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NOISE-CON 2006 Abstract

The ability to predict fan noise within complex 3-D aircraft geometries containing nacelle
liners is critical for design of quiet aircraft. To this end, several 3-D finite element codes
have been developed both in the United States and abroad. These codes are
computationally too expensive for application to realistic 3-D geometries and will require
supercomputing power as well as more efficient parallel algorithms to obtain reliable
results within a reasonable wall clock time. Most of the computational time is spent
solving the system of complex algebraic equations associated with the finite element
model. Although iterative solvers are faster than direct solvers for problems in 3-D,
iterative solvers generally lack robustness when used with nacelle liners. Consequently,
the equation solving techniques have been based on direct solvers. In this study, a hybrid
solve strategy that is based upon a combination of iterative and a direct, sparse, solve is
implemented and linked to a 3-D finite element model that contains nacelle liners. The
parallel performance, efficiency, and accuracy of this new method are tested on a
supercomputer and the methodology is shown to give super-linear speedup over nearly
400 CPUs and upward of 25 million complex equations are solved.
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ABSTRACT

A finite element solution to the convected Helmholtz equation in a nonuniform flow is used to
model the noise field within 3-D acoustically treated aero-engine nacelles. Options to select linear
or cubic Hermite polynomial basis functions and isoparametric elements are included. However,
the key feature of the method is a domain decomposition procedure that is based upon the inter-
mixing of an iterative and a direct solve strategy for solving the discrete finite element equations.
This procedure is optimized to take full advantage of sparsity and exploit the increased memory
and parallel processing capability of modern computer architectures. Example computations are
presented for the Langley Flow Impedance Test Facility and a rectangular mapping of a full scale,
generic aero-engine nacelle. The accuracy and parallel performance of this new solver are tested on
both model problems using a supercomputer that contains hundreds of central processing units. Re-
sults show that the method gives extremely accurate attenuation predictions, achieves super-linear
speedup over hundreds of CPUs, and solves upward of 25 million complex equations in a quarter of

an hour.

NOMENCLATURE
Co,po. o = sound speed, mean density, mean velocity vector
F,® = vector containing source effects, vector of nodal velocity potentials
[N = source frequency, unit imaginary number, order of global stiffness matrix
I, PP,AdB = acoustic intensity, acoustic power, liner attenuation
K.Cp = stiffness matrix, dimensionless node impedance matrix
T, f? = unit normal vector, 3-D gradient operator
P.¢. 7 = acoustic pressure, velocity potential, particle velocity vector
T = wall impedance normalized by poco
Pr,Ug = vectors for defining nonreflecting boundary condition
R,k 0 = real part of complex expression, complex conjugate, dot product
81,93 = source boundary, exit boundary



Subscripts:
I.B,s = interior unknown, boundary unknown, source potential

2 INTRODUCTION

The reduction of commercial aircraft noise in communities near airports has become a major
socio-economic problem both within the U.S. and abroad. Because of the continuous increase in
aircraft capacity and the number of flights, commercial air transportation remains in continuous
growth. However, the high noise levels emitted during takeoff and landing threaten to severely
compromise the growth of commercial air transportation systems worldwide. Thus, the reduction
of aircraft noise especially in communities near airports has become a major challenge. High levels
of noise produced by modern aircraft at take-off and landing may be categorized as either airframe
or engine noise. Airframe noise is due to the interactions of the flow with the solid aircraft compo-
nents. Engine noise is generally decomposed into its constitutive sources, two main components
being jet and fan noise. The jet noise is caused by the ejection of fast hot gases through the engine
and fan noise is fluid/structure interaction noise generated by the rotating turbomachinery within
the engine. The introduction of high-bypass ratio engines has enabled a substantial reduction of jet
noise so that engine noise in today’s large civil aircraft is dominated by fan noise [1].

Noise reduction methods for fan noise have mainly involved the installation of advanced nacelle
liners within the nacelles to absorb the noise generated by the fan noise sources [2]. This approach
requires an accurate prediction of both the noise absorbed and radiated from modern nacelles
so that the treatment can be optimized for maximum noise reduction. Due to the complex 3-D
geometries and flows inside modern nacelles, such predictions remain out-of-reach of theoretical
modeling and experimental methods have proved too costly. Thus, the tool of choice has been
numerical simulation. To this end, several 3-D finite element codes have been developed both
in the U.S. and abroad [3, 4]. These codes generate a large, sparse, linear system of algebraic
equations that must be solved in an efficient manner to compute the radiated noise and provide the
ability to assess various low-noise designs.

Methods for solving large sparse systems of linear algebraic equations are either direct or
iterative. Iterative methods in use today are usually based upon Krylov subspace methods [5].
The iterative methods have the advantage of not requiring computation and storage of an inverse
matrix and are highly scalable on massively parallel supercomputers. However, the convergence
rates of the iterative methods are highly dependent on the existence of good preconditioners that
are currently not available for nacelle problems with arbitrary 3-D geometries and wall lining.
Consequently, the more robust direct methods have generally been the solvers of choice in nacelle
aeroacoustics [3, 4]. Because direct methods are based upon the factorization and storage of a
matrix inverse, they are inefficient when used on realistic 3-D geometries.

In an earlier paper, the authors introduced a “hybrid” solve strategy for analyzing acoustic fields
in aero-engine ducts [6]. This approach has the potential to overcome many of the limitations of
iterative and direct methods. However, the work in the earlier paper contained several shortcom-
ings. First, it was tested only in a hard wall duct and at a single frequency. Second, the earlier
work was restricted to symmetric matrices so that mean flow could not be accommodated. Third,
the developed software was limited to a million equations and to only 64 central processing units
(CPUs). Finally, the analysis was restricted to a uniform brick element with linear basis functions
that limited its applicability to a rectangular geometry. The purpose of this paper is to describe
efforts to remove the above-mentioned limitations of the earlier work.



3 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
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Fig 1: Typical aircraft nacelle with acoustic liners.

Figure 1 is a schematic of an aircraft nacelle with sound absorbing material (acoustic liners).
The sound absorbing material is locally reacting and is characterized by an impedance, T, that is a
function of position along the treated surfaces. The problem at hand is to determine the attenuation
produced by the wall lining in the presence of a flowing fluid in the duct. The governing differential
equation (assuming irrotational homentropic flow) is [4]
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Near the fan face, the acoustic velocity potential is assumed known

b= ¢s (2)

The wall liner boundary condition is expressed in the form [7]
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At the exit of the nacelle a nonlocal, nonreflecting boundary condition [8] that has been extended
by the authors to include flow effects is implemented

Pe =teUs “)



Finally, at the intersections between hard and treated surfaces the acoustic pressure and normal
component of acoustic particle velocity are required to be continuous.

Upon obtaining the acoustic velocity potential, the acoustic particle velocity vector and acoustic
pressure field are post-processed from the irrotationality and the linearized, homentropic, condi-

tions Do
T=Vo.  p=—pop 5)

The sound attenuated by the wall lining in decibels is obtained from the log of the ratio of the input
to the output acoustic power

PP(S1 -
AdB = 10log,, {%} . PP(S) = /S 1ds (6)

where the acoustic intensity, /, is expressed in the form given by Morfey [9]
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4 THE FINITE ELEMENT MODEL
The numerical method chosen to solve the potential equation coupled with the sound source,
wall impedance, and exit boundary conditions is the finite element method (FEM). Details of the
FEM are beyond the scope of the current paper. However, a brick element containing either linear
or cubic Hermite polynomial basis functions is utilized to obtain the solution for the acoustic
potential within the nacelle. For nonuniform geometries the brick element is transformed to an
isoparametric element. Galerkin’s finite-element method is used to minimize the field error and
obtain the acoustic velocity potential. A weak formulation is introduced so that the wall and exit
impedance boundary conditions are introduced at the element level. The elements for the entire
domain are assembled in the usual manner and the source condition is satisfied by constraining the
nodal degrees of freedom at the source plane. This leads to a sparse system containing N complex,
linear, algebraic equations of the form
Kb =F (8

5 THE HYBRID EQUATION SOLVER

The equation solving paradigm introduced in this text is based upon the intermixing of a direct
sparse solver and an iterative solver. The key idea is to combine the benefits of direct sparse
solvers (robustness and speed) and iterative solvers (low memory usage and scalability) to obtain
the solution to Eq. (8) in a memory and time efficient manner. The hybrid solve strategy begins by
partitioning Eq. (8) into interior and boundary unknowns [11]

Kpp®p + Kpi®; = Fp

. 9
Kip®p + Kp®r = F ©)

Solutions to Eq. (9) are of the form

Kpp®p = Fp

, 10
Ky®; = F—KipPp (10)



where - |
Kpp = Kpp—KpiK;; Kip

Fp = Fp—Kpik; (11)
KyFy = F

The sequence of steps constituting the hybrid DD formulation proposed in this text are
1. Compute K5, Kpr, Ki1, Kpp, Fp, and Fy using efficient sparse assembly algorithms [10]

2. Factorize the sparse matrix K;; and compute F; from Egs. (11) using algorithms and software
discussed in [10].

3. Compute Kpp and Fp using Egs. (11). Explicit computation of Kpp will be expensive due to
the need to perform the triple product in Eq. (11)

4. Use an iterative solver to obtain the boundary unknowns in Eq. (10) and avoid the computa-
tion of this triple product.

5. Upon obtaining the boundary unknowns the interior unknowns are obtained from Eq. (10)
by using the previously factorized sparse matrix Kj;

6. To better facilitate application of the strategy on massively parallel computer architectures,
a domain decomposition (DD) formulation [12, 13] is applied to the computational volume.
Equations (10)-(11) are therefore subdivided into subdomains and each subdomain assigned
to a processor. After each processor has completed its task, the solutions are merged to
obtain the solution vector. The solution vector is then post-processed to obtain the sound
attenuation, AdB.

6 RESULTS AND DISCUSSIONS

This section presents results for zero flow, as well as selected examples with flow. The hybrid
solver uses sparse factorization techniques presented in the book of Nguyen [10] and implements
either the conjugate gradient (symmetric matrices) or the Generalized Minimal Residual (asym-
metric matrices) as the iterative solver [5] for the dense system defined in Eq. (10). Both iterative
solvers are implemented with the diagonals of Kpp as the preconditioner. Therefore a less expen-
sive preconditioner than that provided by the Jacobi preconditioner has been implemented. The
primary hardware utilized was the Columbia cluster (a Silicon Graphics Altix 3700 distributed
memory system with 1 TB of RAM and 512 [tanium2 CPUs with clock speeds of 1.5 GHz). The
developed software is referred to as the direct iterative parallel sparse solver (DIPSS). The au-
thors have examined a number of freely available and at least two commercially available parallel,
sparse, direct solvers against which to benchmark the speed of the new hybrid solve strategy. It was
determined that the commercially available SGI parallel sparse solver has a lower wall clock time
than the other solvers on the Columbia clusters. Thus, the decision was made to benchmark the
hybrid solver against the SGI parallel, direct, sparse solver. It should be noted that the lower wall
clock time of the SGI sparse solver may reflect the fact that this solver was specifically designed
to take full advantage of many special features of Columbia’s hardware. Further, some of the com-
mercially available software packages were limited to only 32 CPUs. Our comparison study with



other direct solvers was restricted therefore to only 32 CPUs. It should also be noted that many of
the solvers tested were limited in the number of reordering schemes.

Two rectangular geometries are used to benchmark the accuracy, efficiency, and robustness of
the DIPSS solution methodology presented in this paper. The first geometry is that of the LaRC
Flow Impedance Test Facility and the second geometry is a rectangular mapping of a generic acro-
engine duct. The Langley Flow Impedance Test Facility geometry was chosen because it affords
the authors the opportunity to compare solution statistics to that of the SGI parallel sparse solver
and with the version of the DIPSS solver presented in an earlier paper [6]. The generic aero-
engine duct was chosen because it allows for large-scale computations in geometries with short
length to diameter ratios (comparable to that of a large commercial engine) where many modes are
propagating and tens of millions of grid point are required for accurate resolution of the sound field.
Only uniform rectangular elements are implemented due to the rectangular geometries involved.
Furthermore, the iterative solve portion of the DIPSS software was run until the L2 norm of the
residual reached a specified tolerance or until 2,000 iterations were reached. The tolerance was set
at 1078 for all results presented in this section.

6.1 LaRC Flow Impedance Test Facility

This geometry is 81.28 cm long and contains a 5.08 cm x 5.08 cm cross section. We consider
zero flow (Mp = 0.0) and a 36 x36x775 uniform grid (N = 1,004, 440). Hard wall statistics for the
SGI sparse solver are compared to that of an earlier version (DIPSS V1) and to the current version
(DIPSS V2) of the DIPSS software in table 1. Standard atmospheric conditions (pp=1.2 kg-m >
and cp=344 m/s) were used to perform the computations.

Table 1: Hard Wall Statistics for LaRC Flow Impedance Test Facility.
(Zero flow, hard walls, f=3.5 kHz, N = 1,004, 440)

Wall Clock Time, sec RAM Memory, GB

CPUs | SGI | DIPSS V1 | DIPSSV2 | SGI | DIPSSV2
111428 N/A N/A | 12.01 N/A

21 751 4880 N/A | 12.01 N/A

4| 400 1766 N/A | 12.01 N/A

8| 242 432 402 | 12.02 11.04

16 | 377 146 133 | 12.09 9.19
32| 150 60 55| 12.66 6.89
64 | 185 33 351 12.29 10.62
128 | 192 89 70 | 13.00 12.76
256 | 580 155 146 | 13.00 12.86

Table 1 exemplifies the primary problem encountered by direct solvers (such as the SGI solver)
for even moderate size acoustic problems. The SGI solver (column 2) leads to low wall clock
turnaround times for a small number of CPUs, but scales poorly as the number of CPUs is in-
creased. DIPSS (columns 3 and 4) gives super-linear speedup over 64 CPUs and is considerably
faster than the SGI solver on 128 and 256 CPUs. Notice that the wall clock time for DIPSS is
considerably less than the direct solver on as little as 16 CPUs. DIPSS gives a reduction of a factor
of six in wall clock turnaround compared to the SGI solver on 64 CPUs. Observe also that more



than four CPUs are required to obtain a solution using the current strategy, whereas, for the earlier
version this same example could be solved on as little as two CPUs. Thus, the current implementa-
tion of DIPSS (DIPSS V2) requires more startup memory, but runs a little more efficiently than the
earlier version (DIPSS V1). The corresponding RAM for the SGI solver and DIPSS V2 are given
in columns 5 and 6, respectively. Note that DIPSS gives savings also in the RAM memory com-
pared with the SGI solver. RAM memory savings are observed to be considerable in the middle of
the CPU range.

Table 2: Attenuations and Solver Statistics for LaRC Flow Impedance Test Facility.
(Zero flow, N = 1,004,440, 16 CPUs used)

Hard Wall Statistics Soft wall duct statistics
f | Anal | DIPSS | Wall | No. | Anal | DIPSS | Wall | No.
kHz | AdB AdB | Clock | Iter | AdB AdB | Clock | Iter
0.5 | 0.00 0.00 147 | 57 | 34775 | 34.71 154 | 79
1.0 | 0.00 0.00 144 | 554196 | 41.90 153 | 77
1.5 0.00 0.00 145 | 51 | 4565 | 45.58 152 | 75
2.0 | 0.00 0.00 145 | 51 | 47.60 | 47.53 151 72
2.5 | 0.00 0.00 140 | 38 | 48.13 | 4K.05 149 | 67
3.0 | 0.00 0.00 135 26 |47.19 | 47.11 148 | 63
3.5 | 0.00 0.00 130 | 15 |4462 | 44.55 142 | 48
4.0 | 0.00 0.00 134 | 23 | 4046 | 4038 143 | 50
4.5 | 0.00 0.00 141 | 41 | 3520 | 35.13 145 | 58
5.0 | 0.00 0.00 137 | 312976 | 29.70 159 | 72

To validate solution accuracy of the DIPSS solution over a frequency range, the authors used the
analytically computed attenuation produced by the liner, AdB, as a metric. This metric is physically
more meaningful than the acoustic potential because the human ear perceives it as the noise source
propagates down the duct. In addition, the difference between the analytical and numerical values
provides some metric for the assessment of error in the calculations. Attenuations computed from
the DIPSS V2 solution vectors are compared to the analytical values for a frequency range of 0.5 to
5.0 kHz in table 2. In addition, the wall clock time in seconds and the number of iteration required
for the iterative solver to converge is also presented. Here, the hard wall duct has a planar wave
source, the soft wall duct uses the lowest order mode as the sound source, and the liner is 81.28
cm in length and has a uniform impedance of C=1.5 -0.5i. The impedance of the upper and two
sidewalls are set to rigid wall values. As expected, no attenuation of the sound is obtained in the
rigid wall duct (table 2) due to the absence of the wall treatment. The DIPSS attenuations for the
hard wall duct are in exact agreement with the analytical values of zero. Note that the presence
of the liner leads to an attenuation of the sound and that the frequency of peak attenuation is 2.5
kHz. Attenuations computed from the DIPSS V2 solution vector are in excellent agreement with
the analytical value in the lined duct. When compared to the wall clock time without lining, the
effects of the wall lining are to increase the wall clock time only slightly. Just as in the rigid wall
duct, the wall clock times that are required for a converged solution are nearly constant across the
frequency range.

Table 3 compares the analytical attenuation with that obtained using the solution vector from



Table 3: Attenuations for LaRC Flow Impedance Test Facility at Mach 0.45.
(Soft wall, cubic Hermite element, N = 595,968, 8 CPUs used)

f | Anal | SGI
kHz | AdB| AdB
0.5 | 13.06 | 13.01
1.0 | 17.24 | 17.18
1.5 1933 | 19.26
2.0 | 20.67 | 20.59
25 ]21.62 | 21.54
3.0 12233 |22.26
3.5|22.87 | 2279
4.0 | 23.24 | 23.16
4.5 |23.45|23.39
5.0 | 23.53 | 2346

the SGI solver for a flow Mach number of 0.45 in the soft wall duct. Here, the 3-D cubic Hermite
element is used with a 16 x16x291 uniformly spaced grid. This grid is considerably coarser than
that used with the linear element in table 2. However, with the higher order cubic element the SGI
attenuations are still in excellent agreement with the analytical values.

6.2 Generic Aero-Engine Duct

The generic aero-engine duct is modeled as a rectangular duct by cutting it along the axis
and unwrapping it into a rectangular geometry. When unwrapped, the nacelle engine duct has a
317.5 cm x 63.5 cm rectangular cross-section and is 219.5 cm in length. Thus, the volume of
our generic aero-engine duct is slightly more than 2,075 times that of the Flow Impedance Test
Facility investigated in the previous example, and requires many more grid points for accurate
resolution of the acoustic field. The highest frequency of interest (5.0 kHz) is roughly equivalent
to four to six times the blade passage frequency (BPF) for a typical large commercial engine. Just
to illustrate the capability of the hybrid solver we have used a 100x 1002501 uniformly spaced
grid (N = 25,010,000). Such a large number of points are far beyond what can be solved using
direct sparse solvers such as the SGI solver.

Table 4 compares the analytical and DIPSS attenuations and gives solver statistics for the
generic aero-engine duct. All parameters are identical to those of table 2 with the exception of
the duct dimensions and the grid. Speedup studies were conducted on the generic aero-engine
duct but because of space limitations these results could not be presented. However, super-linear
speedup was observed on as many as 256 CPUs and this speedup drops to linear on 384 CPUs.
Results in table 4 were run in parallel on 192 CPUs and required slightly more than 333 GB of
RAM. Hard wall attenuations in the generic aero-engine duct are in excellent agreement with the
analytical values of zero over the full range of source frequencies. Itis observed that in this larger,
more realistic volume, the wall clock turnaround and the number of iterations required to obtain
a converged solution in the hard wall duct are essentially constant across the full range of source
frequencies. A more interesting set of results is obtained in the soft wall duct. Note that the chosen
lining is not very effective at attenuating the sound and the wall clock times are considerably higher
than the rigid wall case. The predicted soft wall attenuations are in excellent agreement with the



Table 4: Attenuations and Solver Statistics for Generic Aero-Engine Duct.
(Zero flow, N = 25,010,000, 192 CPUs used)

Hard Wall Statistics Soft wall duct statistics
f| Anal | DIPSS | Wall | No. | Anal | DIPSS | Wall No.
kHz | AdB AdB | Clock | Iter | AdB AdB | Clock Iter
0.5 0.000 | 0.000 | 1048 | 208 | 4073 | 4.071 | 1695 427
1.0 | 0.000 | 0.000 | 1089 | 218 | 0920 | 0.920 | 1933 498
1.5 0.000 | 0.000 | 1060 | 209 | 0.393 | 0.393 | 1921 492
2.0 0.000 | 0.000 | 1060|209 0217 | 0217 | 1928 494
2.510.000 | 0.000 | 1060|210 |0.137 | 0.137 | 2105 537
3.0 1 0.000 | 0.000 | 1059|210 | 0.094 | 0.094 | 3491 985
3.5/ 0.000 | 0.000 | 1045|211 |0.069 | 0.069 | 6810 | 2,000
4.0 | 0.000 | 0.000 | 1027 | 211 | 0.053 [ 0.052 | 7047 | 2,000
4.5 0.000 | 0.000 | 1035|212 | 0.041 | -0.275 | 6829 | 2,000
5.0 0.000 | 0.000 | 1016|213 |0.033 | 1.139| 6841 | 2,000

analytical attenuations up to about 4.0 kHz. However, beyond 4.0 kHz the solution vector in the
soft wall duct had not converged within the 2,000 iteration limit and the predicted attenuations are
poor. This suggests that a better preconditioner is required for frequencies that are larger than 4.0
kHz in the soft wall duct.

6.2 CONCLUSIONS
The results of this study may be summarized as follows:

1. When compared to analytical solutions, the hybrid solve strategy gives extremely accurate
attenuation predictions in rigid and soft wall ducts for the range of frequencies of interest in
full-scale aero-engine nacelles. This accuracy can be obtained using a preconditioner less
expensive than that provided by the Jacobi preconditioner.

2. In contrast to direct solve strategies, the hybrid solve strategy gives super-linear speedup
over hundreds of processors and allows for upward of 25 million complex unknowns to be
solve in slightly more than a quarter of an hour.

3. Inaddition to significant increases in speedup compared to the commonly used direct sparse
solver, the hybrid solve philosophy leads to significant reduction in RAM memory.

4. Results of this study show that for full-scale aero-engine modeling in lined ducts, that the
hybrid solver convergence rate is slow for source frequencies above 4.0 kHz. Thus, an im-
proved preconditioner appears needed for noise computations beyond this source frequency.

The above conclusions are based upon the use of a rectangular geometry for which exact analyt-
ical solutions are available for comparison. A similar study involving nonuniform geometry and
nonuniform mean flow for which exact solutions are not available is currently underway.
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