Thermal Simulator Development: Non-Nuclear Testing of Space Fission Systems

S.M. Bragg-Sitton and R. Dickens

NASA Marshall Space Flight Center, ER24, Nuclear and Advanced Propulsion Branch, Huntsville, AL 35812, Shannon. M. Bragg-Sitton@nasa.gov

INTRODUCTION

Non-nuclear testing can be a valuable tool in the development of a space nuclear power system. at the NASA MSFC Early Flight Fission Test Facility (EFF-TF), highly designed electric heaters are used to simulate the heat from nuclear fuel to test space fission power and propulsion systems.

To allow early utilization, nuclear system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. In this test strategy, highly designed electric heaters are used to simulate the heat from nuclear fuel, allowing one to develop a significant understanding of individual components and integrated system operation without the cost, time and safety concerns associated with nuclear testing.

THERMAL SIMULATOR DESIGN

The thermal simulators (heaters) developed at the EFF-TF have been applied in a variety of reactor concepts. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial) during both static and dynamic test conditions.

Initial simulator development requirements were driven by past space reactor work and bounding parameters were chosen to be as challenging as possible. Additionally, the simulators must be electrically isolated from the core to prevent shorting and should be physically isolated to prevent test article contamination by the simulators (e.g. due to sublimation, outgassing, etc.).

Operational requirements for the thermal simulators incorporate desired lifetime, thermal cycling, and test environment. EFF-TF thermal simulators were required to withstand thousands of hours of operation over hundreds of thermal cycles and to operate in a vacuum ($\sim 10^{-3}$ to 10^{-6} torr) or in a low pressure high-purity gas (e.g.

He, CO_2 , Ar, etc.) environment. To simplify insertion in each reactor test article and to minimize the impact of the thermal simulators on the ability to achieve a prototypic non-nuclear test article, a single-ended heater design was selected.

THERMAL SIMULATOR TESTING

Thermal simulators have been tested in single element and full core array configurations. [1-3] Some of these tests are summarized below. Power is provided to each test article via an automated 32-zone power and control system. Employing multiple independent power zones allows simulation of the expected radial power profile of the tested reactor design, under nominal or off-nominal conditions.

Graphite Heater Element

Early testing utilized graphite rod heaters that essentially act as a large resistor, with the rod itself split down the middle axially (Fig. 1(a)). Alumina pieces are inserted along the center of the two halves of graphite to prevent contact, which would short the element. Additional alumina insulator rings are used at three points along the length of the graphite to electrically isolate the heater from the test article. A complete graphite heater assembly is shown in Fig. 1(b).

Fig. 1. Graphite Rod Heater Element.

In a graphite element, the axial power profile can be modified by variation of the element diameter along its length, resulting larger power deposition in smaller diameter regions. A majority of the tested elements have a square cut-out region at the axial center, but elements have also been fabricated with the diameter cut to a specific equation to exactly match the axial power profile of the corresponding nuclear fueled system.

Refractory Wire Heater Elements

Refractory metal wire wrapped heater element designs have also been fabricated and tested (Fig. 2) for use with reactor concepts that require refractory materials. This element design also reduces the minimum achievable pin diameter relative to graphite rod; elements having an overall sheathed assembly diameter of 0.65 cm have been fabricated and tested. Several refractory metal wires have been considered, wrapped in either a single pass or double pass fashion around a spiral groove etched along an alumina mandrel.

Initial refractory element tests employed a mandrel having a constant pitch groove (Fig. 2(a)), resulting in constant axial power density. Mandrels with a constantly changing pitch (corresponding to a prescribed equation determined by reactor designers at LANL) have been produced to demonstrate manufacturability of the design, but work to date has focused on using the lower cost, constant pitch mandrels to assess materials performance for long-life thermal simulators. Testing has been conducted for rhenium, tantalum, tungsten, molybdenum, hafnium and niobium.

(b)

Fig. 2. Refractory Element Testing; (a) Tungsten Wire Braid Wrapped on a 0.410" Alumina Mandrel; (b) Vacuum Chamber Test of a Rhenium Element at 5 kW.

CONCLUSIONS

Testing has demonstrated that graphite rod heater elements are significantly more robust than any of the tested refractory wire elements, allowing instantaneous power changes without affecting the integrity of the heater. However, compatibility of graphite with some proposed core materials led to the investigation of refractory materials for thermal simulators. Advanced graphite elements are currently being investigated for use in lower power, stainless steel reactor cores for surface power applications.

Although none of the tested refractory elements could go from zero to full power (~5 kW) in a single step, power ramping over one hour was successful; additional testing must be performed to determine the maximum power ramp rate that can be applied without element failure. Initial testing of the refractory wire wrapped heater element designs indicated that the performance of single ended, double helix element designs for rhenium, tantalum, and tungsten braid warranted additional testing. Further testing at high power levels suggest that tungsten may be the most desirable material for thermal simulator assembly should the reactor design require refractory metal elements.

REFERENCES

- M. K. VANDYKE, M.G. HOUTS, et al., "Phase I Space Fission Propulsion System Testing and Development Progress," STAIF-2002, Albuquerque, NM, American Institute of Physics, Vol. 608, pp. 692-697 (2002).
- M.K. VANDYKE, "Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems," STAIF-2004, Albuquerque, NM, American Institute of Physics, Vol. 699, pp. 713-719 (2004).
- S.M. BRAGG-SITTON, R. DICKENS, et al., Heater Development, Fabrication and Testing: Analysis of Fabricated Heaters, NASA MSFC report number ER11-05-WI1-001 (2005).

George C. Marshall Space Fight Center

Thermal Simulator Development: Non-Nuclear Testing of Space **Fission Systems**

Shannon M. Bragg-Sitton, PhD Ricky Dickens NASA/Marshall Space Flight Center Nuclear Systems Branch, ER24 Early Flight Fission – Test Facility (EFF-TF)

Shannon.M.Bragg-Sitton@nasa.gov

Presentation Summary George C. Marshall Space Fight Center George C. Marshall Space Fight Center	 Thermal Simulator Requirements for Space Fission Systems 	 Initial Simulator Design 	 Thermal Simulator Testing 	 Application to Space Reactor Systems 	- SAFE-100a Heat Pipe Cooled Reactor	 Direct Drive Gas Cooled Reactor 	- Liquid Metal Cooled Reactor	 Current Work: High Fidelity, Instrumented Simulator 	Development	 Conclusions / Future Direction 	
National Aeronautics and Space Administration	• E S	• In	•	•				С •	Ω	Ŭ •	

Testing Strategy

- integrated system operation without the cost, time, safety Develop an understanding of individual components and Non-nuclear tests can enable the development of a space nuclear power system \rightarrow
- Use of specialized electric heaters to simulate heat from nuclear fuel

concerns associated with nuclear testing

- Attempt to match overall fuel properties
- Operation in extreme environments (e.g. vacuum) 1

Initial Simulator Requirements Alevand Actionatics and Secords C. Marshall Space Fight Center George C. Marshall Space Fight Center	 Initial requirements driven by past space reactor work (e.g. SNAP, SP-100) Bounding parameters selected to be the most challenging 	 Pin power ~0.5 to 6 kW per pin ≤ 150 VDC to avoid voltage breakdown in low P environment Fabrication repeatability 	Alternation Areinautica and Space Administration and Space Administration	Initial Simulator Requirements aeoge. Mashel Space Fight Conference aeoge. Mashel Space Fight Conference action work action work b.g. SNAP, SP-100) b.g. SNAP, SP-100) be the most hallenging assic requirements: - Linear heat rate ~100 W/cm - Dower density ~100 W/cm - Neerage power peaking ~1.33 (cosine distribution) - Up to 1400 K at clad / sheath OD - Up to 1400 K at clad / sheath OD - Up to 1400 K at clad / sheath OD - Dim diameters ~0.65 - 2.4 cm (0.25" - 0.95") - Pin diameters ~0.5 to 6 kW per pin - Fabrication repeatability
 Initial requirements driven by past space reactor work (e.g. SNAP, SP-100) Bounding parameters selected to be the most challenging 		 Average power peaking ~1.33 (cosine distribution) Up to 1400 K at clad / sheath OD Pin diameters ~0.65 - 2.4 cm (0.25" - 0.95") 	•	 asic requirements: Linear heat rate ~100 W/cm Power density ~100 W/cm³
 Initial requirements driven by past space reactor work (e.g. SNAP, SP-100) Bounding parameters selected to be the most challenging Basic requirements: Linear heat rate ~100 W/cm³ Power density ~100 W/cm³ 	 Basic requirements: Linear heat rate ~100 W/cm Power density ~100 W/cm³ 			 Average power peaking ~1.33 (cosine distribution) Up to 1400 K at clad / sheath OD Pin diameters ~0.65 - 2.4 cm (0.25" - 0.95")

Initial Simulator Requirements, cont.	Operational requirements:	- Operation in vacuum or low pressure high-purity gas (He, CO_2 , Ar, etc) environment	- Lifetime $\sim 10,000$ + hours	 Thermal cycling ~200+ cycles 	- Electrical isolation from core test article	 Physical isolation from core test article to prevent contamination 	- Single-ended heater element for maximum prototypic	geometry – Cross section of electrical connection no oreater than	simulator diameter	 Accommodate 200-500 pins per core 	- Full core operation with multiple independent control zones	- Ability to measure temperature within or near simulator	ANS Winter 2006, November 12-16, 2006
National Aeronaul	۲												

Commercial Availability George C. Marshall Space Fight Center	 Off-the-shelf heater elements Generally not applicable for vacuum operation at the desired temperature levels Prior to in-house development, several tubular heater elements were tested to failure in vacuum Custom designed heater elements for reactor simulators Used in terrestrial reactor applications Very expensive to produce in small numbers 	EFF-TF sought a solution that would cost <\$1000 per simulator and could meet the established requirements.
National Aeronautics and Space Administration	• Off • Off • Off • Off • Off • Off • Off • Off	→ EFI sim

NSHIIIINY	
•	Must take into account the total number of heater elements in small footprint
	\rightarrow Complexity significantly increases as the pin size is reduced and the total number of pins increases
۲	Depends on reactor type and operating environment – Presence of a pressure vessel
	 Simulator impact on flow plenum Presence of an electrically conductive media in flow plenum
	- Requirement of gas inside simulator assembly

37 Simulators, Direct Drive Gas (~ 6.25" by 7.1")

Electrical Integration – Core Face Seal Record Arrantic and Recent Space Fight Center Recent Sp	 Prevents contact with conductive media in liquid metal system Allows for operation with high purity gas on ID of simulator sheath 	 Prevents material incompatibility issues 	Image: Construction of the section
--	--	--	--

Final SAFE-100a Test Configuration

National Aeronautics and Space Administration

er 12-16, 2006

Modified Power Interface Concept

George C. Marshall Space Fight Center

- Circuit board type interface to minimize simulator impact on flow plenum
 - Applicable to designs that require a flow plenum but do not utilize electrically conductive coolant (e.g. gas cooled system)
 - Baseline design developed for 37 pin DDG concept

National Aeronautici Space Administratio	s s and	Refract	ory Wire Wrapp	ed Elements George C. Marshall Space Fight Center
٠	Use	with refract	ry metal concepts to pr	event contamination
٠	Acl	nieve smaller	diameter pins	
		Minimum fabric	ated assembly size: 0.65 cm	(0.255'') at sheath OD
	ł	0.400" and 0.62	5" assemblies tested	
•	Sin	gle wire or w ical fashion a	ire braid wrapped in sir ound alumina mandrel	igle or double pass (99.8% purity Al ₂ O ₃)
۲	Vai	riable wire pi	ch used to accomplish	axial power shaping
۲	Col	nstant couplin	g to sheath axially resu	lts from constant OD
۲	Tes	sts conducted	for:	
		Rhenium	Tantalum	
		Tungsten	Hafnium	
		Niobium	Molybdenum	
	*wi	re size ranges fr	om 0.010" to 0.040" – balan	ce of resistivity, ductility
	and	integrity at tem	Derature ANS Winter 2006, November 12-16, 20	06

	- Limited material ductility (require use of small diameter wires)
- Limited material ductility (require use of small diameter wires)	
 Relatively low cost Limited material ductility (require use of small diameter wires) 	- Relatively low cost
 Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities - localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Several elements "broke-down" at high power levels, presumably due to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Several elements "broke-down" at high power levels, presumably due to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Several elements "broke-down" at high power levels, presumably due to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Several elements "broke-down" at high power levels, presumably due to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost
 Single Pass: Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Several elements "broke-down" at high power levels, presumably due to over temperature conditions Eess robust than graphite elements Highly susceptible to material impurities – localized failure points Highly associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost 	 Single Pass: Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Several elements "broke-down" at high power levels, presumably due to over temperature conditions Eess robust than graphite elements Hequire power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid)
 up to 6000 W desired Single Pass: Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Several elements "broke-down" at high power levels, presumably due to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power equire power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost Limited material ductility (require use of small diameter wires) 	 up to 6000 W desired Single Pass: Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Several elements "broke-down" at high power levels, presumably due to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power to stantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid)
 Minimum requirement: 100 hrs @ 1200 W, with operation at up to 6000 W desired Single Pass: Engle Pass: Eturn wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Several elements "broke-down" at high power levels, presumably due to over temperature conditions Eess robust than graphite elements Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid) Relatively low cost 	 Minimum requirement: 100 hrs @ 1200 W, with operation at up to 6000 W desired Single Pass: Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Return wire down center of mandrel – inadequate heat removal through Al₂O₃ mandrel Several elements "broke-down" at high power levels, presumably due to over temperature conditions Less robust than graphite elements Require power ramping vs. instantaneous application of full power Highly susceptible to material impurities – localized failure points Doping to adjust material impurities – localized failure points Variability associated with hand wrapping wire on mandrel Tungsten demonstrated to be most desirable for simulator assembly Operated >130 hrs at 5.4 kW (0.015" wire, 3 wire braid)
Refractory Element: 100 hrs @ 1200 W, with operation at up to 6000 W desiredmanked and the follow of the end of th	 Refractory Elements – Test Results Refractory Blements – Test Results Algob W desired Single Pass: Single Pass: Several elements "broke-down" at high power levels, presumably due to over temperature conditions Several elements "broke-down" at high power levels, presumably due to over temperature conditions Less robust than graphite elements Highly susceptible to material impurities – localized failure points Doping to adjust material resistivity can result in hot spots Variability associated with hand wrapping wire on mandrel Remonstrated to be most desirable for simulator second by an event of the power second by the power result in bot spots Deping to adjust material resistivity can result in hot spots Require power at the power result in purities – localized failure points Require power second to be most desirable for simulator second by an event of the power second by the power by the power power second by the power by the power by the power power second by the power by t

Instrumented Element Design

Mo SHEATH

밑	
onautics a	nistration
ional Aer	ice Admir
	ional Aeronautics and

High Fidelity Simulator Design Strategy

- George C. Marshall Space Fight Center
- Receive nuclear fuel pin performance characteristics from reactor designers (static and dynamic)
- nominal steady state operation and during transient maneuvers Develop conceptual design to match pin performance under
- Develop simulator engineering design
- Develop calorimeter test article design (for test w/active heat removal)
- Build, test, validate testing of bare element and with active heat removal in a relevant environment
- Iterate design

Static Pin Performance Matching

George C. Marshall Space Fight Center

98 kWt, 0.86 kW/pin (nominal)

Conclusions / Future Work	hermal simulator development is a "work rogress" that is constantly being improve
National Aeronautics and Space Administration.	• I I J

George C. Marshall Space Fight Center

(fabricability and performance) that can be called on Work to-date has provided a database of options when a reactor design is finalized