translate into improved model uncertainties and errors, the transformation must be reversed for each point of 
interest.  That is to say that High, Nominal, and Low values for each response must be de-transformed independently 
and then compared in the untransformed space.  For the case at hand, the model uncertainty computed from the 
intercept confidence interval would be 0.189 nm (compared to 12 nm above), or from the LSD would about the 50% 
prediction error would be about 0.915 nm (compared to 16 nm above), and the 95% prediction error would be about 
0.12 nm (compared to 47 nm above).  It is worth noting that some publications indicate this de-transformation 
process is not a recommended practice.  Certainly, the inversion of a transformation can only reasonably be carried 
out in the manner described, i.e., an increment must be added to, or subtracted from, a relevant model value in the 
transformed space, each new value is de-transformed separately, and then differenced with the relevant model value 
in the untransformed space; no incremental value like a standard deviation, CI, or LSD, should be simply 
untransformed by itself.   
 
Next, the prediction of latitude 24 hours after a given point in the Table 2 data set, from the current latitude only, is 
conducted using as similar process as that described above for the longitude.  In this case, the normality distribution 
of the input data is poor.  Other characteristics of the data set are quite similar to those previously shown.  The 
resulting quadratic curve fit given in Eq. 1 to the input data is shown in Figure 19.  In this case, the modeling 
uncertainty, as defined by the intercept CI is only 7 nm, the 50% predictive error is 98 nm, and the 95% predictive 
error is 283 nm. 
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Figure 17.  Design-Expert One-Factor plot 
Showing Lat+24 as a function of CurrLat. 

 

 
 
 
 
 
 
 
 
 
 

Lat+24 =  

-12.751694   

2.73951321 * CurrLng (1) 

-0.0486222 * CurrLng^2  

   

  

   
   
   

 
The longitude model shown in lines 32-35 of Fig. 15 can be used with the latitude model shown above in Eq. 1 to 
determine how accurately the model would predict the behavior of the Hurricane Emily, if all of its movements were 
known in advance. Combining longitude and latitude results, with longitude corrections made using the predicted 
latitudes, summing the squared error components in the two directions, and then taking the square root to obtain the 
total error as a distance, it is found that the maximum track error would be about 63 nm, the minimum track error 
would be about 6 nm, the average track error would be about 29 nm, with a standard deviation of about 15 nm.  It 
might be surprising to some people that, even if its movements were known in advance, a track prediction error 
occurs.  This is simply because the Design-Expert model does not perfectly fit the data given; thus, some prediction 
error will always be present. 
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To conclude this first demonstration, the current value of wind intensity (CurrWnd) is used to predict the wind 
intensity 24 hours in advance (Wnd+24) for Hurricane Emily.  The normality distribution is poor.  The one-sided 
model uncertainty determined from the intercept CI is only about 14 one knots (kt), or 16 miles per hour (mph).  The 
one-sided 50% predictive error is about 18 kt.  The 95% predictive error is about 51 kt.  A summary of the various 
predictions for the longitude, latitude, track error, and wind speed for Hurricane Emily, assuming all the storm’s 
track and intensity were known in advance, are presented in Tables 3 through 6, respectively.  In Tables 3 through 6, 
results of Analysis Type 1T (one temporal factor) use only the current longitude, latitude, or wind speed to predict a 
similar future quantity 24 or 48 hours in advance.  Results of Analysis Type 2T (two temporal factors) use the 
current longitude, latitude, or wind speed and same quantity 24 hours previous, to predict a similar future quantity 
24 hours in advance.  Results of Analysis Type 3X (three crossed, or mixed, factors) use the current longitude, 
latitude, and wind speed together, to independently predict each one of these quantities 24 or 48 hours in advance.  
Finally, results of Analysis Type 9X (nine crossed, or mixed, factors) use the set of nine independent variables 
previously described together, to independently predict one of three quantities (longitude, latitude, or wind speed) 24 
or 48 hours in advance.  From Table 3, it can be seen that the 24-hour modeling uncertainty and prediction errors 
decreased slightly for the 1T Analysis Type as more data points were considered.   A similar effect was observed for 
the 3X Analysis type, but not for the 9X Analysis Type.  The 1T Analysis Type clearly has the smallest modeling 
uncertainty of the four analysis methods, whereas the 3X Analysis Type has the smallest prediction errors.  Similar 
effects are also observed in Table 4 with the latitude.  In Table 5, the track error, computed as the square root of the 
squared sum of similar elements from Tables 3 and 4, also has the same behavior; favorable comparisons are made 
in several instances with the achieved 50% and 95% prediction errors from the NHC; however, recall the ANOVA 
model uncertainty and prediction errors presented in Tables 3 through 5 assume that the behavior of Hurricane 
Emily were already known in advance.  In Table 6, only the 3X Analysis Type cases fare better than the official 
intensity predictions from the NHC. 
 
The results for applying the ANOVA technique to the entire set of hurricane data from 1851 to 2004 are now 
described.  As noted before, and illustrated in Table 2, because of the way the data is presented to the software for 
use in 48-, 72-, 96-, and 120-hour track and intensity predictions, it is also possible to make predictions for shorter 
time intervals, but with fewer data points being considered.  Thus the 48-hour data set can be used to make 24-hour 
predictions, but using 20368 data points, instead of the available 23490.  Also, the data can be simply renamed from, 
for example, CurrLng, Lng+24, Lng+48, Lng+72, Lng+96, and Lng+120 to Lng-24, CurrLng, Lng+24, Lng+48, 
Lng+72, and Lng+9, respectively, which enables the type 2 analyses discussed previously (multiple temporal factors 
used to predict future behavior) when Table 2 was introduced.  With this larger data set, two new variants of the 
multiple temporal factor analyses discussed in Tables 3 through 6 are introduced.  These new Analysis Type 2 
variants are the 3T (uses, for example, Lng-48, Lng-24, and CurrLng to predict Lng+24, Lng+48, Lng+72), and the 
4T.  The 4T Analysis Type uses, for example, Lng-72, Lng-48, Lng-24, and CurrLng to predict Lng+24 and 
Lng+48.  Tables 7 through 10 summarize the application of the ANOVA technique to the complete specific data sets 
for each of the 24-, 48-, 72-, 96-, and 120-hour latitude predictions.  A maximum of 23490 data points are available 
with which to make 24-hour predictions (see Case Index 22-24 of Table 3).  It is expected that using more prior 
information should improve the forecasting ability since the tool can reasonably fit such groups of data with 
quadratic or cubic models of greater accuracy than is possible with the Type 1T analyses.   
 
From Table 7, 8, and 9, it can be seen that the 24-hour modeling uncertainty and prediction errors increased slightly 
for the 1T Analysis Type as more data points were considered, in contrast to what was observed previously with the 
smaller data set.   Similar effects are observed for the 48- to 96-hour predictions.  As expected, the 2T, 3T, and 4T 
analysis types do improve upon the 1T analysis type, indicating that using some previous information does indeed 
help to predict the future state, although the best results are obtained with just previous information from 24 hours 
before the current state.  The 3X analysis type also improve the prediction accuracy over the 1T analysis type; even 
greater improvements are observed with the 9X analysis type, compared to 1T analysis type.  As expected, this 
indicates that the ANOVA technique is able to sort out data variability effects due to the various factors, but not to a 
sufficient degree to beat the experts at their forecasts.  In all the 1T, 2T, 3T, and 4T cases, the modeling uncertainty 
is relatively small, perhaps negligible, because having chosen a specific model for prediction, the modeling 
uncertainty is somewhat irrelevant.  As expected, in all cases the modeling uncertainties and prediction errors varied 
with the length of the projected forecast, i.e., 48-hour prediction errors are greater than similar errors for a 24-hour 
prediction.  Surprisingly, as seen in Table 10, all of the maximum wind speed prediction accuracies are comparable 
to the NHC forecast accuracies. 
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The best combined track model uncertainty and track prediction error results are obtained from the 2T analysis type, 
which is was used to predict across the calendar year 2005 hurricanes, with special interest in the prediction 
accuracy for the Category 5 hurricanes, as shown in Table 11.  The best maximum track prediction performance was 
obtained for the application to Hurricane Emily data, though again the prediction errors were greater than 95% 
cumulative errors published by the NHC.  The best average track prediction performance was obtained for the 
application to Hurricane Wilma data, which was slightly better than the NHC published prediction accuracy at both 
24 and 72 hours, both highlighted in Table 11. 
 
A final analysis was conducted in which the starting longitude, latitude, maximum sustained wind speed, and year 
fraction were used in an attempt to predict the maximum lifetime wind speed and total duration of storms.  Again, 
data from 1851 to 2004 were analyzed, and the resulting models applied to the 2005 storm set.  In this case, all 
storms were considered for both analysis and validation, since at the onset, it cannot be determined how strong a 
given storm will become, or how long it may last.  Unfortunately, this study did not yield useful results for the 2005 
season of storms.  Since the residuals for each of the calculations are proportional to the goodness of the model fit to 
the input data, a second attempt was made using the same input variables, but with the absolute values of the 
predictive errors (residuals) from the previous exercise used as the input responses in this second study.   
 
The predictive models developed by fitting the residuals, noted above, as functions of the starting longitude, latitude, 
maximum sustained wind speed, and year fraction, for the 1851 to 2004 storm set, were applied to each of the 2005 
storms in order to determine if the ANOVA technique could discern from a storm’s initial conditions whether it 
would be “difficult to predict” (i.e., predictive errors greater than the average).  Of the 28 storms during the 2005 
season, nine of the storms would be “difficult to predict” in the maximum lifetime sustained wind speed, and 12 
would be “difficult to predict” in total storm duration from just the initial location, intensity, and year fraction.  Of 
those nine storms for which the maximum lifetime sustained wind would be deemed “difficult to predict” this 
screening method correctly identified seven (78%), with two misses, most notably on Hurricane Katrina.  Of the 12 
storms for which the maximum duration would be “difficult to predict”, the screening method correctly identified 
67%.  Considering the correct identification of both “easy to predict” and “difficult to predict” storms, the success 
rate is only 64%, with a 25% false alarm rate (maximum lifetime sustained wind falsely indicated as “difficult to 
predict” from its initial conditions), and an 11% miss rate for the maximum lifetime sustained wind speed; the 
method was even less accurate for correctly determining the ultimate predictability of the storm duration.  This 
screening technique did, however, correctly identify four of the five Category 4 and 5 hurricanes (Dennis, Emily, 
Rita, and Wilma) during the 2005 season as “difficult to predict”, and correctly identified one Category 3 hurricane 
as “easy to predict”.  So, for high intensity hurricanes, of most concern for emergency operations planning, this 
technique would have correctly identified 71% as possibly requiring “special attention” in their modeling. 

IV. Conclusions 
A demonstration of applying the Analysis of Variance (ANOVA) technique to historical hurricane track data was 
presented.  In general, wind intensity predictions were as good as, or better than, those equivalent prediction metrics 
produced by the National Hurricane Center (NHC). Latitude model uncertainties and prediction errors were 
generally smaller than comparable longitude model uncertainties and prediction errors.  Modeling uncertainties and 
prediction errors generally grew larger as the prediction period increased from 24 to 120 hours.  In general, 
modeling uncertainties grew larger as more factors were considered, but prediction errors decreased as more factors 
were considered.  This indicates that the ANOVA technique was able to allocate variation among the data entries 
better as more variables were considered.  Although very few of the ANOVA predictions were better than those 
from the NHC, the ANOVA technique still did fairly well with predictions from a large data set exhibiting a great 
amount of variability, and despite the inclusion of storms which deviated significantly from an expected east to west 
progression, in the North Atlantic Ocean, toward North America.  A validation exercise was conducted in which the 
predictive models developed through the ANOVA technique were applied to four Category 5 hurricanes from 
calendar year 2005.  The best maximum track prediction performance was obtained for the application to Hurricane 
Emily data, though again the prediction errors were greater than 95% cumulative errors published by the NHC.  The 
best average track prediction performance was obtained for the application to Hurricane Wilma data, which was 
slightly better than the NHC published prediction accuracy at both 24 and 72 hours.  An additional technique was 
discussed in which the ANOVA method was used to screen storms at their onset as to their ultimate predictability 
with respect to maximum lifetime sustained winds and storm duration. 
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Table 1.  The Saffir-Simpson Hurricane Scale 

 

Category 

Sustained 
Winds 
mph 
(kt) 

Storm 
Surge 

(ft) 
Potential Damage 

1 74-95 
(64-82) 4-5 

No real damage to building structures. Damage primarily to 
unanchored mobile homes, shrubbery, and trees. Also, some 

coastal flooding and minor pier damage. 

2 96-110 
(83-95) 6-8 

Some roofing material, door, and window damage. 
Considerable damage to vegetation, mobile homes, etc. 

Flooding damages piers and small craft in unprotected boats 
may break their moorings. 

3 111-130 
(96-112) 9-12 

Some structural damage to small residences and utility 
buildings, with a minor amount of curtain wall failures. Mobile 
homes are destroyed. Flooding near the coast destroys smaller 
structures with larger structures damaged by floating debris. 

Terrain may be flooded well inland. 

4 131-155 
(113-134) 13-18 

More extensive curtain wall failures with some complete roof 
structure failure on small residences. Major erosion of beach 

areas. Terrain may be flooded well inland. 

5 >= 156 
(>=135) >= 19 

Complete roof failure on many residences and industrial 
buildings. Some complete building failures with small utility 

buildings blown over or away. Flooding causes major damage 
to lower floors of all structures near the shoreline. Massive 

evacuation of residential areas may be required. 
All wind speeds are based on a one-minute average. 

Intensity of example hurricanes is from both the time of landfall and the maximum intensity. 
From http://en.wikipedia.org/wiki/Saffir-Simpson_Hurricane_Scale 
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Table 2.  The History of Hurricane Emily (July 2005) 
 

Reading Date Time 
Hours Zulu 

Longitude
degrees 

Latitude 
degrees 

Wind 
Speed 
knots 

Longitude 
at 

T+24 Hours 
degrees 

Longitude 
at 

T+48 Hours
degrees 

1 7/11/2005 0000Z -42.4 10.7 25 -46.8 -53.7 
2 7/11/2005 0600Z -43.4 10.8 30 -48.5 -55.4 
3 7/11/2005 1200Z -44.4 10.9 30 -50.2 -57.2 
4 7/11/2005 1800Z -45.4 11 30 -52 -58.9 
5 7/12/2005 0000Z -46.8 11 35 -53.7 -60.2 
6 7/12/2005 0600Z -48.5 11 40 -55.4 -61.5 
7 7/12/2005 1200Z -50.2 11 45 -57.2 -63.2 
8 7/12/2005 1800Z -52 11 45 -58.9 -64.9 
9 7/13/2005 0000Z -53.7 11 45 -60.2 -66.7 

10 7/13/2005 0600Z -55.4 11.1 45 -61.5 -68.4 
11 7/13/2005 1200Z -57.2 11.2 50 -63.2 -70.1 
12 7/13/2005 1800Z -58.9 11.4 55 -64.9 -71.8 
13 7/14/2005 0000Z -60.2 11.6 70 -66.7 -73.4 
14 7/14/2005 0600Z -61.5 11.9 75 -68.4 -75 
15 7/14/2005 1200Z -63.2 12.4 85 -70.1 -76.5 
16 7/14/2005 1800Z -64.9 12.9 100 -71.8 -78 
17 7/15/2005 0000Z -66.7 13.3 110 -73.4 -79.5 
18 7/15/2005 0600Z -68.4 13.7 115 -75 -81.2 
19 7/15/2005 1200Z -70.1 14.1 115 -76.5 -82.8 
20 7/15/2005 1800Z -71.8 14.5 95 -78 -84.3 
21 7/16/2005 0000Z -73.4 14.9 110 -79.5 -85.8 
22 7/16/2005 0600Z -75 15.4 120 -81.2 -87.3 
23 7/16/2005 1200Z -76.5 15.9 130 -82.8 -88.9 
24 7/16/2005 1800Z -78 16.4 135 -84.3 -90.3 
25 7/17/2005 0000Z -79.5 17.1 140 -85.8 -91.5 
26 7/17/2005 0600Z -81.2 17.7 135 -87.3 -92.8 
27 7/17/2005 1200Z -82.8 18.3 130 -88.9 -94 
28 7/17/2005 1800Z -84.3 18.9 125 -90.3 -95.1 
29 7/18/2005 0000Z -85.8 19.5 120 -91.5 -96.1 
30 7/18/2005 0600Z -87.3 20.3 115 -92.8 -96.9 
31 7/18/2005 1200Z -88.9 21.3 65 -94 -97.6 
32 7/18/2005 1800Z -90.3 22 65 -95.1 -98.7 
33 7/19/2005 0000Z -91.5 22.6 75 -96.1 -99.7 
34 7/19/2005 0600Z -92.8 23.2 80 -96.9 -100.5 
35 7/19/2005 1200Z -94 23.7 80 -97.6   
36 7/19/2005 1800Z -95.1 24.1 85 -98.7   
37 7/20/2005 0000Z -96.1 24.4 110 -99.7   
38 7/20/2005 0600Z -96.9 24.6 110 -100.5   
39 7/20/2005 1200Z -97.6 24.8 110     
40 7/20/2005 1800Z -98.7 25 70     
41 7/21/2005 0000Z -99.7 25 45     
42 7/21/2005 0600Z -100.5 25 30      
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Table 3.  Uncertainty Analysis for Longitude (Hurricane Emily, track known) 
 

Case 
Index 

Number of 
Data Points Response Analysis 

Type 

Intercept 
95% 

Confidence 
Interval 
degrees 

Standard 
Deviation 
degrees 

ANOVA 
Model 

Uncertainty 
nm 

ANOVA 
50% 

Prediction 
Error 
nm 

ANOVA 
95% 

Prediction 
Error 
nm 

1 34 Lng24 1T 0.49 0.46 13 16 48 

2 38 Lng24 1T 0.46 0.45 12 16 47 

3 34 Lng48 1T 0.41 0.38 11 13 39 

4 34 Lng24 2T 58.92 0.17 1548 6 17 

5 34 Lng24 3X 17.30 0.08 454 3 8 

6 38 Lng24 3X 9.85 0.09 259 3 10 

7 34 Lng48 3X 16.98 0.08 446 3 8 

8 34 Lng24 9X 10.84 15.53 285 550 1599 

9 38 Lng24 9X 10.98 16.70 288 592 1720 

10 34 Lng48 9X 10.23 14.65 269 519 1509 
 

Table 4.  Uncertainty Analysis for Latitude (Hurricane Emily, track known) 
 

Case 
Index 

Number of 
Data Points Response Analysis 

Type 

Intercept 
95% 

Confidence 
Interval 
degrees 

Standard 
Deviation 
degrees 

ANOVA 
Model 

Uncertainty 
nm 

ANOVA 
50% 

Prediction 
Error 
nm 

ANOVA 
95% 

Prediction 
Error 
nm 

1 34 Lat24 1T 0.44 0.37 13 15 44 

2 38 Lat24 1T 0.42 0.36 13 15 42 

3 34 Lat48 1T 0.75 0.62 23 26 74 

4 34 Lat24 2T 20.72 0.29 629 12 34 

5 34 Lat24 3X 10.65 0.05 323 2 6 

6 38 Lat24 3X 5.53 0.05 168 2 6 

7 34 Lat48 3X 8.97 0.04 272 2 5 

8 34 Lat24 9X 3.32 4.76 101 195 566 

9 38 Lat24 9X 3.45 5.24 105 214 623 

10 34 Lat48 9X 3.53 5.06 107 207 602 
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Table 5.  Uncertainty Analysis for Track Error (Hurricane Emily, track known) 
 

Case 
Index 

Number of 
Data Points Response Analysis 

Type 

ANOVA 
Model 

Uncertainty 
nm 

ANOVA 
50% 

Prediction 
Error 
nm 

ANOVA 
95% 

Prediction 
Error 
nm 

NHC 50% 
Prediction 

Error 
nm 

NHC 95% 
Prediction 

Error 
nm 

1 34 Track24 1T 19 22 65 55 140 
2 38 Track24 1T 18 22 63 55 140 
3 34 Track48 1T 25 29 84 100 270 
4 34 Track24 2T 1670 13 38 55 140 
5 34 Track24 3X 558 4 10 55 140 
6 38 Track24 3X 308 4 11 55 140 
7 34 Track48 3X 523 3 10 100 270 
8 34 Track24 9X 302 584 1697 55 140 
9 38 Track24 9X 307 629 1829 55 140 

10 34 Track48 9X 289 559 1625 100 270 
 

Table 6.  Uncertainty Analysis for Wind Speed (Hurricane Emily, intensity known) 
 

Case 
Index 

Number of 
Data Points Response Analysis 

Type 

ANOVA 
Model 

Uncertainty 
kt 

ANOVA 
50% 

Prediction 
Error 

kt 

ANOVA 
95% 

Prediction 
Error 

kt 

NHC 50% 
Prediction 

Error 
kt 

NHC 95% 
Prediction 

Error 
kt 

1 38 Wnd24 1T 14 18 51 10 30 

2 34 Wnd24 1T 12 13 39 10 30 

3 34 Wnd48 1T 15 17 50 10 40 

4 34 Wnd24 2T 13 19 54 10 30 

5 38 Wnd24 3X 420 5 15 10 30 

6 34 Wnd24 3X 735 5 14 10 30 

7 34 Wnd48 3X 774 5 14 10 40 

8 38 Wnd24 9X 11 23 65 10 30 

9 34 Wnd24 9X 11 22 64 10 30 

10 34 Wnd48 9X 11 21 61 10 40 
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Table 7.  Uncertainty Analysis for Longitude (1851-2004 Hurricanes) 
 

Case 
Index 

Number of 
Data Points Response Analysis 

Type 

Intercept 
95% 

Confidence 
Interval 
degrees 

Standard 
Deviation 
degrees 

ANOVA 
Model 

Uncertainty 
nm 

ANOVA 
50% 

Prediction 
Error 
nm 

ANOVA 
95% 

Prediction 
Error 
nm 

1 11958 Lng24 1T 0.16 3.07 4 109 316 
2 14561 Lng24 1T 0.15 3.38 4 120 348 
3 17378 Lng24 1T 0.21 3.83 5 136 394 
4 20368 Lng24 1T 0.21 4.38 6 155 451 
5 23490 Lng24 1T 0.23 5.02 6 178 517 
6 11958 Lng48 1T 0.31 6.09 8 216 627 
7 14561 Lng48 1T 0.31 6.86 8 243 706 
8 17378 Lng48 1T 0.42 7.84 11 278 807 
9 20368 Lng48 1T 0.44 9.05 12 321 932 

10 11958 Lng72 1T 0.44 9.21 11 326 948 
11 14561 Lng72 1T 0.49 10.51 13 372 1082 
12 17378 Lng72 1T 0.65 12.13 17 430 1249 
13 11958 Lng96 1T 0.60 12.54 16 444 1291 
14 14561 Lng96 1T 0.68 14.46 18 512 1489 
15 11958 Lng120 1T 0.82 16.20 22 574 1668 
16 11958 Lng24 2T 0.17 1.86 4 66 191 
17 14561 Lng24 2T 0.17 2.07 4 73 214 
18 17378 Lng24 2T 0.17 2.35 4 83 242 
19 20368 Lng24 2T 0.17 2.63 5 93 271 
20 11958 Lng48 2T 0.41 4.61 11 163 474 
21 14561 Lng48 2T 0.41 5.19 11 184 534 
22 17378 Lng48 2T 0.42 5.91 11 209 608 
23 11958 Lng72 2T 0.71 7.91 19 280 814 
24 14561 Lng72 2T 0.72 9.02 19 320 929 
25 11958 Lng96 2T 1.06 11.74 28 416 1209 
26 11958 Lng24 3T 0.20 2.02 5 72 208 
27 14561 Lng24 3T 0.20 2.30 5 81 237 
28 17378 Lng24 3T 0.20 2.56 5 91 263 
29 11958 Lng48 3T 0.50 5.19 13 184 535 
30 14561 Lng48 3T 0.51 5.90 13 209 608 
31 11958 Lng72 3T 0.89 9.15 23 324 942 
32 11958 Lng24 4T 0.24 2.35 6 83 242 
33 14561 Lng24 4T 0.24 2.63 6 93 271 

34 11958 Lng48 4T 0.63 6.07 16 215 625 

35 11958 Lng24 3X 0.28 2.31 7 82 238 

36 14561 Lng24 3X 0.25 2.48 7 88 255 

37 17378 Lng24 3X 0.24 2.72 6 97 281 

38 20368 Lng24 3X 0.23 2.99 6 106 308 

39 23490 Lng24 3X 0.23 3.30 6 117 339 

40 11958 Lng48 3X 0.55 4.62 14 164 476 

41 14561 Lng48 3X 0.51 5.08 13 180 523 
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42 17378 Lng48 3X 0.48 5.61 13 199 578 

43 20368 Lng48 3X 0.48 6.23 13 221 641 

44 11958 Lng72 3X 0.85 7.11 22 252 732 

45 14561 Lng72 3X 0.79 7.93 21 281 816 

46 17378 Lng72 3X 0.77 8.86 20 314 912 

47 11958 Lng96 3X 1.18 9.90 31 351 1019 

48 14561 Lng96 3X 1.12 11.16 29 395 1149 

49 11958 Lng120 3X 1.56 13.07 41 463 1346 

50 11958 Lng24 9X 3.62 1.93 95 69 199 

51 14561 Lng24 9X 3.03 2.12 80 75 219 
52 17378 Lng24 9X 2.72 2.39 71 85 246 
53 20368 Lng24 9X 1.73 2.70 45 96 278 
54 23490 Lng24 9X 1.51 3.06 40 109 315 
55 11958 Lng48 9X 7.41 3.96 195 140 408 
56 14561 Lng48 9X 6.35 4.46 167 158 459 
57 17378 Lng48 9X 5.32 5.01 140 178 516 
58 20368 Lng48 9X 3.68 5.76 97 204 593 
59 11958 Lng72 9X 11.64 6.23 306 221 641 
60 14561 Lng72 9X 10.12 7.09 266 251 731 
61 17378 Lng72 9X 8.53 8.04 224 285 828 
62 11958 Lng96 9X 16.50 8.83 434 313 909 
63 14561 Lng96 9X 14.48 10.15 380 360 1045 
64 11958 Lng120 9X 22.16 11.85 582 420 1220 

 
Table 8.  Uncertainty Analysis for Latitude (1851-2004 Hurricanes) 

 

Case 
Index 

Number of 
Data Points Response Analysis 

Type 

Intercept 
95% 

Confidence 
Interval 
degrees 

Standard 
Deviation 
degrees 

ANOVA 
Model 

Uncertainty 
nm 

ANOVA 
50% 

Prediction 
Error 
nm 

ANOVA 
95% 

Prediction 
Error 
nm 

1 11958 Lat24 1T 0.10 1.56 3 64 185 
2 14561 Lat24 1T 0.09 1.69 3 69 200 
3 17378 Lat24 1T 0.08 1.84 3 75 218 
4 20368 Lat24 1T 0.08 2.04 2 83 242 
5 23490 Lat24 1T 0.08 2.27 2 93 270 
6 11958 Lat48 1T 0.19 2.95 6 121 350 
7 14561 Lat48 1T 0.18 3.23 5 132 385 
8 17378 Lat48 1T 0.16 3.61 5 148 429 
9 20368 Lat48 1T 0.15 4.05 5 166 482 

10 11958 Lat72 1T 0.28 4.24 8 173 504 
11 14561 Lat72 1T 0.26 4.74 8 194 564 
12 17378 Lat72 1T 0.24 5.37 7 220 638 
13 11958 Lat96 1T 0.36 5.55 11 227 660 
14 14561 Lat96 1T 0.34 6.30 10 258 749 
15 11958 Lat120 1T 0.46 7.01 14 287 834 
16 11958 Lat24 2T 0.11 1.24 3 51 148 

17 14561 Lat24 2T 0.10 1.36 3 56 162 

18 17378 Lat24 2T 0.10 1.49 3 61 178 
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19 20368 Lat24 2T 0.10 1.69 3 69 201 

20 11958 Lat48 2T 0.24 2.76 7 113 328 

21 14561 Lat48 2T 0.23 3.08 7 126 366 

22 17378 Lat48 2T 0.23 3.44 7 141 409 

23 11958 Lat72 2T 0.38 4.37 12 179 520 

24 14561 Lat72 2T 0.37 4.93 11 202 587 

25 11958 Lat96 2T 0.53 6.04 16 247 719 

26 11958 Lat24 3T 0.13 1.35 4 55 161 

27 14561 Lat24 3T 0.12 1.49 4 61 177 

28 17378 Lat24 3T 0.12 1.69 4 69 201 

29 11958 Lat48 3T 0.29 3.11 9 127 370 

30 14561 Lat48 3T 0.28 3.48 9 142 413 

31 11958 Lat72 3T 0.47 5.03 14 206 599 

32 11958 Lat24 4T 0.16 1.53 5 63 182 

33 14561 Lat24 4T 0.16 1.74 5 71 207 

34 11958 Lat48 4T 0.36 3.57 11 146 424 
35 11958 Lat24 3X 0.18 1.50 5 61 178 
36 14561 Lat24 3X 0.16 1.61 5 66 192 
37 17378 Lat24 3X 0.15 1.75 5 72 208 
38 20368 Lat24 3X 0.15 1.93 5 79 230 
39 23490 Lat24 3X 0.15 2.16 5 88 256 
40 11958 Lat48 3X 0.34 2.84 10 116 337 
41 14561 Lat48 3X 0.31 3.09 9 127 368 
42 17378 Lat48 3X 0.30 3.44 9 141 409 
43 20368 Lat48 3X 0.30 3.86 9 158 460 
44 11958 Lat72 3X 0.49 4.07 15 167 484 
45 14561 Lat72 3X 0.45 4.54 14 186 539 
46 17378 Lat72 3X 0.44 5.13 13 210 610 
47 11958 Lat96 3X 0.63 5.33 19 218 634 
48 14561 Lat96 3X 0.61 6.04 18 247 719 
49 11958 Lat120 3X 0.80 6.75 24 276 803 
50 11958 Lat24 9X 2.55 1.36 77 56 162 
51 14561 Lat24 9X 2.11 1.48 64 61 176 
52 17378 Lat24 9X 1.86 1.63 56 67 194 
53 20368 Lat24 9X 1.17 1.83 35 75 217 
54 23490 Lat24 9X 1.02 2.06 31 84 245 
55 11958 Lat48 9X 4.90 2.62 149 107 311 
56 14561 Lat48 9X 4.13 2.90 125 119 345 
57 17378 Lat48 9X 3.72 3.27 113 134 388 
58 20368 Lat48 9X 2.38 3.72 72 152 442 
59 11958 Lat72 9X 7.10 3.80 215 155 451 
60 14561 Lat72 9X 6.14 4.31 186 176 512 
61 17378 Lat72 9X 5.62 4.93 170 202 586 
62 11958 Lat96 9X 9.40 5.03 285 206 598 
63 14561 Lat96 9X 8.25 5.79 250 237 688 
64 11958 Lat120 9X 12.03 6.43 365 263 765 

 



 AIAA-2007-1101 – Lawrence L. Green 

 
American Institute of Aeronautics and Astronautics 

 

24

Table 9.  Uncertainty Analysis for Track Error (1851-2004 Hurricanes) 
 

Case 
Index 

Number of 
Data Points Response Analysis 

Type 

ANOVA 
Model 

Uncertainty 
nm 

ANOVA 
50% 

Prediction 
Error 
nm 

ANOVA 
95% 

Prediction 
Error 
nm 

NHC 50% 
Prediction 

Error 
nm 

NHC 95% 
Prediction 

Error 
nm 

1 11958 Track24 1T 5 126 366 55 140 

2 14561 Track24 1T 5 138 402 55 140 

3 17378 Track24 1T 6 155 451 55 140 

4 20368 Track24 1T 6 176 512 55 140 

5 23490 Track24 1T 6 201 583 55 140 

6 11958 Track48 1T 10 247 719 100 270 
7 14561 Track48 1T 10 277 804 100 270 
8 17378 Track48 1T 12 315 914 100 270 
9 20368 Track48 1T 13 361 1049 100 270 

10 11958 Track72 1T 14 370 1074 150 400 
11 14561 Track72 1T 15 420 1220 150 400 
12 17378 Track72 1T 19 483 1402 150 400 
13 11958 Track96 1T 19 499 1450 195 630 
14 14561 Track96 1T 21 573 1666 195 630 
15 11958 Track120 1T 26 642 1865 260 700 
16 11958 Track24 2T 5 83 242 55 140 

17 14561 Track24 2T 5 92 268 55 140 

18 17378 Track24 2T 5 103 300 55 140 

19 20368 Track24 2T 5 116 337 55 140 

20 11958 Track48 2T 13 198 577 100 270 

21 14561 Track48 2T 13 223 648 100 270 

22 17378 Track48 2T 13 252 733 100 270 

23 11958 Track72 2T 22 332 966 150 400 

24 14561 Track72 2T 22 378 1099 150 400 

25 11958 Track96 2T 32 484 1406 195 630 

26 11958 Track24 3T 6 91 263 55 140 

27 14561 Track24 3T 6 102 296 55 140 

28 17378 Track24 3T 6 114 331 55 140 

29 11958 Track48 3T 16 224 650 100 270 

30 14561 Track48 3T 16 253 735 100 270 

31 11958 Track72 3T 27 384 1116 150 400 

32 11958 Track24 4T 8 104 302 55 140 

33 14561 Track24 4T 8 117 341 55 140 

34 11958 Track48 4T 20 260 755 100 270 
35 11958 Track24 3X 9 102 297 55 140 
36 14561 Track24 3X 8 110 319 55 140 
37 17378 Track24 3X 8 120 349 55 140 
38 20368 Track24 3X 8 132 384 55 140 
39 23490 Track24 3X 8 146 425 55 140 
40 11958 Track48 3X 18 201 583 100 270 
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41 14561 Track48 3X 16 220 639 100 270 
42 17378 Track48 3X 16 244 708 100 270 
43 20368 Track48 3X 16 271 789 100 270 
44 11958 Track72 3X 27 302 878 150 400 
45 14561 Track72 3X 25 337 978 150 400 
46 17378 Track72 3X 24 378 1098 150 400 
47 11958 Track96 3X 36 413 1200 195 630 
48 14561 Track96 3X 35 466 1355 195 630 
49 11958 Track120 3X 48 539 1568 260 700 
50 11958 Track24 9X 123 88 257 55 140 
51 14561 Track24 9X 102 97 281 55 140 
52 17378 Track24 9X 91 108 313 55 140 
53 20368 Track24 9X 58 121 353 55 140 
54 23490 Track24 9X 50 138 400 55 140 
55 11958 Track48 9X 245 177 513 100 270 
56 14561 Track48 9X 209 197 574 100 270 
57 17378 Track48 9X 180 222 646 100 270 
58 20368 Track48 9X 121 254 739 100 270 
59 11958 Track72 9X 374 270 784 150 400 
60 14561 Track72 9X 324 307 892 150 400 
61 17378 Track72 9X 282 349 1014 150 400 
62 11958 Track96 9X 519 374 1088 195 630 
63 14561 Track96 9X 455 431 1252 195 630 
64 11958 Track120 9X 687 496 1440 260 700 

 
Table 10.  Uncertainty Analysis for Wind Speed (1851-2004 Hurricanes) 

 

Case 
Index 

Number of 
Data Points Response Analysis 

Type 

ANOVA 
Model 

Uncertainty 
kt 

ANOVA 
50% 

Prediction 
Error 

kt 

ANOVA 
95% 

Prediction 
Error 

kt 

NHC 50% 
Prediction 

Error 
kt 

NHC 95% 
Prediction 

Error 
kt 

1 11958 Wnd24 1T 0.41 9 26 10 30 

2 14561 Wnd24 1T 0.37 9 27 10 30 

3 17378 Wnd24 1T 0.34 10 28 10 30 

4 20368 Wnd24 1T 0.33 10 30 10 30 

5 23490 Wnd24 1T 0.33 11 32 10 30 

6 11958 Wnd48 1T 0.61 14 40 10 40 

7 14561 Wnd48 1T 0.55 14 41 10 40 

8 17378 Wnd48 1T 0.51 14 42 10 40 

9 20368 Wnd48 1T 0.49 15 44 10 40 

10 11958 Wnd72 1T 0.72 16 47 15 50 

11 14561 Wnd72 1T 0.64 16 48 15 50 

12 17378 Wnd72 1T 0.60 17 49 15 50 

13 11958 Wnd96 1T 0.77 17 50 15 60 

14 14561 Wnd96 1T 0.70 18 52 15 60 

15 11958 Wnd120 1T 0.48 18 53 15 60 

16 11958 Wnd24 2T 0.44 9 26 10 30 
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17 14561 Wnd24 2T 0.39 9 27 10 30 
18 17378 Wnd24 2T 0.37 10 28 10 30 
19 20368 Wnd24 2T 0.36 10 30 10 30 
20 11958 Wnd48 2T 0.66 14 40 10 40 
21 14561 Wnd48 2T 0.59 14 41 10 40 
22 17378 Wnd48 2T 0.56 15 42 10 40 
23 11958 Wnd72 2T 0.78 16 47 15 50 
24 14561 Wnd72 2T 0.70 17 48 15 50 
25 11958 Wnd96 2T 0.85 18 51 15 60 
26 11958 Wnd24 3T 0.49 9 27 10 30 
27 14561 Wnd24 3T 0.44 10 28 10 30 
28 17378 Wnd24 3T 0.43 10 30 10 30 
29 11958 Wnd48 3T 0.72 14 41 10 40 
30 14561 Wnd48 3T 0.66 15 42 10 40 
31 11958 Wnd72 3T 0.85 17 48 15 50 
32 11958 Wnd24 4T 0.54 10 28 10 30 
33 14561 Wnd24 4T 0.51 10 30 10 30 
34 11958 Wnd48 4T 0.80 14 42 10 40 
35 11958 Wnd24 3X 0.76 9 25 10 30 
36 14561 Wnd24 3X 0.66 9 26 10 30 
37 17378 Wnd24 3X 0.58 9 26 10 30 
38 20368 Wnd24 3X 0.53 9 27 10 30 
39 23490 Wnd24 3X 0.51 10 28 10 30 
40 11958 Wnd48 3X 1.11 13 37 10 40 
41 14561 Wnd48 3X 0.94 13 37 10 40 
42 17378 Wnd48 3X 0.82 13 37 10 40 
43 20368 Wnd48 3X 0.74 13 38 10 40 
44 11958 Wnd72 3X 1.28 15 42 15 50 
45 14561 Wnd72 3X 1.08 14 42 15 50 
46 17378 Wnd72 3X 0.94 15 43 15 50 
47 11958 Wnd96 3X 1.35 15 44 15 60 
48 14561 Wnd96 3X 1.14 15 45 15 60 
49 11958 Wnd120 3X 1.38 16 45 15 60 
50 11958 Wnd24 9X 11.76 8 25 10 30 
51 14561 Wnd24 9X 9.21 9 25 10 30 
52 17378 Wnd24 9X 7.58 9 26 10 30 
53 20368 Wnd24 9X 4.41 9 27 10 30 
54 23490 Wnd24 9X 3.61 10 29 10 30 
55 11958 Wnd48 9X 17.06 12 36 10 40 
56 14561 Wnd48 9X 13.19 12 36 10 40 
57 17378 Wnd48 9X 10.72 13 37 10 40 
58 20368 Wnd48 9X 6.19 13 38 10 40 
59 11958 Wnd72 9X 19.59 14 41 15 50 

60 14561 Wnd72 9X 14.96 14 41 15 50 

61 17378 Wnd72 9X 12.15 14 42 15 50 

62 11958 Wnd96 9X 20.44 15 43 15 60 

63 14561 Wnd96 9X 15.73 15 43 15 60 

64 11958 Wnd120 9X 20.83 15 44 15 60 
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Table 11.  Prediction Validation Studies With 2005 Hurricanes 

 
Validation 

Set 
Validation 

Case 
24-Hour 

Prediction 
48-Hour 

Prediction 
72-Hour 

Prediction 
96-Hour 

Prediction 
ANOVA 

Max Track 
Error 

187 391 657 1043 
Hurricane 

Emily ANOVA Avg 
Track Error 71 211 422 688 

ANOVA 
Max Track 

Error 
243 559 850 1143 

Hurricane 
Katrina ANOVA Avg 

Track Error 120 291 454 572 

ANOVA 
Max Track 

Error 
207 453 716 1027 

Hurricane 
Rita ANOVA Avg 

Track Error 69 189 332 453 

ANOVA 
Max Track 

Error 
226 455 1153 1828 

Hurricane 
Wilma 

ANOVA Avg 
Track Error 50 126 147 106 

ANOVA 
95% Track 

Error 
233 580 992 1458 

All 2005 
Hurricanes ANOVA 

50% Track 
Error 

80 199 341 502 

95% Track 
Error 140 270 400 630 NHC 

Published 
Accuracy 50% Track 

Error 55 100 150 195 
 

 
 
 


