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Abstract 
 
Peening techniques like laser peening and shot peening were used to modify the surface of friction stir 

welded 7075-T7351 Aluminum Alloy specimens.  The tensile coupons were machined such as the loading 

was applied in a direction perpendicular to the weld direction.  The peening effects on the global and local 

mechanical properties through the different regions of the weld were characterized and assessed.  The 

surface hardness levels resulting from various peening techniques were also investigated for both sides of 

the welds. Shot peening resulted in an increase to surface hardness levels, but no improvement was noticed 

on the mechanical properties.  In contrast, mechanical properties were improved by laser peening when 

compared to the unpeened material.  
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1. Introduction 
 
 Since its invention by the Welding Institute in 1991 [1], friction stir welding 

(FSW) has emerged as a promising solid state process with encouraging results.  FSW is 

considered a better technique than fusion welding for many aluminum alloys, and it 

surpasses other fusion welding processes in terms of the lack of solidification cracks, and 
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porosity.  This is particularly important when used on high strength aerospace aluminum 

alloys that are generally difficult to weld.  

 The modified microstructure resulting from FSW is asymmetric about the weld 

centerline [2].  This is due to the advancing and retreating sides of the weld 

corresponding to maximum and minimum relative velocities between the tool and work-

piece [3].  The FSW consists of a nugget, or the stirred zone, the thermo-mechanical 

affected zone (TMAZ), and a heat affected zone (HAZ).   

 The use of FSW is expanding rapidly and is resulting in welded joints being used 

in critical load bearing structures. Therefore, it is important to investigate methods to 

improve the weakened mechanical properties produced from the welding process for 

components welded using FSW.  Peening techniques like laser and shot peening has been 

reported to enhance mechanical properties in fusion welds [4, 5], however none of the 

investigations in literature assessed laser peening effects on the various regions of the 

FSW.   

In this study, the laser peening, shot peening, and a combination of both was used 

to introduce compressive residual stresses into FSW AA 7075-T7351.  The influence of 

the different peening techniques on mechanical properties and hardness levels on both 

sides of the FSW specimens were characterized and assessed.   
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2. Experimental Procedures 

 The 7075 aluminum alloy (AA) was used in this investigation.  This high strength 

precipitation-hardened aluminum alloy is used extensively in aerospace applications.  

The base metal was supplied in a T651 temper which is solution heat treated and 

artificially aged, then stress relieved by stretching.  The 7075-T651 was supplied as a 

6.35mm thick plate with an ultimate and yield strength of 601 MPa, and 534 MPa 

respectively and an elongation of 11%.   

 The FSW specimens for this investigation were made at the NASA- Johnson 

Space Center using a 5-axis milling machine, and were welded in a butt-weld 

configuration along rolling direction.  The tool rotation was set at 350 rpm in the 

counterclockwise direction, and the traverse speed was set at a rate of 2.54 cm/min 

stirring the interface and producing a solid-state weld.  The FSW panels were122 cm x 40 

cm x 0.65 cm.  The welded plates were heat treated to prevent the material from 

continuing to age at room temperature [6, 7].  Following the welding process, the welded 

plates were aged from the T651 condition to the T7351 condition in accordance with the 

SAE AMS-H-6088 requirements. 

The FSW plates were inspected using radiographic and penetrant inspections after 

the heat treatment process, with no defects being detected.  Bending tests using strips 

specimens with dimensions of 17.8 cm x 2.54 cm were also performed.  Both the root and 

the crown sides of the weld were tested to evaluate the quality of the weld.  The samples 

were inspected visually afterward with no crack indications revealed.   
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Laser peening (LP), as shown in Figure 1, is a technology that introduces a state 

of residual compressive stresses with the ability to develop deep, high compressive 

stresses in the areas treated.  The LP process uses high energy laser pulses (several 

GW/cm2) fired at the surface of a metal coated with an ablative film, and covered with a 

transparent layer (usually water). As the laser beam passes through the transparent layer 

and hits the surface of the material, a thin layer of the ablative layer is vaporized.  The 

vapor continues to absorb the remaining laser energy and is heated and ionized into 

plasma. The rapidly expanding plasma is trapped between the sample and the transparent 

layer, creating a high surface pressure, which propagates into the material as a shock 

wave [8]. 

 

 
                         
       Figure 1 Laser peening process 

 

When the peak pressure of the shock wave is greater than the dynamic yield 

strength of the material, it produces extensive plastic deformation in the metal.  The 
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actual depths of the LP induced stresses will vary depending on the type, intensity of the 

processing conditions chosen and the material properties [9].  

The laser peening was performed at the Metal Improvement Company in 

Livermore California. The surfaces of the specimens intended for peening were covered 

with an aluminum tape 0.22 mm thick.  The aluminum tape was replaced between layers 

of peening.  The tamping layer consisted of an approximately 1mm thick laminar layer of 

flowing water.  Some laser peened specimens were peened using a single layer (100%), 

and others using a triple (300%) layers. A square laser spot size of 4.72 x 4.72 mm2  was 

used using a laser power density of 5 GW/cm2 and 18 ns duration.  The spots within a 

layer were overlapped 3%. Peening between layers had an off-set of 50% in each 

direction.  A peening frequency of 2.7 Hz and a 1 micron wavelength laser was 

employed.  The peening was applied on the total length of the gauge section on both 

faces and sides of the specimens.  

 The shot peening process was optimized using “Peenstress” a software developed at Metal 

Improvement Company.  Based on this evaluation, the samples were shot-peened with 0.0234” 

glass beads, with an Almen intensity of 0.008-0.012A and a 200% coverage rate.  To investigate 

the effects of combining laser and shot peening on the mechanical properties, some of the laser 

coupons that were processed with a single layer of laser were also shot peened.   

 Tensile testing was performed at room temperature on a 200 KN servo-hydraulic 

universal testing machine using a constant crosshead speed of 0.1mm/min. The transverse 

tensile specimens consisted of conventional dog bone coupons and were 20 cm long with 

a gage length of 8.5 cm and a gage width of 1.27 cm in accordance with ASTM E8 

standard.   The coupons were oriented such that the weld was in the center of the 

 5



specimen and the load was applied perpendicular to the weld direction.  Prior to the 

peening process, the specimens were milled on the top side of the weld removing about 

0.4 mm of material.  Mechanical properties obtained in the transverse tensile test of the 

FSW weld generally represent the weakest region of the weld.  In that configuration, the 

elongation constitutes an average strain over the whole gage length which includes the 

different weld region.  This in return does not provide an insight into the correlation 

between the intrinsic tensile properties and localized microstructure [10].  Therefore the 

intrinsic tensile properties for various locations across the weld zone were also 

characterized by a tensile test using a set of strain gauges as illustrated in Figure 2.    The 

local strain data was mapped to the corresponding global stress levels by assuming that 

the transversely loaded FSW specimens were considered a composite material loaded in 

an iso-stress configuration [9].  Using this assumption, local constitutive stress-strain 

relationships were obtained.  The accuracy of the measured tensile properties is therefore 

determined by the degree of non-homogeneity and residual stress levels at all cross 

sections to which the load is applied.   
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Figure 2 Tensile test coupon used for testing 
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3. Results and Discussion 

3.1 Weld microstructure  

 The Microstructure of the weld zone was assessed using digital, optical, and 

scanning electron microscopes.  The specimen used for metallographic investigation was 

cut and sectioned in a direction normal to the welding direction, and then subjected to 

several successive steps of grinding and polishing.  After that, the specimen was etched 

using a Keller’s reagent that consists of 190ml of H2O, 5ml of HNO3, 2ml of HF, and 

3ml of HCL.   

A weld cross section showing different regions of the weld is shown in Figure 3.  

The cross section revealed the classical formation of the elliptical onion rings structure in 

the center of the weld.  These rings were caused by the rotational flow of the welding 

tool, and have been attributed to the incremental advance of the tool per revolution [11].  

The FSW sample showed no evidence of porosity, or other kinds of defects.  The weld 

nugget seems wider on the crown region of the weld because the upper surface contact 

with the tool shoulder. 

 

Figure 3 A Cross section of the welded specimen 

 
Another cross section of the weld (Figure 4) illustrates the transition from the 

nugget- TMAZ-HAZ microstructure on the retreating area of the weld.  The grain 
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structure at the nugget is fine and equiaxed grains typical of a recrystallized structure.  

The grain sizes in this region are of the order of 5-12 μm, and are significantly smaller 

than the parent material grain due to the higher temperature and extensive plastic 

deformation. The grain structure at the TMAZ region is elongated, with some 

considerable distortions that may be attributed to mechanical action from the welding 

tool.  The HAZ is unaffected by the mechanical effects from the tool, and has a grain 

structure that resembles the parent material grain structure.  Even though the grain size in 

this region resemble the base material, previous work by [12] showed the strengthening 

precipitates in this region have grown in size and were several times larger than in the 

parent material 

 

Figure 4 a section of the weld nugget-TMAZ-HAZ interface  

 The difference between the base material and the nugget grain structure is also 

shown in Figure 5.  The base material in these figures exhibits elongated grain or pan-

caked type morphology typical of that resulting from cold rolling compared to the fine 

equiaxed grain of the dynamically recrystallized zone (nugget). 
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Base material 1000x                             Nugget at 1000x 

Figure 5.  A comparison between the base material and the nugget   

 

3.2 Microhardness profiles 

To quantify the changes in hardness at different regions across the surface of the 

weld, Micro-hardness test measurements were taken on the top and bottom surface of the 

specimens as shown in Figures 6 & 7.  The measurements were taken using a Struers 

microhardness machine using a 300g for 3 seconds.  The figures show a softened region 

corresponding to the weld nugget. The aluminum alloy sheets which are generally cold 

rolled tend to increase the mechanical properties of the produced sheets by increasing the 

dislocation density.  As the grains undergo recrystallization in the weld nugget, the strain 

induced dislocations will annihilate resulting in a decrease to the mechanical properties of 

the weld.  

The soft regions noted throughout the weld could also be attributed to coarsening 

and dissolution of strengthening precipitates during the thermal cycle of the FSW.   

It was noticed that the lowest hardness levels were outside of the weld nugget and close 

to the edge of the TMAZ.  The variations in hardness can be correlated to the 

microstructure developed after the welding process.  Previous work by [11, 12] has 
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indicated that strengthening precipitates in the HAZ have grown in size and were several 

times larger than in the parent material, hence resulted in a reduction in hardness. The 

local coarsening and growth process for strengthening precipitates is a function of 

temperature, which is a function of distance from the weld nugget [13].  Accordingly, the 

hardness levels increased with increasing distance from the weld as precipitation 

hardening became more effective. 

 Figures 6 & 7 indicate that hardening was higher in shot peened specimen 

compared to laser peened ones. This is consistent with the findings of Peyre et al [14] on 

unwelded 7075-T7351 aluminum plates.  The investigation revealed that Vickers 

hardness increased from 160 HV(25g) to 170 for 7075-T7351 in the laser peened 

specimens, but Shot peening produces greater surface hardening than laser peening over 

the first 0.2 mm from the surface.  This was due to differences in the pressure duration 

produced by the peening process where laser shock interaction times are smaller than 

those for conventional shot peening.  The longer interaction time in the shot peening 

process results in higher dislocation generation and motion.  The higher hardening in shot 

peening was also attributed to the number of slip planes activated by multiaxial surface 

loading [15].   The surface hardening in 7075-T7351 caused by laser peening was also 

demonstrated by Clauer and Fairand [16] who showed that that hardness properties were 

significantly improved as compared to the unpeened properties.   
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Figure 6 Micro-hardness tests across the bottom surface of FSW 7075-T7351 
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Microhardness - Top Surface
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Figure 7 Micro-hardness tests across the top surface of FSW 7075-T7351 
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 It was also noticed from the hardness profiles that the soften region at the top 

portion of the weld was relatively wider than the one on the bottom.  That is due to the 

specimen heating characteristics during welding.  For example the top region generally 

exhibits higher temperature compared to the bottom region due to the heating from the 

tool shoulder, while the bottom surface is in contact with the backing plate which acts as 

a heat sink. The lower heat input at the bottom can significantly reduce the extent of 

metallurgical transformations such as re-precipitation and coarsening of precipitates that 

take place during welding.  Therefore, the local strength of individual regions across the 

weld zone is improved [17].  This is also reflected in Table 1 where the average hardness 

levels at the weld nugget are represented.  The average values on the top region were 

lower than their correspondent values on the bottom region for the conditions tested.  The 

hardness levels using a single layer of laser peening did not have an effect of the 

hardness, while using a triple layer resulted in hardness levels comparable to the shot 

peened ones.   

 

Table 1.  Mechanical properties for the various peening configurations 

Specimen Hardness HV 300 gf 
(Top of weld) 

Hardness HV 300 gf 
(Bottom of weld) 

Unpeened 117 133 
Laser Peened (100%) 118 136 
Laser Peened (300%) 129 143 

Shot Peened 134 144 
Combination 136 145 
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3.3 Mechanical Properties 

 The global tensile properties for the different peening configurations are shown 

in Table 2.   While laser peening resulted in a 17% increase to yield stress, no 

improvement was obtained to ultimate strength.  All tensile specimens fractured at or 

near the interface between the weld nugget and the TMAZ on the retreating side of the 

weld at a 45 degree angle. That distance corresponded roughly to the radius of the tool 

shoulder.   

 This is normally explained by strain localization within the minimum hardness 

region of the weld boundary on the retreating side of the weld.  This usually happens in 

areas softened by the welding process which results in a comparatively low overall strain.  

The interface between the weld nugget and TMAZ correspond to low hardness region 

because the original structure in this region is over aged and there is not enough solute 

left in the material.  Therefore, this area of the weld will be relatively ineffective in 

inhibiting dislocation motion and the strain localization in the softened area of the weld 

will result in a degradation of the mechanical properties.  Since the yield strength of the 

transversely loaded FSW specimens were less than the yield strength of the base metal, 

the base metal experienced predominantly elastic strain throughout the test [18].  In all 

cases, mechanical properties for FSW specimens where significantly lower than the base 

material. 
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Table 2.  Mechanical properties for the various peening configurations 

SPECIMEN YIELD STRESS 
(MPA) 

ULTIMATE STRESS 
(MPA) 

ELONGATION 
(%) 

Laser Peening 
(one layer) 

266 322 4.47 

Laser Peening 
(three layers) 

266 323 5.02 

Laser & Shot 
Peening 

248 320 4.47 

Shot Peening 228 320 4.46 

Unpeened 227 319 4.57 

Base 534 601 11 

 
 
 
 The consistent failure at the retreating side of the weld also suggests that the 

intrinsic tensile properties of the welded joints are not symmetric on the two interfaces of 

the weld.  Tensile properties on the retreating side were weaker than the advancing side. 

Generally the global yield strength in FSW is measured using the 0.2% offset.  This could 

result in inaccuracies because the strain is not uniform along the gauge length in an under 

matched weld specimen [2].   

 Figure 8 shows an example of the mechanical properties at different regions of the 

weld for a peened specimen.  The results were obtained with the aid of strain gages using 

the iso-stress condition.  For the iso-stress condition to be valid the different weld regions 

are assumed to be arranged in series with a homogeneous cross section at any location in 

the specimen [19, 20].  Because of the through the weld thickness property gradients that 

exists in FSW, this assumption may not be very accurate.  
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 To verify the iso-stress assumption, Lockwood and Reynolds [20] conducted a 

series of tensile tests on reduced thickness specimens at different regions across the weld 

thickness.  Overall, the thick specimen properties closely match the thin specimen 

properties and seem to justify the iso-stress approximation for friction stir welds.  It can 

be seen from the Figure 8 that the lowest properties corresponded to the interface 

between the weld nugget and the TMAZ.  The highest properties in the FSW took place 

in the nugget region. It was also noticed that the different weld zones resulted in different 

resistances to deformation due to differences in grain and precipitate size and 

distribution.  
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Figure 8 Tensile properties across the weld of a FSW 7075-T7351 
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It should be noted that the iso-stress assumption used to determine the local 

property determination assumes an initially stress free material.  Although residual 

stresses in the unpeened sample were eliminated or greatly reduced by the act of cutting 

the specimens from the welded plate, substantial residual stresses are expected from the 

peened specimens.  Therefore, the results for the peened specimens may have a higher 

uncertainty associated with it.  Figure 9 represent the tensile properties for different 

peening methods in the weld nugget region.  It is evident that peening the surface resulted 

in an increase to the yield strength, with the laser peening (300%) exhibiting the most 

pronounced effect.   
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Figure 9 Tensile properties at the weld nugget of a FSW 7075-T7351 

 
 
 
 

 17



 The mechanical properties at the weld interface are represented in Figure 10.  This 

region of the weld resulted in the lowest resistance to plastic deformation due to the 

microstructure associated with this region as discussed earlier.  The results were also 

compared to the base unwelded material as shown in Figure 11 for comparison.  It is 

evident that significant reduction in strength has resulted from the welding process.  
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Figure 10 Tensile properties at the nugget-TMAZ interface of a FSW 7075-T7351 
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Figure 11 Tensile properties at the nugget-TMAZ interface of a FSW 7075-T7351 

 
 
 

 Figure 12 illustrates the same effects for the HAZ region.  Except for the laser 

peening using three layers, other peening techniques did not result in a significant 

increase to tensile properties.  The increase in mechanical properties from the laser 

peening was mainly attributed to the increase in dislocation density by the laser peening 

process, and the high level of compressive residual stresses introduced during the high 

energy peening.  
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Figure 12 Tensile properties at the HAZ of a FSW 7075-T7351 

 
 

3.4 Fractography 

An example of the fractured surface is shown in Figure 13.  The microscopically 

ductile shear fracture took place at 45 degrees by slip along the slip planes that were 

favorably orientated with respect to the planes of maximum shear stress.  Mahoney [13] 

also attributed the fracture path in FSW to the configuration of the temperature profile 

through the thickness of the sheet, corresponding to a location where strengthening 

precipitates were coarsened.  

Fractographic examinations of the broken tensile samples revealed characteristic 

features like dimples indicative of ductile failure.  This process takes place in parts 

containing inclusions or precipitates.  Under increased strain microvoids grow, 

coalescence and finally voids coalesce into a crack until rupture occurs.   

 20



 

Figure 13 FSW Fracture surface 

4 Summary and Conclusion 

 The effects from laser peening, shot peening, and a combination of both on the 

mechanical properties on Friction Stir Welds AA 7075-T7351 were investigated.  The 

peening effects on the global and local mechanical properties through the different regions of the 

weld were characterized and assessed.  The tensile coupons were machined such as the loading 

was applied in a direction perpendicular to the weld direction.  The surface hardness levels 

resulting from various peening techniques were also investigated for both sides of the welds.  The 

bottom surface indicated higher hardness levels when compared to the top surface.  That was 

attributed to the lower heat input at the bottom side of the weld, which can significantly 

reduce the extent of re-precipitation and coarsening of precipitates that take place during 

welding.  Although shot peening resulted in a high increase to hardness it did not improve the 

tensile properties of the FSW.  In contrast, single layer laser peening did not improve the surface 

hardness but resulted in higher tensile properties.  The highest increase in tensile properties 

resulted from using three layers of laser peening.  The increase was mainly attributed to the 

increase in dislocation density and the high level of compressive residual stresses 

introduced during the high energy peening.  
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