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Abstract 

A detailed study of the application of aerocapture to a large Mars 

robotic orbiter has been completed, to identify any technology gaps for 

such an implementation. Specifically, this study addressed an 

Opposition-class Mars Sample Return mission which returns samples to 

Earth a year earlier than Conjunction-class scenarios. Numerous 

mission architecture constraints derived from the early sample return 

need have been incorporated. Investigation of the mission opportunities 

for an early sample return has been conducted leading to only the 2013 

mission opportunity as having a viable mission design solution. Use of 

aerocapture enables this class of mission with a total launch mass being 

3 to 4 times less than that of an all-propulsive orbital insertion. The 

study focused on maximizing the delivered mass to Mars via 

aerocapture. Guidance and trajectory analyses illustrate high confidence 

in the ability of the HYPAS control algorithm coupled with a simple roll 

control thruster system to easily achieve the required 500 km circular 

orbit altitude with less than ±25 km of altitude uncertainty. Results of 

aerodynamic analyses indicate a lift to drag ratio of 0.24 is feasible with 

a trimmed angle of attack of 16° using a traditional 70° sphere cone 

forebody. Aerothermodynamic analyses indicate a fully turbulent flow 

field exists with the resulting high heating rates. Radiative heating 

analyses indicate an inconsequential heating rate so that convective 

heating dominates the solution. Use of various TPS solutions with the 

aeroshell were included with the results indicating PICA and SRAM-20 

as the leading forebody TPS candidates for this class of mission. A 

detailed packaging assessment addressed the critical aeroshell 

packaging constraint leading to the conclusion that the system could be 

accommodated within a 4.65 m diameter aeroshell with a biconic 

backshell, while meeting the launch and aeropass loads. Technologies 

which either enhanced or enabled the mission were identified. Final 

rough order of magnitude costs were developed. The general conclusion 

of the study is that while aerocapture is a significant enabler, this 

mission represents the upper limit on capability due primarily to the 

limitations in launch vehicle capability. Modest reductions in the overall 

delivered mass such as what could be considered for a large orbiter 

would result in aerocapture enabling a new class of missions.   

Introduction 

Aerocapture is a low-mass strategy for achieving planetary orbit from an interplanetary trajectory. 

With only a single aeropass, to remove the vehicle excess energy, aerocapture provides the time savings 

inherent in an all-propulsive orbit insertion (but without large mass) with the low mass approach of 

aerobraking (but without the months long duration). Aerocapture trades the large thrusters and propellant 

of an all-propulsive insertion for an aeroshell and thermal protection system (TPS). As with all orbital 

insertion strategies, a guidance, navigation, and control (GNC) subsystem is used. 
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Since 2002, NASA’s Science Mission Directorate (SMD) In-Space Propulsion Technology (ISPT) 

Program has invested in advancing Aerocapture technology with the intent of reducing the time to 

mission infusion, and lowering risk to the first-use customers.  The ISPT Program conducts detailed 

studies of Aerocapture at destinations of interest, to identify any technology gaps and direct future 

investments to fill these gaps.  Studies of missions to Titan, Neptune, and Venus have been conducted in 

recent years (refs. 1-3), and this study of a large Mars orbiter completes the survey of technology needs 

for the possible aerocapture missions of the foreseeable future.  

Recent design studies for aerocapture have focused on planets where the substantial V required for 

orbital insertion negates the use of propulsion alone.  For relatively small orbiters at Mars, aerocapture 

does not provide a significant mass advantage.  Low arrival speeds and small spacecraft result in modest 

oribit insertion propellant masses, on the same order as the mass of a protective aeroshell. The Mars 

Surveyor Program (MSP) orbiter for 2001 (now known as Odyssey), began its life with aerocapture 

demonstration as a project goal. For the MSP-2001 orbiter, the aerocapture element was successfully 

developed and completed through Phase B (Preliminary Design Review) when it was removed. The 

primary reasons for deleting aerocapture were the reduced programmatic risk posture for the Mars 

Program after the two failures of the 1999 missions (Mars Climate Orbiter and Mars Polar Lander), the 

perceived risk in hypersonic aeromaneuvering with the associated autonomous maneuvering for orbit 

circularization, and the concept that the Mars Sample Return (MSR) mission would use aerobraking for 

its architecture thus reducing the feed-forward technology need for the MSP-2001 orbiter.  

MSR has undergone many different variations since the time of the MSP-2001 orbiter aerocapture 

design period. One recent mission scenario for MSR (in 2004-2005) was based on a launch in 2013. In 

support of that mission architecture, an assessment of the benefits of aerocapture for the sample return 

MSR mission component has been performed. The integrated design study include mission needs 

definition, mission design, vehicle and configuration definition, GNC, trajectory, aerothermodynamics, 

TPS, and cost. All aspects of the mission assessed are discussed in this report.  

The driving requirement for the study was the “Fast-Return” (Opposition-class) mission architecture. 

Use of multiple launches for the MSR mission is assumed as a strategy for reducing the overall 

complexity and risk. The landers, with the sample acquisition and Mars Ascent Vehicles (MAV), are 

launched while the sample return system (this study) is launched on a separate launch vehicle. Numerous 

mission design constraints have been included as part of the basis for the Fast-Return option. The 

hallmark of the Fast-Return is that the sample is returned to Earth at least 12 months prior to what it 

would be with a more traditional, Conjunction return. The primary focus of this study was on the Earth 

Return Vehicle (ERV) element and all of the associated subsystems needed for the ERV. The ERV is the 

only MSR mission element to use aerocapture since once the ERV achieves orbit about Mars, it does not 

include any Mars surface interactions. The Earth return segment of the study also included multiple 

options (Venus Gravity Assist versus a Deep-Space Maneuver). Due to the fluidity of the MSR mission 

period, the study also included an assessment of later mission opportunities to identify candidate mission 

opportunities where the Fast-Return option could be employed. A final study constraint was to consider 

only existing expendable launch vehicles. 

Symbols and Abbreviations 

AFE  Aeroassist Flight Experiment 

ARA  Applied Research Associates 

BC  Ballistic Coefficient 
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CBAero Configuration Based Aerodynamics 

CBE  Current Best Estimate 

CER  Cost Estimating Relationship 

CFD  Computational Fluid Dynamics 

CG  Center of Gravity 

D-DOR  Delta-Differential One-way Ranging 

DOF  Degree of Freedom 

DPLR  Data Parallel Line Relaxation code 

EEV  Earth Entry Vehicle 

EELV  Evolved Expendable Launch Vehicle 

ERV  Earth Return Vehicle 

FEM  Finite Element Model 

FIAT  Fully Implicit Ablation and Thermal code 

FPA  Flight Path Angle 

FY  Fiscal Year 

GCM  General Circulation Model 

GNC  Guidance, Navigation, and Control 

HL  Heat Load 

HR  Heat Rate 

HYPAS Hybrid Predictor-corrector Aerocapture Scheme 

ISPT  In-Space Propulsion Technology 

LAURA Langley Aerothermodynamic Upwind Relaxation Algorithm 

L/D  Lift to Drag ratio 

Ls  Solar Longitude 

MASS  Mars Aerocapture Systems Study 

MAV  Mars Ascent Vehicle 

MEL  Master Equipment List 

MER  Mars Exploration Rovers 

MGCM  Mars General Circulation Model 

MPF  Mars Pathfinder 

MTGCM Mars Thermospheric General Circulation Model 

MSL  Mars Science Laboratory 

MSP  Mars Surveyor Program 

MSR  Mars Sample Return 

N  North 

NAFCOM NASA/Air Force Cost Model 

NEQAIR Nonequilibrium Air Radiation Program 

OS  Orbiting Sample 

OSCAR Orbit Sample Capture and Return System 

PICA  Phenolic Impregnated Carbonaceous Ablator 
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POST  Program to Optimize Simulated Trajectories 

RCS  Reaction Control Subsystem 

S  South 

SIRCA  Silicone Impregnated Reusable Ceramic Ablator 

SLA  Super Light-weight Ablator 

SMD  Science Mission Directorate 

SOCM  Space Operations Cost Model 

SOP  State of Practice 

SRAM  Silicone Reinforced Ablative Material 

TCM  Trajectory Correction Maneuver 

TEI  Trans-Earth Injection 

TES  Thermal Emission Spectrometer 

TPS  Thermal Protection System 

TPSSZR Thermal Protection System Sizer 

VGA  Venus Gravity Assist 

 

C  Centigrade 

CD  Drag Coefficient 

cm  centimeter 

CP  Pressure Coefficient 

V  Delta-Velocity 

g  Acceleration due to gravity – 9.8 m/s
2
 

Hz  Hertz 

J  Joule 

kg  kilogram 

km  kilometer 

km/s  kilometers per second 

m  meter 

MJ  Mega-Joules 

mm  millimeter 

m/s  meters per second 

u  Freestream Velocity 

ue  Velocity at edge of boundary layer 

Re  Reynolds Number 

Re   Reynolds Number based on boundary layer momentum thickness 

s  seconds 

W  Watt 

 

  Angle of Attack 

μ  Freestream Atmospheric Viscosity 
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μe  Viscosity at edge of boundary layer 

  Freestream Atmospheric Density 

e  Density at edge of boundary layer 

  Standard Deviation 

  Angle, or Boundary Layer Momentum Thickness 

 

Study Overview 

Mars Aerocapture Systems Study (MASS) addressed the implementation of a Fast-Return (or 

Opposition) class approach for an early return of Mars surface samples. This approach considers only the 

elements needed for the Earth return segment of MSR. The integrated systems study included mission 

design assessments, aeropass environmental definitions (aerodynamics and aerothermodynamics), GNC 

assessments, trajectory assessments, TPS assessments, spacecraft configuration and packaging, aeroshell 

and structural sizing designs, and cost assessments. The study was initiated in April 2005 with the final 

review held in March 2006. This report provides the summary of the study efforts and conclusions. 

MASS Problem Statement 

The basic problem statement addressed through the MASS was to:  “Assess and characterize the 

feasibility of using Aerocapture for Mars Orbit Insertion with an Opposition class (“Fast Return”) Sample 

Return mission as a component of MSR, while identifying and assessing any enhancing or enabling 

technologies.”  With this problem statement are numerous mission constraints and assumptions. The basic 

guidance was to define what is required to rendezvous and capture the orbit sample capture and return 

system (OSCAR), transfer up to 2 kg of Mars surface sample in its sample container to the container 

within the Earth Entry Vehicle (EEV), and then return the sample to Earth. Previous studies by JPL’s 

Team X (refs. 4, 5, and 6) indicated the all-propulsive option was not viable and that aerocapture was a 

likely candidate for enabling this mission architecture. Using the results from the JPL Team X studies as a 

“point of departure,” the study team assessed the use of aerocapture using a rigid aeroshell (large ballistic 

coefficient) to enable return of this sample. 

Aerocapture Assumptions 

Assessing the feasibility of aerocapture as a component of MSR was addressed through MASS. It is 

noted that the results indicate that while the MSR mission concept did not fully close using an existing 

launch vehicle, the study results did indicate that a substantial mass savings could be realized for a 

Conjunction class sample return architecture as well as for any generic “large” delivered mass mission.  

Aerocapture is defined as a single pass through the atmosphere of a body where aerodynamic drag is 

used to lower the excess vehicle energy sufficiently to allow the vehicle to then use a small propulsive 

maneuver (order <200 m/s) to raise the periapsis and achieve a nearly circular orbit. The typical 

aerocapture sequence is illustrated on Figure 1. The vehicle navigates through the drag maneuver 

modulating the bank angle to increase or decrease lift, and thus optimize its drag to achieve the desired 

atmospheric exit conditions (6 on Figure 1). After atmospheric exit, the spacecraft is extracted from the 

aeroshell (7 on Figure 1) prior to achieving the desired orbital altitude. When the spacecraft is at a 

predetermined intermediate altitude, the spacecraft performs the periapsis raise maneuver (8 on Figure 1) 

so there will be no subsequent aeropasses. When the spacecraft has achieved the predetermined orbital 

altitude, the spacecraft then executes the orbit circularization maneuver (9 on Figure 1). 
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Inherent in the aerocapture are a number of key assumptions. These assumptions begin with the 

selection of a rigid (high ballistic coefficient) aeroshell due to its heritage and analytic basis. The 

forebody configuration is then selected, which for MASS was a 70° sphere cone shape. Use of an active 

control system allows the peak structural and thermal loads to be limited and reduce the impact on the 

spacecraft. For MASS, the 99.87 percentile (3- ) values were used as the thermal and structural load 

limitations. Use of the recently released Mars-GRAM 2005 was baselined for the study. Other 

assumptions included achieving a 500 km circular orbit with a single aeropass and up to two propulsive 

maneuvers (periapsis raise and circularization) with a maximum uncertainty of ±25 km (3- ). The 

remaining assumptions were to consider near term technological solutions since the target launch date 

was within the next 10 years (note that future technologies which result in reduced system masses can 

allow this overall architecture to close).  

Study Programmatics 

 MASS was an iterative, optimization study including the discipline areas key for entry mission 

assessments. JPL performed the interplanetary mission design efforts and the general spacecraft 

configuration definition. NASA-JSC performed the aeropass GNC design and assessment. NASA-ARC 

performed the baseline TPS sizing and assessments with inputs on alternative TPS materials (Silicone 

Reinforced Ablative Material [SRAM] and Carbon-Carbon) provided by Applied Research Associates 

(ARA) and Lockheed-Martin respectively. NASA-LaRC led the study, performed the aeropass trajectory 

analysis, defined the aeropass aerodynamic and aerothermodynamic environments, and performed the 

aeroshell design and configuration definition. NASA-MSFC provided the Mars atmospheric model data, 

performed the mission cost estimates, and provided the overall programmatic guidance including 

providing the funding. Systems engineering was balanced between NASA-LaRC, NASA-MSFC and JPL.  

MASS included two reviews. An interim peer review was conducted in September 2005. The final 

findings were presented in the final review in March 2006. This report completes the MASS activity. 

Summary Results 

Comparison to Other Aeropass Missions 

Missions which use aerodynamic drag to their benefit, include aerocapture missions as well as entry 

missions. Since aerocapture has not yet been demonstrated, only results from other similar studies can be 

made for relevance. Two comparisons between the MASS aerocapture maneuver with other aeropass 

maneuvers are made.  

Comparing the MASS aerocapture with the demonstrated (or near-term) entry missions (as shown in 

Table 1), it can be seen that MASS has a significant increase in integrated heat loads than with previous 

or planned entries. The entry mass is anywhere from 3 (Mars Science Laboratory) to 12 (Mars Pathfinder) 

times greater than previous entries with the resulting increase in ballistic coefficient. This increase in 

mass and ballistic coefficient results in a 3x to 6x increase in peak heat rate. Coupled with the increased 

heat rate is the extended flight period at the high heating conditions resulting in a dramatic increase in 

integrated heat load. What these comparisons illustrate is that the aerodynamics and aerothermodynamics 

and their associated uncertainties drive the final answer. MASS flow assessments indicate a fully 

turbulent flowfield will exist, which due to the currently unverified computational fluid dynamics (CFD) 

models, requires a significant uncertainty value (50%) to be applied to the final aerothermodynamic 

results. The conclusion to be reached is that an integrated analysis which couples the aerodynamic, 

aerothermodynamic, and TPS uncertainties specifically addressing the turbulent flow conditions is 
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essential for the use of aerocapture or entry missions where turbulent flow conditions exist. Also shown in 

Table 1, is the reduction in peak deceleration for the aerocapture case due to the active control system, 

which reduces the impact on the primary structure. The final element of comparison between these 

missions is the aeroshell packing density. Aerocapture for this mission allows for an increase of aeroshell 

packing density because there is no supersonic deceleration parachute in the center of the aeroshell as 

well as the MASS vehicle is a “propellant heavy” vehicle where 50% of the entry mass is propellant 

which packs more efficiently than other systems. 

Comparing MASS to other aerocapture studies, including the MSP-2001 orbiter is illustrated in Table 

2. All of these missions exhibit the typical high heating conditions (high heat rate with high ballistic 

coefficients, and high heat load due to extended time at hypersonic deceleration conditions). All of these 

missions have comparable lift to drag (L/D) ratios (with the exception of the Neptune mission due to its 

mid-L/D configuration) and corridor widths, indicating that the MASS solution is typical for an 

aerocapture mission. A final comparison is with the payload to entry mass fraction. With an 85% payload 

to entry mass fraction, the MASS solution represents a practical upper performance limit regarding mass 

fraction. 

Comparison to an All-Propulsive Option 

To demonstrate the efficacy of the MASS conclusions, a comparison to an all-propulsive Mars orbit 

insertion was made. The basic assumption was that all of the other mission parameters were identical (e. 

g., arrival state and earth return strategies) with the “only” difference being the mode of achieving Mars 

orbit. The basic result (see Table 3) is that an all-propulsive mission architecture requires a 300% to 400% 

increase in the launch mass.  

With both cases assuming launching to a positive C3 of 10.3, then the largest expendable launch 

vehicle has a 7760 kg launch capability. The MASS total launch mass of 9096 kg can be accommodated 

if the system contingency is reduced from 30% to 11% (or if extensive system optimization is performed). 

The all-propulsive cannot meet this constraint, thus eliminating it as a viable option. 

Mission Analysis 

Mission Analysis includes all aspects of the interplanetary trajectory. With the mission design 

completed, an assessment of the arrival state was performed to ensure the delivery and delivery 

knowledge uncertainties could be tolerated by the aerocapture Hypersonic Predictor-corrector 

Aerocapture Scheme (HYPAS) algorithm. The integrated navigation and GNC results indicate traditional 

interplanetary navigation strategies, including two-way ranging and Doppler and Delta-Differential One-

Way Ranging (D-DOR), provide adequate knowledge. 

Mission Assessment 

The objective of the MSR mission is to retrieve up to 2 kg of material from the surface of Mars and 

return it to Earth for scientific evaluation. A variety of different mission architectures have been proposed 

for this mission, including architectures utilizing conventional chemical rockets for propulsion in all 

phases of the mission (“all-propulsive” architectures), architectures utilizing chemical propulsion in 

combination with aerobraking, and architectures utilizing chemical propulsion in combination with 

aerocapture. In addition, both single and multiple launch architectures have been considered for this 

mission. For this study, we adopted a multiple launch mission architecture developed by the Mars 

Program’s advanced studies group for an MSR mission launched in the 2013 timeframe. Separate 
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launches are conducted for three separate elements: two landers and one orbiter/ERV. Each element is 

launched directly to a positive C3 Earth escape trajectory. The landers themselves incorporate multiple 

systems including the entry and descent and landing system, the sample collection system, and the MAV. 

When the landers arrive at Mars, they land using a direct entry trajectory. The landers then collect the 

samples and transfer them to the MAV. The MAV launches the samples into a 500 km circular Mars orbit 

to await retrieval by the ERV. Further details on the design of the landers and MAV are available in 

reference 7. 

When the Orbiter/ERV arrives at Mars, it uses an aerocapture maneuver to capture into a low Mars 

orbit. After retrieving the orbiting sample (OS), the Orbiter/ERV’s onboard propulsion system is used to 

escape Mars via a trans-Earth injection (TEI) maneuver. When the Orbiter/ERV arrives at Earth, the EEV 

containing the OS is released and returns to Earth on a direct entry trajectory. 

The primary focus of this study was on the Orbiter/ERV, which is the only element of the overall 

mission to utilize aerocapture. Because the Orbiter/ERV and the landers are launched on separate launch 

vehicles, the ERV’s design requirements are generally independent from those of the lander, with the 

exception of the OS itself and the parameters of the rendezvous orbit. In this study, the OS was treated as 

a passive 4.6 kg. element which is retrieved directly from a 500 km circular orbit.  No other elements of 

the lander were designed or analyzed in this study. 

Constraints 

Although the landers and Orbiter/ERV are launched separately, the arrival of the landers must be 

coordinated with the arrival of the Orbiter/ERV to allow sufficient time to collect and launch the samples, 

but still allow the Orbiter/ERV to depart for Earth within its specified departure return window. The need 

to coordinate launch and operation of multiple elements places the following requirements on the mission 

design. 

1. A minimum of 14 days shall pass between the nominal launch date of each element (lander or 

Orbiter/ERV). 

2. There shall be > 45 days between the time the Orbiter/ERV arrives at Mars and time at which it 

departs for Earth (i.e. the stay time at Mars in a 500 km orbit must be greater than 45 days). 

3. The landers shall arrive at least 75 days prior to departure of the ERV. 

4. The time between arrival of each element (lander or Orbiter/ERV) at Mars shall be greater than 5 

days. 

5. The landers shall reside on the surface of Mars for no more than 30 days before the MAV launches 

the sample into Mars orbit. 

6. All elements shall utilize a common TPS. As a consequence of this requirement, the Lander’s entry 

velocity is not constrained to current Mars Science Laboratory (MSL) limits. Instead, the 

aerocapture TPS is utilized for landers, allowing for higher entry velocities than allowed on 

current programs. 

7. The maximum allowable Earth return hyperbolic Vinfinity shall be 3.19 km/s. This value is 

consistent with the current Mars advanced programs office baseline EEV design requirements. 

8. The ERV may be on-station prior to MAV launch. 

9. Knowledge/control of the MAV delivery orbit node location shall be available prior to ERV orbit 

insertion at Mars. 
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10. The OS rendezvous orbit shall be a 45° inclination (±1.0°), 500 km altitude (±100 km on both 

periapsis and apoapsis) circular Mars orbit. MAV’s targeting accuracy for the rendezvous orbit 

ascending node is currently undefined. 

11. The Lander will enter with a flight path angle of -14.5° and shall have the ability of targeting any 

landing site between the latitudes of 45S and 45N. 

Note that the possibility that Mars dust storms may occur during the landing and MAV launch periods 

is not considered in this analysis. 

Investigation of the Opportunities 

Although MSR requires the use of outbound (Earth to Mars) and inbound (Mars to Earth) trajectories 

that are phased correctly, there are a variety of different combinations of trajectories that can fulfill the 

mission requirements. In this study, we considered three sets of trajectory options, each with different 

mission durations, propulsive requirements, and limitations. 

The existence of a viable set of inbound and outbound trajectories for a particular mission is a function 

of the phasing between Earth and Mars. The minimum energy opportunity for transferring between the 

Earth and Mars presents itself every 26 months. For typical type I or II (180°- 360° transfer) trajectories, 

transfer times will range from 7 to 13 months. 

If the landers and Orbiter/ERV are launched on type I/II trajectories in one opportunity, the total 

mission duration for a typical “slow” MSR architecture will be ~33 to 39 months. When using type I/II 

trajectories for the outbound and inbound legs of the mission, the stay time at Mars (the time between 

Orbiter/ERV arrival and departure) is constrained by the phasing between Earth and Mars and is 

approximately 1 year. This leaves ample, if not excessive, amounts of stay time at Mars for a multi-month 

aerobraking campaign followed by OS rendezvous and departure. Aerobraking into Mars orbit is an 

attractive option for this architecture, as a fully propulsive Mars insertion increases the size of the 

Orbiter/ERV to the point where the Orbiter/ERV alone must be launched on a Delta IV-4050H-19 launch 

vehicle instead of an Evolved Expendable Launch Vehicle (EELV) (ref. 4). Because sufficient time is 

available for a three month aerobraking campaign, aerocapture is potentially mission enhancing on this 

architecture, but is not mission enabling. An example “slow” MSR architecture launched in 2013 is 

shown in Table 4. Note that the architecture shown violates the Earth entry velocity upper limit constraint 

of 3.19 km/s. 

Because the stay time at Mars is constrained by phasing, faster MSR options require the use of 

different classes of trajectories. One “fast” MSR architecture that reduces the overall mission duration 

from 33 to 20 months uses a type I trajectory for the Earth-Mars outbound transit combined with Venus 

gravity assist (VGA) on the Earth return path. With a 2013 launch opportunity, the phasing of the Mars-

Venus-Earth trajectory allows for a much earlier Mars departure than in the “slow” MSR architecture. 

Table 4 shows an example “fast” MSR architecture launched in the 2013 timeframe. 

The 2013 “fast” mission meets all of the mission constraints, however, the energy required for the 

return is relatively high. Aerobraking is incompatible with this architecture due to the short Mars stay 

time (45 days). Because of the high energy required for the return trajectory, the mass of an all-propulsive 

mission would greatly exceed the capability of the Delta IV-4050H-19 launch vehicle. Aerocapture is 

considered potentially mission enabling for this architecture based on the reduction of propellant mass. 
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In a search for a low-energy “fast” option, a survey was conducted of all available Mars-Venus-Earth 

trajectories between 2014 and 2025.  The 2013 opportunity was found to be the only viable “fast” mission 

available in this time frame. Table 5 summarizes the results of this search for “fast” options.  Essentially, 

the departure date for the Mars-Venus-Earth trajectory always occurs near or even before the arrival of 

the Earth-Mars trajectory. As a result, stay times and departure C3’s at Mars are unfavorable, making the 

overall architecture unviable. Examples of the problems encountered with these trajectories are shown in 

Appendix B.  

One potentially viable alternative to the “fast” architecture is the “medium” architecture shown in 

Table 4. This option satisfies the requirements outlined in the Constraints section. Its launch date is 2.5 

years later but it offers an attractive energy trade vis-à-vis the 2013 flights. The “medium” 2016 

opportunity requires a high-energy interplanetary injection, but in return for this investment the flight 

back from Mars is inexpensive.  This trade is favorable because the booster supplies most of the required 

V, leaving only a minimal propellant load to be carried by the ERV for the return journey. The 2016 

mission duration is six months shorter than the “slow” option and saves at least 200 kg in propellant with 

respect to that option. The Medium option is, like the Fast option, limited in its stay-time at Mars. The 

stay time of 1.5 months precludes the use of aerobraking for the ERV, while an all-propulsive architecture 

would greatly increase the mass of the Orbiter/ERV. Aerocapture is therefore potentially enabling for the 

“medium” option on an EELV class launch vehicle. Selection of the Medium Option was deferred since 

the overall mission duration is 6 months less than for the Conjunction class mission, therefore, one of the 

primary mission constraints is not met. 

Baseline Mission Architecture 

At the request of the Mars Program’s Advanced Studies Group, the 2013 “Fast” MSR mission 

architecture was selected as the baseline for the MASS. The Orbiter/ERV launches to an Earth departure 

C3 of 10.3 km
2
/s

2
 and utilizes both a deep space maneuver and a VGA on the return trajectory to shorten 

the overall trip time. The overall trajectory is shown in Figure 2 and the mass and maneuver history is 

shown in Figure 3 and Figure 4. The mass and maneuver calculations are shown in Appendix C. 

The Orbiter/ERV stack launches from Earth in December 2013 and travels to Mars on a type I ballistic 

trajectory. After using the cruise stage to conduct several trajectory correction maneuvers (TCM’s), the 

vehicle arrives at Mars in June 2014 with a hyperbolic approach velocity of 4.7 km/s. The cruise stage 

separates just prior to atmospheric entry. The vehicle then executes an aerocapture maneuver to enter an 

elliptical orbit with a 500 km apoapsis (nominal) and low periapsis (within the atmosphere). The forebody 

and backshell (collectively referred to as the “Aeroshell stage”) and the structural mid-truss stage are 

separated from the main vehicle just after the Aerocapture maneuver. A periapsis raise maneuver is then 

executed by the propulsion stage and the vehicle enters a 500 km circular orbit. Over the course of the 

next 92 days, the Orbiter/ERV stack maneuvers to rendezvous with, and capture, the OS from its holding 

orbit. The OS is a passive element, with no on-board maneuvering capability; all of the rendezvous 

maneuvers are conducted by the propulsion stage.  

After acquiring the OS, a portion of the sample capture hardware is jettisoned before the vehicle 

begins a sequence of two apoapsis raise maneuvers and a periapsis lowering maneuver to prepare for the 

TEI maneuver. The propulsion stage is jettisoned after this maneuver sequence. The Orbiter/ERV 

provides propulsion for the final TEI maneuver, which puts the ERV on a return trajectory to Earth 

utilizing a VGA. Two months after the VGA, a deep space maneuver is conducted by the Orbiter/ERV to 

target the Earth. As the vehicle approaches Earth, a final Earth entry targeting maneuver is conducted 
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 before the EEV separates from the ERV.  The EEV directly enters the Earth’s atmosphere while the ERV 

is deflected away from the Earth to enter its disposal orbit. 

The overall V requirements for the Orbiter/ERV stack are substantial, as fast return requires a high 

energy Mars departure and a large deep space maneuver (1200 m/s). The V requirements are 

summarized in Table 6. Aerocapture is a critical element of this architecture because of the very high V 

requirements imposed on the vehicle. With aerocapture, the separated mass from the launch vehicle is 

9096 kg. (see Table 19). If aerocapture were removed from the architecture and an all-propulsive mission 

used instead, the separated mass from the launch vehicle would increase by over 20,000 kg (see Table 3 

and Figure 49). 

Arrival State (Arrival Navigation) 

An aerocapture trajectory differs from the more traditional Mars approach trajectories in that the 

typical arrival velocity is high.  Aerocapture benefits from maximizing arrival velocity due to the orbital 

type velocity at atmospheric exit (up to the heating and deceleration limits of the system), whereas just the 

opposite is the norm with traditional Mars arrivals (entry cases where the entire arrival velocity must be 

removed by the system). A higher arrival velocity limit provides increased flexibility in the mission 

design for an aerocapture mission. 

The primary objective of approach navigation is to determine initial conditions at the atmosphere’s 

entry interface point and to minimize the associated uncertainties. The arrival trajectory defines the 

nominal initial conditions for the ERV at the atmosphere entry interface point (i.e. start of the aerocapture 

flight). Significant uncertainty at the atmospheric interface point could lead to loss of the vehicle to a 

degraded orbit, however, the traditional navigation strategies previously demonstrated on entry missions 

are sufficient to meet the aerocapture delivery and knowledge requirements. 

A tracking schedule of doppler and ranging data is sufficient to meet the needs of an aerocapture entry 

at Mars, but augmenting the tracking data with D-DOR observations will improve the spacecraft delivery 

such that the benefits of high accuracy (conserves propellant, leaves margin for aerodynamic and 

atmospheric uncertainties, and calibrates on-board inertial measurement units accurately) accrue. Four 

approach maneuvers are scheduled during the final two months of cruise to achieve the required precision 

at Mars entry. The arrival state uncertainties that are required for aerocapture are achievable with proven 

navigation methods, including D-DOR. The baseline entry flight path angle (FPA) is -12.731°. The 

navigation subsystem delivery accuracies lie between FPA = ±0.5º and ±0.3º (3 ). The higher uncertainty 

represents a state estimate made 3 days distant from Mars; the lower uncertainty is the entry knowledge 

immediately before entry. The improvement during the last 3 days is only modest because thrusting 

events occur during that time, and those events tend to maintain the overall entry uncertainty. 

Two post-atmospheric exit maneuvers are required to circularize the orbit at 500 km (total V  ~200 

m/s 3 ).   The first maneuver, to raise the orbit out of the atmosphere, must occur ~1 hour after 

atmosphere exit.  This maneuver can be large and perform 100% of the circularization, or it can be split 

into two maneuvers with a small burn one hour after atmospheric exit ( V ~35 m/s) for the sole purpose 

of raising the periapsis up to 160 km (just out of the atmosphere).  The second, larger circularization V 

is applied later without tight schedule constraints. 

The rendezvous with the OS must occur as rapidly as possible because significant OS orbit dispersions 

result from the MAV injection uncertainties, and those dispersions grow with time.  For example, the OS 

semi-major axis uncertainty (assuming a = ±100 km, 3 ) yields a nodal regression rate of 7.0 ±0.7º per 
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day (3 ) for a 30º latitude site. The ERV needs to match orbits with the OS, so the mission needs to 

demonstrate that the ascending node of the ERV orbit, after aerocapture, will match the OS orbit node.   

Bank angle steering during aerocapture offers some flexibility and can adjust the ERV’s ascending node. 

This strategy requires no propellant and places the ERV immediately into the target orbit with no time 

spent precessing nodes. Bank angle steering allows up to a ±15º ascending node adjustment capability.  

Node adjustment performance improves as entry velocity and L/D increase.  

The MAV launches the OS shortly before the ERV arrives (no more than ~1 week).  The ERV targets 

this orbit as it approaches Mars. After circularization (or near-circularization), the ERV determines its 

relative location with respect to the OS. Assuming nearly-aligned nodes, an OS-ERV rendezvous will 

require 3-4 weeks and approximately 100 m/s to complete. 

Aerocapture Process 

The aerocapture schematic is shown in Figure 1. With the arrival states well defined, the aerocapture 

performance analysis is performed. Mars-GRAM 2005 model was used as the atmosphere model with 

ancillary assessments of the aerocapture performance assessed using the Thermal Emission Spectrometer 

(TES) data. The basic aerocapture flight configuration is to fly a constant 16° angle of attack to maintain 

an L/D of 0.24 throughout. High fidelity aerodynamic and aerothermodynamic analyses provided inputs 

into the guidance and control simulations. The HYPAS guidance algorithm enables the vehicle to remain 

within the 2.4° corridor by modulating the bank angle to achieve the desired drag (maintain constant L/D 

so as change lift, drag is also changed). The analyses also addressed the deceleration loading as well as 

the thermal loading including TPS sizing.  

The initial phase of aerocapture has been demonstrated on numerous guided entry missions (all of the 

crewed missions and the two Viking landers). The exit phase is where aerocapture has not been 

demonstrated as no vehicle has done this before. This is the key area of uncertainty where the guidance 

robustness was focused and demonstrated acceptable performance. 

After exiting the atmosphere, the system waits until the predicted state is 10 minutes above the exit 

interface. At that time the spacecraft (Earth Return Vehicle and Propulsion Module) is extracted from the 

aeroshell. Approximately 40 minutes later, the propulsion module executes the periapsis raise maneuver 

to ensure the spacecraft does not reenter the atmosphere. At this point the spacecraft is a safe 

configuration in an elliptical orbit. For MASS, the assumption was made that the spacecraft would then 

perform the circularization maneuver as the spacecraft approached the final orbital altitude. With the final 

circularization being complete, the spacecraft then provides updates to Earth such that the final orbital 

ephemeris can be established and the next phase of the mission begun. After completing the initial 

periapsis raise maneuver, and prior to performing the circularization maneuver, the spacecraft could have 

begun the ephemeris updates with Earth such that the circularization maneuver was perfomed much later. 

Another alternative was to perform a single maneuver to raise the periapsis and circularize, however, that 

method was not considered for this study. 

Modeling of the Atmosphere of Mars 

Mars Global Reference Atmospheric Model (Mars-GRAM) 

Mars-GRAM 2005 (references 8, 9, and 10) is an engineering-application atmospheric model for 

Mars.  It is built around global output data sets (climatology) from the NASA Ames Mars General 

Circulation Model (MGCM) (ref. 11), and the University of Michigan Mars Thermospheric General 
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Circulation Model (MTGCM) (references 12 and 13). Two major new features of Mars-GRAM 2005 are: 

1. Climatology data sets from MGCM/MTGCM model runs where the General Circulation Model 

(GCM) dynamics were driven by spatial and temporal variations of dust optical depth, as 

measured by the TES, aboard Mars Global Surveyor (ref. 14).  Two Mars years of such TES-

dust-driven GCM data are included, referred to as TES mapping years 1 and 2.  Earlier 

climatology from model runs where the GCM dynamics were driven by three different, globally-

uniform dust distributions (referred to as TES mapping year 0) are still included (these are the 

same as the GCM climatology provided with Mars-GRAM 2001). 

2. An option to substitute an “auxiliary profile” of measured data in place of the conventional 

MGCM/MTGCM climatology values is available in MarsGRAM 2005, and was used in the 

MASS.  TES-observed profiles of temperature, pressure, and density for mapping years 1 and 2 

have been assembled into large databases that can be queried for desired locations and times, and 

the results (individual profiles or averages of a number of observed profiles) can be used in Mars-

GRAM as “auxiliary profile” input. 

Mars-GRAM Auxiliary Profiles from Observed Data 

Auxiliary profiles can be generated either from TES nadir data (surface to about 40 km) or TES limb 

sounding data (surface to about 60 km).  Table 7 provides an example auxiliary profile, generated from an 

average of 17 TES limb sounding profiles.  Figure 5 shows a graph of the ratio of density from the 

auxiliary profile data in Table 7 to Mars-GRAM density from a vertical profile at the same latitude and 

longitude, using conventional climatology.  Auxiliary profile data from Table 7 were used in Mars-

GRAM to compare aerocapture results versus results obtained using Mars-GRAM with conventional 

MGCM climatology.  Results from that comparison are presented in Appendix D.  Briefly, it appears that 

larger density values seen in the TES observations above about 40 km give better aerocapture 

performance results, because the larger densities lead to better control authority for the aerocapture 

guidance system. 

Figure 6 shows that TES-observed densities are typically larger than those simulated from 

conventional MGCM climatology, especially for low-to-middle latitudes, and altitudes above about 40 

km.  This altitude range is a typical region where periapsis would occur for rigid-aeroshell aerocature.  

TES observations versus climatology results in this figure have been averaged over all seasons (all Ls 

values) and both times of day for TES observations (2 and 14 hours local), for both TES mapping years 1 

and 2. 

Configuration and Aerodynamics 

The following sections describe the analysis used to select the aeroshell orbiter shape and the 

predicted aerodynamic performance of that shape using Navier-Stokes computational flowfield solutions. 

Aeroshell Configuration Basis (60°  vs 70°  Sphere Cone) 

Aerocapture performance is influenced heavily by the L/D ratio and drag coefficient (CD) that are 

generated by the ERV aeroshell.  The aeroshell shape must give sufficient control authority to target the 

correct exit conditions, but still produce enough drag deceleration.  The candidate shapes considered for 

Mars aerocapture were taken from past experience for atmospheric entry vehicles for Earth and Mars 

applications.  All successful Mars landers (Viking, Mars Pathfinder, and Mars Exploration Rovers) have 

used a 70° sphere-cone forebody as the basis for the aeroshell.  For Earth applications (Genesis, Stardust), 
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a 60° sphere-cone forebody has been used successfully.  Both shapes produce lift primarily through axial 

force that is typical of blunt bodies.  A brief analysis of the aerodynamic performance tradeoffs between 

of 60° and 70° sphere-cones was done using modified Newtonian aerodynamics, a method that gives 

reasonable results for hypersonic blunt bodies.  Newtonian aerodynamics are based on a surface pressure 

distribution that is a simple function of the geometry.  The pressure coefficient (Cp) is determined from 

the pressure ratio across a shock and the angle between the freestream velocity vector and the body 

surface: 

2

max,pp sinCC =  (1) 

The term Cp,max is the pressure coefficient behind a normal shock and  is the angle between the 

freestream velocity and surface normal vectors.  The aerodynamics resulting from this pressure 

distribution are reasonably accurate for blunt bodies at hypersonic speeds. 

Figure 7 shows the L/D and CD for 60° and 70° sphere-cones.  Also shown is the performance of the 

Viking and MSL entry vehicles.  The results show that the 70° sphere-cone gives higher L/D and CD than 

does a 60° sphere-cone for the same angle-of-attack.  The modified Newtonian 70° sphere-cone results 

also compare well to the Viking and MSL data.  Based on the higher L/D, the 70° sphere-cone was 

chosen as the forebody shape for the MASS.  A target L/D of 0.24 at a trim angle of 16° is possible with 

the 70° sphere-cone, and has been shown to give the desired aerocapture performance.  Detailed 

computational fluid dynamic flowfield solutions were obtained on the selected shape at this attitude and 

used for aerocapture trajectory simulations. 

Aerodynamics 

Detailed Navier-Stokes flowfield solutions were obtained for the 70° sphere-cone geometry to confirm 

the preliminary analysis and provide aerodynamic coefficients for aerocapture trajectory simulations.  The 

Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) CFD code was used to obtain 

flowfield solutions at Mars flight conditions.  LAURA has been used in the past to define the 

aerodynamic characteristics of the Mars Pathfinder (MPF) and Mars Exploration Rover (MER) entry 

vehicles, which both had a 70° sphere-cone forebody.  Finite-rate chemistry and thermal non-equilibrium 

are modeled in LAURA using an 8-species gas model to account for the high-temperature effects of 

hypersonic flight.  Two LAURA solutions were run on each of two bounding aerocapture trajectories: 

lift-up, L/D=0.24, ballistic coefficient (BC)=300 kg/m
2
 and lift-down, L/D=0.2, BC=200 kg/m

2
.  The 

solutions were obtained for a 4.65 m diameter aeroshell at a trim angle-of-attack of 16°. Figure 8 shows 

the trajectories and CFD solution points for the range of BC’s considered. 

Symmetry plane Mach number contours are shown in Figure 9 for the peak heating point along the 

Lift-Up, L/D=0.24, BC=300 kg/m
2
 trajectory.  The freestream Mach number is approximately 25, so the 

shock standoff distance is small compared to the aeroshell diameter.  The Navier-Stokes equations were 

modeled in LAURA, but the viscous contributions to aerodynamics are small for hypersonic Mach 

numbers; pressure is the dominant aerodynamic force.  Consequently, the aerodynamics are approximated 

very well with Newtonian methods. 

Figure 10 and Figure 11 show that the aerodynamics are essentially independent of velocity and 

trajectory.  For a trim  of 16°, CD and L/D are about 1.45 and 0.25 respectively for both trajectories.  

Newtonian aerodynamics resulted in CD=1.46 and L/D=0.24.  The CD and L/D from the lift-up, 

(L/D=0.24, BC=300 kg/m
2
) trajectory were used for aerocapture trajectory simulations with the HYPAS 

guidance algorithm.  Figure 12 shows the line along which the center of gravity (CG) must be located for 
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a trim  of 16°.  The needed angle of attack is achieved through an offset in the radial CG. The design CG 

is; axial Xcg/D=0.305 and radial Zcg/D=-0.0223 (10.4 cm). 

Guidance and Integrated Trajectory Performance 

HYPAS Guidance 

The HYPAS guidance algorithm was used to provide autonomous guidance for the vehicle in the 

simulations. The scheme was originally developed at the Johnson Space Center for the Aeroassist Flight 

Experiment (AFE) program (ref. 15) and its derivation was published in reference 16. During the AFE 

program, the algorithm was tested, compared, and evaluated against other guidance algorithms in three 

degree of freedom (3-DOF) and six degree-of-freedom (6-DOF) simulations, and selected for the AFE 

flight, prior to program cancellation. 

Since the initial development, the algorithm has been actively maintained and further refined. It has 

been used in numerous human and robotic exploration mission studies performed by JSC and LaRC over 

the last 15 years. These studies involved developing nominal and dispersed trajectory simulation results 

for aerocapture at Earth, Mars, Titan (ref. 17), Neptune (ref. 18), and Venus (ref. 19), for a wide range of 

vehicle L/D, BC’s, entry conditions, and target orbits. The algorithm was tested in computer-based 

simulation environments at JSC and LaRC and found to perform well under nominal and dispersed 

conditions for the wide range of conditions.  

The HYPAS algorithm guides a lifting vehicle through the atmosphere to a desired exit apoapsis 

altitude and inclination or orbital-plane using only bank-angle as the control. The guidance is an analytic 

predictor-corrector algorithm based on deceleration due to drag and altitude-rate error feedback. Inputs to 

the algorithm are the current position, velocity, sensed acceleration, and body attitude. The algorithm 

outputs the commanded bank angle. It is adaptable to a wide range of initial state vectors, vehicle L/D 

ratios, BCs, planetary atmospheres, and desired target conditions. 

The HYPAS algorithm is divided into two flight phases: the equilibrium glide, and exit phase. In the 

equilibrium glide phase, the vehicle computes the required bank angle to stabilize the trajectory and drive 

the vehicle towards conditions where all forces (aerodynamic, gravity, and centripetal) are balanced. In 

the exit phase, triggered when the vehicle decelerates to a specified velocity, the algorithm computes an 

estimate of the atmospheric exit state velocity vector. Bank angle commands are generated to follow an 

altitude rate profile which is corrected every computation cycle to achieve the desired analytically 

computed exit condition. 

Bank reversals are performed throughout the flight in order to minimize the error in inclination and/or 

node. The lateral logic generates a deadband in wedge angle, or inclination, as a function of inertial 

velocity. Whenever the vehicle exceeds this lateral error, a bank reversal is commanded. The direction of 

the bank reversal is selected as a function of flight phase, and angular distance from the current desired 

bank angle. 

In this study, two vehicle configurations were investigated, a nominal 300 kg/m
2
 BC case, and a 200 

kg/m
2
 BC case. The 300 kg/m

2
 BC case represents the maximum mass capability provided by the Delta 

IV-4050H-19 launch vehicle with a 4.65 m diameter aeroshell. The HYPAS algorithm was tuned in each 

case to minimize the final post-aerocapture circularization V.  Additionally, after mass estimates were 

updated, a 365 kg/m
2
 BC case was investigated. The HYPAS algorithm was not re-tuned from the  
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nominal 300 kg/m
2
 case to test the robustness of the guidance. The basic results showed acceptable 

performance of the 365 kg/m
2
 case. 

POST2 Trajectory Simulation 

The trajectory program used to simulate the guided aerocapture maneuver at Mars was Program to 

Optimize Simulated Trajectories-II (POST2) (ref. 20). POST2 is a generalized point mass, discrete 

parameter targeting and optimization trajectory program.  It has the ability to simulate 3DOF, 6DOF and 

multiple degree-of-freedom (multi-DOF) trajectories for multiple vehicles in various flight regimes (i.e. 

entry, launch, rendezvous, and intercept trajectories).  POST2 also has the capability to include different 

atmosphere, aerodynamics, gravity, propulsion, parachute and navigation system models.  Many of these 

models have been used to simulate the entry trajectories for previous NASA missions (i.e., MER, 

Genesis, MPF), as well as current and planned NASA missions (i.e. Stardust, Phoenix, and MSL).  

The total MASS flight simulation is comprised of three main components: the 3DOF POST2 trajectory 

simulation, a Monte Carlo simulation which parallel process’ up to 64 simulations, and supporting scripts 

for compiling and data analysis. The 3DOF POST2 aerocapture simulation includes vehicle geometric 

parameters, aerodynamic tables, Mars’s gravity and atmosphere models, HYPAS guidance algorithm and 

initial states all integrated with the equations of motion to produce the nominal aerocapture trajectory. A 

Monte Carlo analysis was also conducted to tune the guidance and to measure the performance, risk and 

robustness of the Mars aerocapture.  Exactly 2000 individual POST2 aerocapture trajectories were 

simulated with random perturbations applied to the entry FPA, vehicle aerodynamics, vehicle mass and 

Mars atmospheric conditions. 

Simulation Results and Performance 

The nominal HYPAS guidance profile, in bank angle, drag deceleration, altitude rate, and wedge angle 

error can be seen in Figure 13. This profile results in a final apoapsis altitude of 502.9 km, a periapsis 

altitude of -14.3 km, and a peak deceleration load of 4.0 g’s. Once the guidance was tuned, Monte Carlo 

simulations (2000 cases) were performed to assess estimated errors in initial conditions, aerodynamics, 

atmosphere, and mass properties (see Table 8).  The Monte Carlo trajectory simulation results can be seen 

in Figure 14 through Figure 19, and a summary can be seen in Table 9. 

The Monte Carlo uncertainties for the nominal 300 kg/m
2
 case are presented in Table 8 and include 

estimated errors in FPA, aerodynamic coefficients, Mars atmosphere, and vehicle mass.  The nominal 

FPA of -12.731° was determined from the middle of the 2.349° corridor width (-13.905° to -11.556°) of 

the full lift up and full lift down trajectories for the 300 kg/m
2
 nominal case.  A uniform dust tau variation 

was also used along with a random number seed perturbation of atmospheric density in Mars-GRAM. 

The results from the 2000 case Monte Carlo analysis are presented in Figure 14 through Figure 19. 

Figure 14 shows the final apoapsis altitude versus the periapsis altitude at atmospheric exit, before a 

circularization maneuver is performed.  The resulting dispersion in apoapsis altitude is 504.5 km ± 26.4 

km (3 ). Figure 15 shows the V required for orbit circularization after aerocapture.  The circularization 

V dispersion is 122.8 m/s ± 10.2 m/s (3 ).  The peak laminar heat rate and integrated heat load indicator 

are shown in Figure 16. The resulting dispersion in laminar peak heat rate is 120.7 W/cm
2
 ± 11.4 W/cm

2
 

(3 ), and the laminar peak heat load dispersion is 12023.5 J/cm
2
 ± 1091.7 J/cm

2
 (3 ). Figure 17 presents 

the maximum loading, or deceleration, on the vehicle.  The peak deceleration dispersion is 4.3 g’s ± 0.9 

g’s (3 ). 
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A turbulent heating rate estimate, specific to MASS, was generated from LAURA and implemented 

into POST2. Figure 18 and Figure 19 show the peak turbulent integrated heat load and heating rate 

respectively calculated in POST2.  The peak turbulent heat load dispersion is 19003 J/cm
2
 ± 1788 J/cm

2
 

(3 ).  The dispersion in peak turbulent heating rate is 275.5 W/cm
2
 ± 45.3 W/cm

2
 (3 ). The basis of the 

turbulent heating is discussed in the Forebody Heating Environments section. 

Similarly, the 200 kg/m
2
 BC case was tuned to minimize the post aerocapture V. The nominal profile 

achieved a 504.0 km apoapsis altitude, and 4.6 km Periapsis altitude, with a peak 4.0 g deceleration load, 

as can be seen in Figure 20. Monte Carlo simulation dispersion can be seen in Table 11, and Figure 21 

through Figure 26. 

The Monte Carlo uncertainties for the 200 kg/m
2
 case, are presented in Table 10 and include estimated 

errors in FPA, aerodynamic coefficients, Mars atmosphere, and vehicle mass.  The nominal flight path 

angle of -12.497° was determined from the middle of the 2.317° aeropass corridor width (-13.655° to       

-11.338°) of the full lift up and full lift down trajectories for the 200 kg/m
2
 nominal case.  A uniform dust 

tau variation was also used along with a random number seed perturbation of atmospheric density in 

Mars-GRAM.  Also the nominal vehicle mass is smaller than the 300 kg/m
2 
case at 4900 kg with the same 

dispersions. 

The results from the 2000 case Monte Carlo analysis for the 200 kg/m
2
 ballistic coefficient are 

presented in Figure 21 through Figure 26. Figure 21 shows the final apoapsis altitude versus the periapsis 

altitude at atmospheric exit, before a circularization maneuver is performed.  The resulting dispersion in 

apoapsis altitude is 510.5 km ± 14.4 km (3 ).  It should be noted that the standard deviation is 4.4 km 

smaller than the nominal case. Figure 22 shows the V required for orbit circularization after aerocapture.  

The circularization V dispersion is 117.7 m/s ± 6.3 m/s (3 ).  The peak laminar heat rate and integrated 

heat load indicator are shown in Figure 24.  The resulting dispersion in laminar peak heat rate is 99.2 

W/cm
2
 ± 9.6 W/cm

2
 (3 ), and the laminar peak heat load dispersion is 9947.6 J/cm

2
 ± 978.6 J/cm

2
 (3 ).  

Figure 23 presents the maximum loading, or deceleration, on the vehicle.  The resulting peak deceleration 

dispersion is 4.3 g’s ± 1.2 g’s (3 ).  

The LAURA turbulent heating rate estimate, implemented into POST2, produced the results for the 

200 kg/m
2
 BC case shown in Figure 25 and Figure 26; peak turbulent integrated heat load and heating rate 

respectively.  The peak turbulent heat load dispersion is 13674.5 J/cm
2
 ± 1306.8 J/cm

2
 (3 ).  The resulting 

dispersion in peak turbulent heating rate is 198.8 W/cm
2
 ± 33.6 W/cm

2
 (3 ).  It can be seen that the 200 

kg/m
2
 case trajectories produced lower peak turbulent heating rates and a lower standard deviation 

compared to the nominal case.  Also, the integrated turbulent heat load standard deviation was lower than 

the nominal case by approximately 160 J/cm
2
. This reduction is due to the reduced BC. 

Aeroheating Environment 

The heating environments (peak heat flux and total integrated heat load) are based on convective 

heating only.  Radiative heating is typically small for Mars entries because no strong radiators appear in 

the chemical makeup of the dissociated Mars gases.  Forebody heating environments were based on 

Navier-Stokes CFD flowfield solutions using LAURA.  The afterbody environments were generated by 

scaling the forebody heating time-history.  The likelihood of turbulent transition was assessed and 

accounted for in the heating environments.  
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Forebody Heating Environments 

The magnitude of the heating environments depends largely on whether turbulent transition is 

expected to occur before the time of peak heating.  There is no generic method to predict turbulent 

transition for 70° sphere-cone geometries.  In the case of MSL, a momentum-thickness Reynolds number 

(Re ) criterion of 200 has been established as the transition indicator, where Re  is defined at the edge of 

the boundary layer: 

e
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If Re  exceeds 200 using a laminar CFD solution, then the CFD is re-run with turbulence turned on.  

The freestream conditions were taken from the guided, L/D=0.24, BC=300 kg/m
2
 trajectory that resulted 

in the 3-  high stagnation point heat flux. Figure 28 shows the Re  distribution on the forebody at the 

time of peak stagnation point heat flux.  The LAURA results indicate that Re  exceeds 200 on the 

forebody.  Consequently, the LAURA solution was re-run using the Baldwin-Lomax algebraic turbulence 

model turned on.  A user-defined transition location was specified to give a fully turbulent solution.  

Figure 27 shows a comparison of the laminar and fully turbulent heat flux along the middle of the 

forebody.  Turbulence increases heat flux by a factor of 2.5 over the laminar value (not including 

uncertainties).  A 50% uncertainty was added to the LAURA turbulent heat flux for the TPS sizing 

analysis.  The 50% uncertainty is larger than the laminar uncertainty typically used for past Mars entry 

vehicles (Pathfinder, MER).  A larger uncertainty is warranted given the relative difficulty of predicting a 

turbulent flowfield, as well as TPS material response effects in a turbulent environment (roughness, 

blockage, etc.). 

 

Figure 29 shows the turbulent heat pulse for guided, L/D=0.24, BC=300 kg/m
2
 trajectories.  A 50% 

uncertainty has been added to account for unknowns in the computational methods, especially in the 

presence of turbulent conditions.  Results are shown for the 3-  high (99.87%) heat rate (HR) and 3-  

high (99.87%) heat load (HL) trajectories.  These design trajectories were obtained through a Monte-

Carlo analysis of the aerocapture system, which includes uncertainties in navigation, atmosphere, and 

aerodynamics.  The maximum heat rate determines selection of the TPS material and total integrated heat 

load determines the material thickness.  Including uncertainty, peak heat rate is about 372 W/cm
2
 and 

maximum total heat load is 24200 J/cm
2
.  These heating levels are well in excess of past Mars lander 

aeroshells.  For example, Mars Pathfinder experienced a peak heat rate near 106 W/cm
2
 for a 7.6 km/sec 

direct entry and a BC of 62 kg/m
2
. 

Afterbody Heating Environments 

The afterbody heating environments were estimated using the results of the forebody analysis: CFD 

solutions were not obtained for the wake flowfield.  It is generally known that, for blunt bodies such as a 

70° sphere-cone, the afterbody heat rate is a small percentage of the forebody level.  For this analysis, the 

maximum afterbody heat rate was estimated to be 5% of the maximum forebody laminar heat rate.  The 

afterbody heat pulse was shaped using the forebody heat pulse.  A 200% environments uncertainty was 

included for TPS material sizing.  A large uncertainty was used since no CFD analysis was done for the 



 

- 19 - 

afterbody flowfield.  Using this method,  peak heat rate is about 15 W/cm
2
 and maximum total heat load 

is 1500 J/cm
2
, including uncertainties (Figure 30).  The environments are shown for the same design 

trajectories that were used to define the forebody environments.  The TPS material selection and sizing 

were based on the forebody and afterbody environments shown in Figure 29 and Figure 30. 

Radiative Heating 

A cursory radiative heating analysis was performed for MASS, using the Tauber-Sutton relationship 

(ref. 21), for the 3  low trajectory with the 1.163 m nose radius. The peak radiative heat rate was found to 

be 29 W/cm
2
 (see Figure 31). This heat rate is about 8% of the peak turbulent convective heat rate, 

consequently, no further analysis was performed and radiative heating was neglected for the integrated 

heating analysis. 

Thermal Protection System 

The primary purpose of the TPS is to protect the vehicle from the high heating and oxidizing 

environment experienced during atmospheric entry.  The several steps in the TPS design process include: 

1. Determination and review of the heating environment, 

2. Determination of the TPS system substructure 

3. Specification of TPS materials suitable for the anticipated heating environment, and 

4. Specification of TPS thickness based on analysis by a TPS material response code. 

TPS design is affected by the unique requirements of the present Mars aerocapture mission concept.  

Relative to prior Mars missions, the present mission concept involves a larger diameter vehicle (4.65 m 

dia) with the Mars atmospheric entry intended for aerocapture rather than descent to the surface.  The 

larger diameter vehicle results in high heating levels associated with predominantly turbulent flow over 

the heatshield, while the aerocapture maneuver is of extended time duration leading to a long soak time of 

the thermal protection materials in the high heating environment.  The net result is that the aerothermal 

heating environment that this vehicle would experience during the aerocapture maneuver is particularly 

harsh.  Additionally, behind the hypersonic bow shock the relatively chemically inert CO2 of the Martian 

atmosphere undergoes dissociation into a chemically active, highly oxidizing mixture of CO, O and other 

constituents.  Such an environment promotes surface oxidation and recession of an ablative TPS material.  

As a consequence, the TPS design requirement likely leads to a choice of materials capable of handling 

higher heating than previous Mars missions and may lead to higher TPS system mass fractions than 

previous Mars mission designs would suggest. 

Due to limitations in resources available for this study, TPS sizing was based on a subset of the full 

procedure used for full mission design.  Only one spatial location for a constant thickness forebody 

heatshield and one spatial location for the constant thickness aftbody were considered.  A typical fully 

supported mission design would provide a heatshield, fore and aft, of varying thickness which would 

typically be of reduced mass relative to the single point design of the present study.  Further, multiple 

trajectories would be considered in the full mission design process to ensure the correct thickness was 

specified over the surface of the heatshield.   

The particular trajectory heating curve used for the TPS design process for the MASS was the 99.87% 

HR trajectory as shown in Figure 29 and  Figure 32. This heating curve, which incorporates a 50% heat 

rate uncertainty, gives a peak heat rate of 372 W/cm
2
, and an integrated heat load of 23,200 Joules/cm

2
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prior to heatshield ejection at t=867 seconds (t=0s at atmospheric entry).  Although the 99.87% HL 

trajectory gives a slightly higher integrated heat load (24,000 J/cm
2
), preliminary analysis demonstrated 

that the 99.87% HR trajectory was the worst-case TPS sizing heating environment provided. 

To first approximation, the peak heat rate trajectory (undershoot) determines the TPS material, while 

the peak integrated heat load trajectory (overshoot) determines TPS sizing.  However, as in this instance, 

the earlier high heating pulse seen in the 99.87% HR heating curve of  Figure 32 results in a longer soak 

time and resultant thicker TPS sizing with the peak heat rate trajectory, even though the peak integrated 

heat load trajectory of 99.87% HL does have a slightly (by 4%) higher integrated heat load. 

Prior Mars missions have used Super Lightweight Ablator (SLA)-561V TPS material for their 

heatshield.  At present, this material is limited to 290 W/cm
2
 or less.  Other materials considered and 

rejected based on preliminary analysis for use as a baseline TPS are shown in Table 12.  After sufficient 

review, phenolic impregnated carbonaceous ablator (PICA) was chosen for the forebody heatshield and 

SLA-561V was chosen for the aftbody TPS. 

For the purposes of thermal response analysis of the TPS heatshield, it is assumed that the substructure 

upon which the TPS is mounted consists of 2.8 mm thick carbon fiber sheet mounted to 25.4 mm thick 

Aluminum honeycomb which is then mounted upon a 2.8 mm thick carbon fiber sheet.  The interface of 

the TPS material with the first carbon sheet is the bondline for which the temperature must be maintained 

below 250° C to protect the adhesives used.  The 25.4 mm thick aluminum honeycomb and carbon face 

sheets are included in the TPS system thermal response modeling. 

The Fully Implicit Ablation and Thermal (FIAT) material response code described in references 22 

and 23 provided the thermal response analysis used to determine the TPS thickness.  A primary objective 

of this thermal analysis is to ensure that the bondline temperature during the aerocapture maneuver does 

not exceed 250° C prior to heatshield ejection.  The FIAT code has seen extensive use for TPS sizing with 

the recent Stardust and MER missions, as well as being central to the Exploration Systems Architecture 

Study/Crew Exploration Vehicle studies. FIAT accomplishes 1D transient modeling of heat and mass 

transfer within the depth of the TPS material as it responds in time to input boundary layer convective 

heating and gas phase radiative heating (no radiative heating used in the MASS) to the heatshield surface.  

Included in the FIAT TPS modeling is the pyrolysis, or decomposition, of the TPS material at depth 

within the heatshield.  Heat transfer (uncorrected for blowing) to the surface as a function of time for the 

particular trajectory being simulated must be provided as an input. The convective heating is typically 

provided by a real-gas Navier-Stokes solution such as from either Data Parallel Line Relaxation (DPLR) 

code or LAURA (used in the MASS).  Alternatively, the gas-phase radiation and convective heating can 

be derived based either engineering codes such as configuration based aerodynamics (CBAero; see 

reference 27) or from empirical heat transfer relations, such as Marvin-Diewart (reference 30), Tauber-

Sutton (reference 21) or from a CFD based curve-fit such as given by Loomis (reference 31). 

 p,q, ~C
m

V
n

                                    (4) 

The specified convective heating is obtained without the effect of gas blowing associated with 

ablation.  Consequently, FIAT itself makes use of an engineering relation to account for the reduction in 

heat transfer convection coefficient with boundary layer surface mass blowing.  Within an ablative TPS 

material, conduction heat transfer from the surface to the heatshield interior then occurs through the 

insulating char layer to the pyrolysis zone, where the TPS undergoes thermal decomposition, absorbing 

energy while producing pyrolysis gases and ablation products.  These gases then migrate through the 
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porous char layer back to the surface where they produce a boundary layer blowing effect to reduce the 

convective heat transfer coefficient.  While heating of the char layer and energy spent in accomplishing 

the pyrolysis reaction accounts for a significant portion of the thermal energy entering the TPS at the 

surface, conduction to the virgin TPS material located interior to the pyrolysis zone results in a gradual 

increase in temperature at the bondline.  This increase in TPS bondline temperature is mitigated in part by 

the substantial thermal mass associated with the substructure to which the TPS is mounted.  However, as 

stated previously, one measure of the effectiveness of the TPS heatshield is to maintain the bondline 

temperature below 250° C during the aerocapture maneuver until the heatshield ejection.   

To accomplish the FIAT analysis, the TPS material response properties are required.  For many such 

TPS materials, either historically used or proposed for future missions, properties may be found in the 

TPSX database (see reference 24 or http://www.tpsx.nasa.gov).  The properties of many TPS materials 

are, however, considered proprietary. 

PICA (see references 25 and 26) was the TPS material chosen for the baseline forebody heatshield 

material.  PICA is a high-performance, relatively light weight ablative material which was extensively 

tested in the Arc-jet at high heat flux for the successful Stardust mission.  Stardust is the highest velocity 

Earth reentry mission to date.  A high fidelity material response model compatible with FIAT was 

developed in connection with the Stardust development work.  Other TPS materials considered for the 

baseline heatshield design included AVCoat(Apollo), Carbon-Carbon(Genesis), SLA-561V, etc. 

The FIAT-based design for a single thickness heatshield using PICA as the design TPS material and 

the undershoot trajectory heat pulse of  Figure 32  yielded a PICA unmargined thickness of 4.724 cm 

thick with 2.032 cm of recession (see Figure 33).  The areal density for PICA of this thickness is 11.66 

kg/m
2
.  The rather substantial recession appears to be the consequence of the high heat pulse early in the 

design trajectory  and of the highly oxidizing characteristic of the dissociated gases behind the bow shock 

to which the TPS char surface is exposed.  One concern of such a high recession rate must be the effect on 

aerodynamic properties during the aerocapture maneuver associated with the resultant shape change of 

the heatshield. 

The TPS specified for the aftbody was obtained by a process similar to that described for the forebody 

heatshield.  A simplified engineering estimate of heating pulse for the design trajectory was provided as 

5% of the forebody heat pulse throughout the trajectory.  An unmargined thickness of 1.98 cm for SLA-

561V with no recession and an areal density of 5.06 kg/m
2
 was determined suitable for the afterbody 

design. Silicone Impregnated Reusable Ceramic Ablator (SIRCA) was considered to be a close alternative 

aftbody TPS material with 2.28 cm unmargined thickness and 5.48 kg/m
2
 areal density. 

The split lines chosen for the forebody versus aftbody regions were aft of the vehicle maximum 

diameter where the shoulder radius is tangent to the conical aftbody.  The forebody exposed area is 19.88 

m
2
 giving a forebody TPS mass for PICA at 231.8 kg (unmargined thickness), while the aftbody exposed 

area is 29.28 m
2
 giving an aftbody TPS mass for SLA-561V at 145.75 kg (unmargined thickness).  A TPS 

contingency of 30% was applied for both the forebody (1.417 cm) and aftbody (0.594 cm), with an 

additional 50% factor of safety applied to the forebody recession thickness (1.016 cm), and 10% factor of 

safety applied to the aftbody unmargined thickness (0.198 cm), see Table 13.  The resulting forebody 

baseline TPS mass (with margins) is 347.3 kg with PICA thickness of 7.158 cm.  The resulting baseline 

aftbody TPS mass (with margins applied) is 204.1 kg with 2.772 cm of SLA-561V. 

One observation to be made is that the baseline TPS mass estimates obtained for the MASS are about 

twice that which might be derived from historical estimates.  There are several reasons for the current 
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high baseline TPS mass estimates. The primary cause of the present high TPS mass estimates is high 

turbulent heating that occurs on the leeside of the forebody heatshield throughout the design trajectory.  

The transition to turbulence occurs due to the large aeroshell diameter of the present vehicle design and 

due to a high turbulent heat transfer bump factor associated with the 70° sphere cone once transition does 

occur.  This suggests that alternative heatshield shapes might be explored (see Appendix E: Assessment 

of Alternative Forebody Configuration for Reduced Heating). 

A further cause of the present high baseline TPS mass estimates is the simplified single-thickness TPS 

sizing approach used for the MASS.  Such an approach leads to the entire heatshield being of the same 

thickness as is required for the peak heating location.  Further, the engineering approximations used in the 

single thickness design lead to a more conservative margin (50% on heat transfer, 50% on recession and 

30% on thickness) than could be realized through a higher -fidelity based approach. 

A preferred thermal protection system design methodology such as described in reference 29 would 

lead to a less massive variable thickness heatshield design when generated by a high-fidelity based 

integrated design environment.  In the method reported in references 27, 28, and 29, a relatively sparse 

(10x3x3 minimum) aerothermodynamic database is established in Mach-Q-Alpha space using solutions 

from a real-gas Navier-Stokes code such as DPLR or LAURA and when required a gas-phase radiation 

code such as non-equilibrium air radiation (NEQAIR) code. To then examine the variation of heat transfer 

to the entire surface of a proposed vehicle traveling a particular proposed design trajectory, an 

engineering methods based code such as CBAero is then used to accomplish "smart interpolation" 

between the aerothermodynamic solution points.  This design trajectory's heat pulse variation with time 

then provides the input to the FIAT material response code being run for each surface point on the 

heatshield being analyzed.  Resulting is the TPS thickness required at each of many points on the exposed 

surface of the fore and aft heatshields.  As the heat transfer levels are derived from high-fidelity real-gas 

Navier-Stokes solutions, the potential for greater accuracy and reduced margin requirements exist by such 

an integrated design approach.  The primary difficulty with this approach is that even with the sparseness 

of the aerothermodynamic database, roughly 100 Navier Stokes solutions are typically required to 

populate the database.  Once such a database is established for a particular vehicle shape, however, it can 

be used for many proposed trajectories and candidate TPS materials.  Such resources were not available 

for the purposes of this study, but typically would be for a full mission design. 

In summary, a baseline thermal protection system design for the forebody and aftbody has been 

accomplished based on a simplified and conservative single thickness heatshield approach.  The baseline 

forebody heatshield is composed of PICA with thickness of 7.158 cm and 347.3 kg including margins but 

not including the mass of the substructure.  The baseline aftbody TPS system is composed of  SLA-561V 

with thickness of 2.772 cm and mass of 204.1 kg including margins but not including the mass of its 

associated substructure. 

With the high turbulent heating rate, and the uncertainty of the ability to fabricate PICA in the sizes 

necessary for this size aeroshell, alternatives to the baseline TPS were assessed. An alternative 

configuration using an elliptical forebody in lieu of the 70° sphere cone shape was assessed with the 

results provided in Appendix E. Two alternative materials (Carbon-Carbon and SRAM-20) were assessed 

as alternatives to PICA, on the 70° sphere cone forebody. The results of the alternative materials are 

provided in Alternative Heatshield Material Systems section. 
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Alternative Heatshield Material Systems 

SRAM Family 

ARA is developing an extensive array of TPS material systems for use on entry bodies in recent years, 

under ISPT and MSL funding. ARA provided an assessment of one of their family of ablative TPS 

materials (SRAM-20) for this environment. The forebody peak heat rate exceeds the capability of the 

traditional SLA-561 family of materials previously used at Mars, consequently, alternative material 

systems are needed. The thermal response of the SRAM-20 material is shown in Figure 34. These results 

have been developed using the same heating profile (Figure 29 and  Figure 32), with the baseline 

forebody structure. The thickness, mass, and margin assumptions for the SRAM-20 TPS are provided in 

Table 14. The analytical results indicate the fully margined single thickness SRAM-20 forebody 

heatshield would have a thickness of 2.59 cm and a mass of 165.3 kg. 

Carbon-Carbon Hot Structure 

Lockheed-Martin Astronautics in Denver performed an assessment of using a Genesis-derived 

Carbon-Carbon hot structure for the heatshield system.  This concept has been developed under ISPT and 

manufactured at a 2.5-m diameter scale, with the technology advances resulting in a 30-40% mass savings 

over the Genesis heatshield. The carbon-carbon structure is a laminate which consists of a T300 based 

carbon composite structure with Calcarb foam insulation behind the structure with high temperature 

blankets on the inside surface. This implementation is a hot structure and so it is different than the 

baseline implementation of a composite primary structure with a TPS system applied to the structure (and 

the SRAM-20 alternative). The carbon-carbon system was designed to the same heating profile (Figure 29 

and  Figure 32) to provide a consistent sizing comparison. In addition to the thermal response, this 

structure also needed to be sized to accommodate the structural loads (applied external pressure and the 

deceleration loads). The basic sizing results indicated 12 carbon-carbon integral ribs and 3 concentric 

carbon-carbon integral rings with a varying shell thickness of 0.36 to 1.37 cm. The calculated carbon-

carbon recession was 0.104 cm, with 4.06 cm of calcarb high temperature insulation and an 11-layer high 

temperature blanket. The summary thickness and mass results for the carbon-carbon heatshield system are 

provided in Table 15. 

TPS Comparison 

Alternative TPS materials were considered to address the concern about the ability to manufacture 

PICA baseline TPS in the requisite sizes for this application. The comparison in terms of mass for the 

three TPS materials considered is provided in Table 16. Both the carbon-carbon and the SRAM-20 

materials provide a lower mass alternative. While reducing launch mass is a critical metric, the reduction 

in TPS mass has only a moderate impact on the overall conclusion. The primary mass is propellant which 

is driven by the mass of the propulsion stage and the ERV stage. The aerocapture stage only influences 

the cruise stage propellant. So reducing the TPS by up to 182 kg, will only reduce the cruise stage 

propellant by 21 kg. Also, reducing the TPS mass will reduce the load carried by the aeroshell structure, 

so the structure mass could be reduced by another 25 kg. The maximum launch mass savings estimated to 

be realized by a forebody TPS change would be 296 kg (includes 30% contingency), which still results in 

the launch vehicle not closing. Consequently, the decision was made to maintain the baseline PICA TPS. 

Given an additional design cycle, which would address redesign of many other elements as well, the TPS 

would be changed as part of an overall mass reduction program. 
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Structural Configuration 

The structure was evaluated in two distinct analyses.  The aeroshell structure was analyzed as a stand-

alone unit with the payload attached at the payload ring on the forebody.  The payload support structure 

and separation planes were evaluated as a stand-alone unit with the influence of the aeroshell mass taken 

into account. 

System Packaging  

Packaging of the system blends the physical packaging of the systems within the aeroshell coupled 

with the strategies for separating the Propulsion Module and the ERV. A secondary packaging constraint 

is the need to achieve an offset of the center of gravity of the entry system to allow the entry body to fly at 

an angle of attack during the aeropass. Packaging of the systems was an iterative process to achieve the 

desired configuration. 

Payload Structure Conceptual Design 

There are four required separations for the MASS flight system (Figure 35): 

1. Cruise stage separation 

2. Forebody/Heatshield  separation  

3. Backshell separation from payload 

4. Propulsion Module separation 

Keeping the loads out of the aeroshell itself requires an internal structure to hold the main components 

together with separation planes between them.  This internal structure must hold the individual tanks 

together and allow the two vehicles (Propulsion Module and ERV) to separate from each other and from 

the heatshield and backshell.  

Three structural configurations are examined.  The first configuration has the loads passing directly 

through each vehicle.  This means that the load path during launch goes from the aeroshell to the Prop 

Stage, and then through the #4 separation plane, the ERV, the #1 separation plane, and finally to the 

Cruise Stage.  In this case, pass through loads are taken through the Prop Stage and ERV vehicles during 

launch and entry, whether it be through the tanks or other secondary structure. 

The second configuration looks at the load differences when the aeroshell is connected to the ERV, 

not the Prop Stage.  The load path during launch would be from the aeroshell to the ERV, and then to the 

#4 separation plane, Prop Stage, the #1 separation plane, and then Cruise Stage.  There are slight 

difference in the loads between these two cases because of the differences in mass between the two 

vehicles, and the different g-loads taken on a nose-up launch compared to a nose down entry.  Some of 

the forces seen in the second configuration are smaller, but there is added length in some of the primary 

structure, and pass through loads in the vehicles still exist. 

The third configuration, which can be observed in Figure 43, has the loads from the aeroshell, located 

at a payload ring, passing from the payload ring to a Mid Separation Plane.  This Mid Separation Plane 

will take loads independently from the aeroshell, Prop Stage, and ERV and send them to a Cruise 

Separation Plane.  The load path then goes from the Cruise Separation Plane to the Cruise Stage.  This 

third configuration is chosen because of the avoidance of pass-through loads in both vehicles, and the 
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ability to separate massive structure from the vehicles after aeroshell separation. Note that there are 

clearance holes in the backshell for the reaction control subsystem (RCS) thrusters for control during the 

aerocapture maneuver. 

Editing Team X Study 

The Team X study for the aerocapture, last updated on June 1, 2005, made several assumptions about 

the aerocapture that have since been changed.  The Team X study assumed the load path from the payload 

mass travels through the aeroshell during entry.  The Team X study also has the Prop Stage located below 

the ERV (launch).  The mass estimate from the Team X study were: aeroshell - 2752 kg, the ERV - 2867 

kg, and the Prop Stage - 3422 kg.  These estimates for the vehicles included primary and secondary 

structure for the individual stages as well as attachments and adapters between the stages, however, pass-

through loads in the Prop Stage were never accounted for during the original study because of time 

constraints.  Because of this, 150 kg (without contingency – per Gerhard Klose 09/27/2005) was added to 

the Prop Stage primary structure bringing the Team X study total launch mass, including Cruise Stage, to 

9559 kg, with contingency. 

New Mass Estimates 

The mass for the new structure is estimated based on parametrics and comparisons to previous 

missions.  The Payload Ring Separation Plane and Cruise Separation Plane are estimated to be 52 kg. The 

Mid Separation Plane is estimated to be 65 kg.  All three truss structures are estimated to be 208 kg. 

These estimates are with contingency. The additional structure mass with contingency is 793 kg. 

Mass estimates for structural elements from the original Team X model are now consistent with the 

new structural mass estimates.  They are paired up and replaced with structural elements from the new 

design (Figure 36).  The added 150 kg to the primary structure of the Prop Stage in the Team X study is 

removed since there are no longer any through-loads in the Prop Stage. 

Total launch mass saved from taking structure out of the aeroshell and creating new internal structure 

is 1244 kg, with contingency.  This can be seen in Table 20, comparing the Team X aeroshell mass with 

the MASS aeroshell plus mid-truss stage masses. These results do not consider the new propulsion 

requirements based on these new mass estimates. 

Payload Structure Stiffness Evaluation 

The payload structure mass was estimated parametrically.  A more in-depth evaluation was performed 

to verify the “order of magnitude” results.  A simple beam element finite element model (FEM) was 

created of the payload support structure trusses and rings.  The payload was split into ERV and Prop 

Stage/aeroshell and modeled as simple concentrated masses.  The estimated masses used represented a 

snapshot in time.  The primary design/sizing driver was structural stiffness.  Several iterations were made 

to get gross “EA” and “EI” structure requirements to meet launch stiffness requirements.  A finite element 

model of the payload structure is shown in Figure 37. 

Table 17 lists the component mass estimates.  The assumed material for the tubes and rings was Gr/EP 

IM7/977-2 composite.  The total stackup mass estimate of 799 kg compared very closely with the original 

parametric value of 793 kg, so no further payload structure analysis was performed 
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Aeroshell Structure 

General Description 

The aeroshell structure consists of a forebody, backshell, and payload attach ring.  The forebody is a 

70° sphere-cone with a maximum diameter of 4.65 m, a 1.163 m nose radius, and a 0.116 m shoulder 

radius.  The backshell is a single conic frustum with a 32.5° half angle from vertical.  The total aeroshell 

height is 3.18 m (see Figure 42 and Figure 43).  The payload ring diameter is 1.8 m, and is permanently 

attached to the forebody.  The payload ring attaches the aeroshell to the payload via eight separation 

fittings, with six separation fittings attaching the backshell to the forebody.  The original Team X report 

had a very large aeroshell mass of 2752 kg, based on parametric scaling of previous aeroshell structure, 

primarily using an historic mass fraction.  A more in-depth analysis was required to develop accurate 

aeroshell mass for improved trajectory, aeroheating, and TPS analyses.   

Structural requirements 

The structure must be sized for sufficient strength and stiffness for launch and aerocapture loading 

environments.  Per the Delta IV-4050H-19 Payload Planner’s Guide launch load envelope the payload 

must sustain launch accelerations of 6 g’s axial combined with 0.5 g’s lateral, and 2.3 g’s axial with 2.0 

g’s lateral.  A final iteration 3  peak deceleration value of 5.2 g’s during aerocapture was calculated from 

a Monte Carlo entry analysis, assuming 16° angle of attack. For structural analysis, factors of safety of 1.4 

are added for ultimate strength of metals and composites, 1.25 for yield of metals, and 1.5 for buckling.  

Natural frequency minimums at launch are 8 Hz for first lateral mode and 30 Hz for first axial mode, also 

per the Payload Planner’s Guide. 

Analysis Assumptions and Methods 

Several iterations were done on the aeroshell structural sizing, with different assumptions made based 

on the maturity level of the full design and individual subsystems.  For all iterations, some basic 

assumptions remained constant.  At launch the aeroshell was nose up with the payload structure 

supporting the aeroshell at the forebody payload ring.  The payload structure load went through the 

backshell and was the primary load path during launch, leaving the aeroshell “hanging” and supporting 

only its own mass and inertia loads at launch.  At aerocapture, the forebody was nose down with a coarse 

aerocapture pressure distribution applied to the forebody to balance payload and aeroshell inertia loads at 

entry g levels.  Specific aeropressures and entry g values varied through the iteration process, with 5.2 g’s 

being the final value.  To envelope the structure sizing, contingency values for payload and TPS mass 

were applied, with the resulting aeroshell structure mass being the current best estimate (CBE) structure 

mass value. 

A plate element FEM, shown in Figure 38, was created to represent the aeroshell structure.  The 

forebody was tied to the backshell at six equally spaced points with rigid elements representing separation 

fittings.  The payload was represented as a point mass, tied to the payload ring with a constraint element.  

First and second round sizing iterations used 6500 kg and 6999 kg for the payload, respectively.  The 

payload CG was adjusted so that the combined payload-aeroshell CG would balance the aeropressure 

loads at 16° angle of attack.  The initial FEM was created using ProbeMASS1, a quick sizing tool in 

development at NASA LaRC.  It was modified in the commercial software SDRC I-DEAS™ to add the 

forebody/backshell attachments, launch boundary conditions, and aerocapture pressure distributions, as 

seen in Figure 38.  The I-DEAS solver was also used to get internal structure loads at launch and 

aerocapture using static and inertia relief solutions, respectively.  A universal file containing the mesh and 
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internal loads was then input into the commercial software Hypersizer® where a large trade space of 

designs, materials, and sizing parameters were evaluated.  Closed form solutions checked local 

component strength and stability and output the lowest mass structure.  These results were then manually 

“smeared” to allow for a manufacturable structure, and a second universal file was created which was 

read back into I-DEAS for another round of iterations.  The aeropressures and payload CG were adjusted 

to balance the new aeroshell-payload mass combination for the given entry g’s.  Natural frequencies at 

launch configuration and global buckling at aerocapture configuration were also checked in I-DEAS at 

this time.  

Since no TPS analysis or mass estimates had been done at the start of the structural sizing, the first 

round of model balancing and sizing was based on an initial guess of aeroshell structure mass and TPS 

mass using trend curves of historical data contained in ProbeMASS1.  The initial TPS sizing was based 

on SLA-561V material, assuming the Team X estimated heat load of 124 MJ/m
2
.  Figure 39 and Figure 

40 show the trend curves for aeroshell forebody structure and TPS mass, respectively.  Later calculations, 

as discussed elsewhere in this report, showed the need to use PICA TPS material for the forebody and 

SLA-561V for the backshell, both at much higher areal densities than were estimated for the first round of 

structural iterations. 

The aeroshell mass estimates from the first round of sizing iterations were input back to the systems 

study team for further iterations on entry analysis, guidance, and TPS sizing.  Revised entry g loads and 

TPS mass estimates, as discussed above, were then used for the next set of aeroshell sizing iterations, 

using the finite element procedures outlined above. 

Aeroshell Sizing Results 

The resulting aeroshell structure was a honeycomb sandwich construction for the forebody and 

backshell, and a stiffened panel concept for the payload ring.  The resulting forebody is 0.2794 cm (0.11 

in) quasi-isotropic Graphite polyimide (Gr/PI) face sheets on 2.54 cm (1.0 in) 5052 aluminum honeycomb 

core. The backshell cone, top and interface ring are 0.1397 cm (0.055 in) quasi-isotropic GR/Pi face 

sheets on 1.27 cm (0.5 in) 5052 aluminum honeycomb core.  The payload ring is a 7075 aluminum Z-

stiffened panel in a ring shape.  All components had positive margins of safety as calculated from the 

Hypersizer software.  The resulting CBE masses from the analysis are shown in Table 18. 

An additional 7% of the forebody and backshell primary structure mass (14.7 kg and 10.9 kg, 

respectively) was included in the Master Equipment List (MEL) to account for secondary structure 

(brackets, assembly hardware, etc.) not obtained from the analysis.  

For the launch configuration with the aeroshell held at the payload ring, Modes 1 and 2 are 16.7 Hz, 

lateral motion, and Mode 3 is 30.34 Hz, axial motion.  These natural frequencies for the aeroshell alone 

are above launch requirements.  Due to the use of parametric mass scaling for the payload structure and 

cruise stage, no finite element modes were available to create a full stackup model, and so full launch 

stackup natural frequencies were not determined. 

At aerocapture loading, the buckling eigenvalue is 7.84, based on an inertia relief buckling solution in 

I-DEAS.  This value exceeds the lower threshold requirement of 1.5.  The buckling shape is shown below 

in Figure 41. 
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Spacecraft Description 

Even with the use of aerocapture at Mars arrival, the total on-board V required from the Orbiter/ERV 

is very substantial, exceeding 5.5 km/s, for this opposition class mission. Because the propulsive 

requirements are so high, multiple staging events are used to lighten the spacecraft as much as possible 

prior to the TEI maneuver.  For the MASS, a multi-stage design for the Orbiter/ERV was developed, 

which divides the vehicle into five major elements, four of which are staged prior to the TEI maneuver: 

the Cruise stage, the Aerocapture stage, the Mid-Truss stage, the Propulsion Stage, and the main ERV. In 

addition, 79 kg of sample capture hardware is jettisoned from the ERV prior to TEI. This staging 

approach was derived from a multi-stage Orbiter/ERV design developed in a previous study conducted by 

the JPL Advanced Projects Team (ref. 6). The Team X design was substantially modified in the MASS, 

with major changes to the spacecraft’s primary structure and TPS including the addition of the mid-truss 

stage. 

It should be noted that no systematic effort has been made to optimize the number of stages or the 

point at which the stage separation events should occur. The main reason the staging occurs prior to the 

TEI is because there is a desire to avoid autonomous staging in the middle of the maneuver occurring at 

periapsis. Some further reduction in launch mass may be achievable by staging differently or possibly by 

adding an additional propulsion stage.  

Figure 42 and Figure 43 show the overall vehicle configuration. The propulsion stage is located at the 

front of the vehicle and the ERV at the back, with both elements surrounded by the primary truss structure 

and aeroshell elements. The vehicle is launched nose-up and fits within the faring of a Delta IV-4050H-19 

launch vehicle. The allowable diameter of the aeroshell is limited by the diameter of the launch vehicle 

fairing. 

In an effort to lower the mass of the aeroshell, a structural design that carries primary structural loads 

through the spacecraft rather than through the aeroshell  has been adapted. This allows for a substantial 

reduction in the mass of the aeroshell, giving an aeroshell mass fraction (defined as aerostage mass / entry 

mass) of approximately 15%.  This is much lower than the 30% used in the Team X study. The vehicle 

design is based around a truss structure that carries primary loads around (not through) the ERV and 

propulsion stage. The aeroshell stage connects to a payload ring at the front of the vehicle, while the 

propulsion stage and ERV connect to the mid-separation plane shown in Figure 43. Details of the 

structural design are available in the Structural Configuration section. The truss structure is relatively 

massive and is discarded in stages after the aeroshell separation. This minimizes the mass carried in large 

propulsive maneuvers and lowers the propellant mass required by the vehicle. 

A summary mass budget for the overall vehicle is shown in Table 19. Detailed MEL’s for each 

element are provided in Appendix A. 

Table 19 shows that the total system launch mass exceeds the capability of the launch vehicle by over 

1000 kg. This result is not unexpected, as previous work by JPL’s Team X also concluded that this 

configuration has negative mass margin (ref. 6). Although aerocapture substantially lowers the mass of 

the system compared to an all propulsive architecture for this opposition class mission, the high 

propulsive requirements for the system on the return leg result in a total propellant loading of over 5000 

kg for the vehicle. A comparison between the masses calculated in this study and those generated by 

Team X is shown in Table 20. The Team X results are taken from an update to (ref. 6) generated in Jun 

2005. 
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The overall launch mass of the Team X option is approximately 500 kg more than that of the current 

vehicle in the MASS. The main source of this difference is the lower mass of the aeroshell and backshell 

used in the current study. It is interesting to note that aeroshell to entry mass fraction of the current design 

is much lower than that used in the Team X study. Team X chose to size the aeroshell using a simple 

“rule of thumb” which assumes the mass of the aeroshell is equal to 30% of the total entry mass. MASS 

used more accurate structural and thermal analysis tools to design the aeroshell.  

One of the goals of the MASS was to determine if the entry mass fraction used by Team X is 

applicable to very large aerocapture vehicles. The results of this study suggest that a lower fraction than 

30% is appropriate for large vehicles. However, it should be noted that the total launch mass savings 

(~500 kg) is much less than the savings achieved in the aeroshell stage (~1500 kg). This occurs because 

part of the aeroshell mass savings in this study is achieved by changing the structural load path so the 

launch loads associated with the aeroshell are carried through the spacecraft’s primary structure rather 

than through the aeroshell itself. Although this lightens the aeroshell, it also requires additional primary 

structure mass in the ERV, mid-truss, and propulsion stages. The net structural mass added to the non-

aeroshell portions of the vehicle is less than the dry mass saved within the structure of the aeroshell stage. 

Although the structure is staged as the mission proceeds, a portion of the added structural mass is carried 

through the propulsive maneuvers occurring after sample collection. In particular, the dry mass of the 

propulsion stage in the current design is much higher than the dry mass of the propulsion stage in the 

Team X design largely because of the added mass associated with the primary truss structure. The wet 

mass of the vehicle increases as propellant is added to accelerate the added structural mass, substantially 

reducing the net mass savings to the overall vehicle. For future work, it would be desirable to design an 

aeroshell that carries launch loads though its internal structure to determine if that configuration is more 

mass efficient overall for this mission. 

Cruise Stage 

The cruise stage is mounted external to the aeroshell and provides propulsion and communications 

services after launch and prior to the aerocapture maneuver at Mars. The stage incorporates a 

monopropellant chemical propulsion system that uses 16 thrusters for TCM’s, attitude control, and 

targeting prior to Mars arrival. It also incorporates a small X-band antenna for communication with Earth. 

The entire cruise stage is separated from the aeroshell and discarded prior to the aerocapture maneuver. 

The mass of the propulsion, telecom, thermal, and harness subsystems were estimated directly from 

previous studies conducted by JPL’s Team X. A detailed MEL for the cruise stage is shown in Appendix 

A. The cruise separation plane’s structural elements are included in the MEL for this stage. 

Aerocapture Stage 

The aerocapture stage consists of the aeroshell (both forebody and backshell) and includes the TPS, 

separation devices, support structure, and interface structure connecting the aeroshell to the rest of the 

vehicle.  The structural interface between the main spacecraft and the aerocapture stage is through a 

payload ring attached to the forebody. The backshell attaches structurally to the forebody and does not 

directly interface with the launch vehicle or the main spacecraft.  The stage separation occurs after the 

aerocapture maneuver and before the periapsis raising maneuver and consists of two separate events; the 

forebody is initially separated from the main vehicle, the ERV/Prop stage is then extracted from the 

backshell and the backshell is discarded. 

 



 

- 30 - 

The elements of this stage were designed for this study as described in detail in the body of this report. 

A detailed MEL for the aerocapture stage is shown in Appendix A. 

Mid-Truss Stage 

The mid-truss stage consists entirely of external primary structure designed to support the spacecraft 

during launch and aerocapture. This structure is not needed after the aerocapture maneuver and is 

jettisoned just after the aerocapture stage is released. This element was designed for this study as 

described in the Structural Configuration section. A detailed MEL for the mid-truss stage is shown in 

Appendix A. 

Propulsion Module 

The propulsion stage provides primary and secondary propulsion for the post-aerocapture apoapsis 

raise maneuver and for the apoapsis raise and periapsis lowering maneuvers that occur just prior to TEI. 

The propulsion stage consists of a large dual-mode bipropellant propulsion system and its associated 

thermal control and structural hardware and includes the external truss that connects the structural mid-

plane to the aeroshell structural support plane. The stage sits above the ERV in the launch configuration 

and interfaces to the ERV though a series of separation points connected to the main structural ring on the 

ERV. The stage interfaces to the aerocapture stage through a payload ring. The major elements of the 

propulsion stage are shown in Figure 44. 

The propulsion stage is scaled from a propulsion stage design previously developed by Team X (ref. 

6). The mass of the tanks was scaled from the Team X design by assuming that the overall tank mass 

fraction (fraction of tank dry mass to propellant wet mass) remains constant as one increases or decreases 

the amount of propellant in the tank. This assumption is valid for custom sized propellant tanks which are 

relatively close in size to the original Team X tanks. The assumption is valid in this case, as the final tank 

capacity is within 10% of the tanks defined in the original Team X study. A detailed MEL for the 

propulsion stage is shown in Appendix A. 

Earth Return Vehicle and Earth Entry Vehicle 

The Orbiter/ERV provides primary and secondary propulsion for the TEI maneuver and for the deep 

space maneuver executed after the VGA. The Orbiter/ERV also provides power as well as command and 

data handling for all elements of the vehicle stack and provides the tracking and capture hardware 

necessary to capture the OS. The Orbiter/ERV also provides the majority of the telecommunications 

hardware necessary to communicate with the Earth through all phases of the mission. Two ultraflex solar 

arrays provide power for the vehicle. The major elements of the ERV are shown in Figure 45. 

The designs for the attitude control system, power system, command and data handling system, 

telecommunications system, and thermal system are all derived from a previous study conducted by Team 

X. Mass estimates for the EEV and Sample Capture Hardware were provided by the Mars Advanced 

studies program office. The propulsion system mass is scaled from a previous Team X design by 

assuming that the overall tank mass fraction (fraction of tank dry mass to propellant wet mass) remains 

constant as one increases or decreases the amount of propellant in the tank. This assumption is valid for 

custom sized propellant tanks, which are relatively close in size to the original Team X tanks. The 

assumption is valid in this case, as the final tank capacity is within 7% of the tank capacity defined in the 

original Team X study. The structure was designed for this study. 
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Cost Assessment 

The following section describes the models used to perform the cost assessment, the groundrules and 

assumptions for the estimate, and the results of the assessment. 

Description of Cost Models 

NAFCOM 

NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware that uses 

cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict 

new project costs.  It is based on historical NASA and Air Force space projects and is intended to be used 

in the very early phases of a development project.  NAFCOM can be used at the subsystem or component 

levels and estimates development and production costs. 

SOCM 

The Space Operations Cost Model (SOCM) is an evolving, multi-level, constructive model that 

estimates the costs and staffing for space operations projects by a comparison of mission characteristics to 

an advancing "State of the Practice" (SOP).  High-level project characteristics are used to generate a 

Level 1 estimate with a ± 30% accuracy.  A more detailed characterization of the project’s operations 

implementation strategy is used to refine the Level 1 estimate, and thus generate a Level 2 estimate with 

improved accuracy. 

Cost Assumptions 

1. All estimates presented in fiscal year (FY) 05$M 

2. Fee (10%) and Program Support (25%) included 

3. December 2013 Launch Date 

4. Used NAFCOM to estimate the following mission segments: ERV, Prop Stage, Mid-Truss Stage, 

Cruise Stage, and Aeroshell 

5. Cost for the EEV and Sample Capture System including Optical Navigation Cameras taken from 

reference 6. 

6. No scientific instruments included 

7. No cost for the Lander or any systems associated with the lander delivery, Entry, Descent, 

Landing, or MAV are included 

8. Launch Vehicle cost obtained from Mars Program Advanced Studies request to KSC (through 

NASA HQ) for launch services costs for future missions to be used in development of the POP 

inputs. 

9. Included standard Education/Public Outreach levels (1% of Total Cost less Launch Vehicle) 

10. JPL Design Principles used to determine reserve levels (30% Phase B/C/D, 15% Phase E) 

11. SOCM used to estimate Phase E costs (assumed 22 months total mission and 3 months intense ops) 
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Cost Estimate Results 

The results of the cost analysis are presented in Table 21.  The cost and estimating methodology is 

identified by Work Breakdown Structure element. 

Technology Assessment 

As part of the study, assessments of the influence of technologies which could either enhance, or 

enable the mission were performed. Since the study was focused on a nearer term solution, only near term 

technologies were considered. The basic technology which influences the mission is the use of 

aerocapture itself. The second tier elements influencing the mission, are any elements significantly 

influencing the overall launch mass. Since the majority of the mission mass is split between propellant, 

structure and TPS, there are only limited technologies to assess. While avionics and power systems are 

continually having their mass and power reduced, their mass is inconsequential for this class of a mission. 

Technologies considered were divided into enhancing and enabling technologies.  

Enabling Technologies 

In general, no enabling technologies were identified. 

Aerocapture itself was envisioned to be an enabling technology itself for the Fast-Return (Opposition-

Class) mission. The mission did not close using the largest expendable launch vehicle while maintaining a 

30% contingency. If the contingency was reduced to approximately 10%, then the mission would close 

and thus aerocapture could be enabling. Further efforts to reduce the major mass components could result 

in the ability for the mission to close. 

Aerocapture itself is an enabling technology for the Conjunction class return missions. Aerocapture is 

also enabling for large orbiters. 

Enhancing Technologies 

MASS can most likely be implemented within existing capabilities.  Further development work is 

required for TPS, to demonstrate manufacturing at the 4.65 m scale.  Current monolithic PICA fabrication 

is limited to approximately 1 m diameter; manufacturing to 1.75 m may be demonstrated by 2008. The 

use of PICA on a 4.65 m scale requires joints, which need additional analysis and testing.  This is also the 

case for SRAM-20 at the large scale.  The Carbon-Carbon heatshield system concept has been 

demonstrated at the 2 m scale and is supported by high-quality predictive models that should allow it to 

be scaled up without additional large-scale manufacturing tests. 

Validation of the CFD tools for the hypersonic turbulent flow regime is an enhancing technology area.  

At present, without that validation, significant uncertainty values are used on the heating, which increases 

TPS mass.  Also, without a good knowledge of the actual margins being carried in the TPS system, it is 

difficult to make risk-based technical decisions.  Lowering these uncertainties can allow the aerocapture 

system hardware to be more efficient, possibly resulting in enhanced science return. 
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Future Efforts 

With the completion of the MASS, recommendations for future efforts are also provided. The 

following are areas suitable for additional study. 

1. Mission Design - Reassess mission design constraints and see how close some were - can they be 

relaxed? Is there an opportunity beyond 2024? 

2. Aerothermal - Reduce environmental uncertainty through additional analysis and testing. Current 

computational tools are not validated for predicting turbulent aerothermodynamics in a 

hypersonic Mars environment 

3. Aeroshell - Integrate aeroshell with payload structure and cruise stage to check full stackup 

structure (stress, buckling, natural frequencies, etc.). 

4. Aeroshell - Optimize aeroshell-payload structure interface diameter. 

5. Aeroshell - Evaluate alternate structural concepts such as substituting or integrating hot structures. 

6. Aeroshell - Evaluate alternate structural load paths such as backshell vs. payload structure as 

primary load path. 

7. TPS - Assess alternate forebody geometry (modified ellipsoid) - with the goal of reducing 

turbulent heating and thus reducing TPS mass 

8. TPS - Develop integrated TPS Design Environment (e. g., NS-CBAero, FIAT, TPSSZR) - 

resulting in a Variable surface TPS thickness and thus reducing TPS mass 

9. Aerothermal and TPS  -Perform combined Monte-Carlo analysis bringing together aerothermal 

uncertainties with TPS uncertainties to generate an integrated probabilistic answer. Should reduce 

TPS mass. 

10. Programmatic - Consider a change of problem statement to focus on “Large Science Orbiter” for 

Mars and define when Aerocapture is a viable alternative 

11. Programmatic - Consider a change of problem statement to focus on “Fast Arrival” to assess 

implications of using Aerocapture to enable significantly higher arrival energies than typically 

used for Mars orbiters. 

Concluding Remarks 

Assessment of the use of aerocapture for the Opposition class return for an MSR mission with the 

defined mission implementation constraints could not close using existing expendable launch vehicles. 

With additional design and analysis effort, a different conclusion may be reached in that the mission 

could close. Aerocapture enables the delivery of large payloads to Mars or Venus. Aerocapture also 

enables delivery of moderate payloads to outer planet destinations. The HYPAS algorithm is the baseline 

GNC algorithm and has been found to be very robust and resilient across the entire spectrum of 

aerocapture. Current technologies are sufficient for demonstration of aerocapture which would allow it to 

then be an additional alternative to mission planners. 
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Appendix A:  Baseline Master Equipment List 

All hardware elements and propellant masses were computed using either parametric tools or 

definition of existing hardware or derived from the design efforts as part of this study. The MELs are 

provided for the ERV (Table 22), the Propulsion Module (Table 23), the Mid-Truss Stage (Table 24), the 

Aeroshell Stage (Table 25), and the Cruise Stage (Table 26). 

Appendix B:  Fast Return Trajectories 2013-2025 

This study included an assessment of the Mars opportunities from 2013 through 2025 (see Table 5). 

Provided in this appendix are the general trajectory plots for these opportunities for the cases of excessive 

Mars departure C3 (Figure 46) and excessive Earth to Mars trip times (Figure 47).  

Appendix C:  Mass/Maneuver Calculation Tables 

Calculations for the baseline aerocapture case indicating the mass changes including propellant usage 

for each mission maneuver or event are provided in Figure 48. For comparison, the similar mass and 

maneuver calculation set is provided for the All-Propulsive option as shown in Figure 49. The basic 

comparison of these two options illustrates the dramatic reduction in mass afforded by aerocapture for 

this architecture, with a greater than factor of 3 mass reduction. 

Appendix D:  Comparison of the TES Limb Measured Atmospheric 

Profile to the Standard MarsGRAM Atmospheric Profile 

A 2000-run Monte Carlo analysis was performed for the nominal 300 kg/m
2
 BC case to test the Mars-

GRAM 2005 TES limb-measured auxiliary atmospheric profile feature.  The TES observation density 

auxiliary profile, in comparison to the MGCM climatology, can have up to 40% lower density than 

density observed by TES limb sounding at low to mid latitudes and altitudes above 40 km. The 

uncertainties used in the Monte Carlo analysis are exactly the same as for the 300 kg/m
2
 BC case   (see 

the Monte Carlo Uncertainties for 300 kg/m
2
 BC table in the Guidance and Integrated Trajectory 

Performance section).  It should be noted that the HYPAS guidance was not retuned from the nominal for 

the TES profile comparison. 

The results from the 2000-run Monte Carlo analysis are presented in Figure 50 through Figure 53.  

The TES performance in the Monte Carlo analysis showed slightly better results than the 300 kg/m
2
 BC 

without the profile due to the higher density values from TES, and also proved a robust HYPAS guidance 

algorithm since there was no retuning from the nominal 300 kg/m
2 

BC case.  Figure 50 shows the final 

apoapsis altitude versus the periapsis altitude at atmospheric exit, before a circularization maneuver is 

performed.  The resulting dispersion in apoapsis altitude is 497.7 km ± 24.1 km (3 ).  Figure 51 shows 



 

- 35 - 

the V required for orbit circularization after aerocapture.  The circularization V dispersion is 122.1 m/s 

± 5.1 m/s (3 ).  The peak LAURA turbulent heat rate estimate is shown in Figure 52.  The resulting 

dispersion in turbulent peak heat rate is 274.8 W/cm
2
 ± 45.9 W/cm2 (3 ), and the total integrated 

turbulent peak heat load dispersion is 19051.4 J/cm
2
 ± 1780.2 J/cm2 (3 ).  Figure 53 presents the 

maximum loading, or deceleration, on the vehicle.  The peak deceleration dispersion is 4.3 g’s ± 0.9 g’s 

(3 ). 

Appendix E: Assessment of Alternative Forebody Configuration for 

Reduced Heating  

Associated with the large diameter of the proposed Mars vehicle is that the forebody boundary layer 

will undergo transition to turbulence early in the aerocapture maneuver (prior to peak heating).  High 

heating levels typically associated with turbulent flow then occur throughout most of the atmospheric 

flight portion of the trajectory. For many common heatshield geometries, transition to turbulence occurs 

predominantly over the leeside of the heatshield leaving the stagnation point laminar, but with turbulent 

heating bump factor on the leeside in excess of three.  

Many Mars missions have made use of the 70° sphere-cone geometry heatshield, but for those 

missions, the vehicle was smaller than for the MASS concept such that the forebody boundary layer 

remained laminar throughout much of the atmospheric flight.  The 70° sphere-cone heatshield geometry, 

however, proves to be particularly susceptible to excessive heating once turbulent transition occurs.  On 

the lee-side of the heatshield the turbulent heating bump factor can reach as high as 6, causing the leeside 

turbulent heating to exceed even the heating level at the stagnation point (which may yet remain laminar).  

This turbulent excessive heating for the 70° sphere-cone is seen both in Navier-Stokes solutions for the 

MASS concept and in T5 experiments accomplished in support of MSL (ref. 32). As an example of this 

turbulent heating effect, Figure 54 depicts heatshield surface results obtained using the DPLR real-gas 

Navier-Stokes code for the peak heating time of one trajectory considered for the present MASS.  For this 

trajectory point, the 70° sphere-cone of 4.65 m diameter is held at an angle of attack of 16° and the 

aerodynamic L/D is 0.24.  Solutions were obtained for both laminar and turbulent flow over the 

heatshield with uncertainties. The DPLR results are consistent with the LAURA results (Figure 27 

without uncertainties and Figure 29 with uncertainties). Figure 54 also shows the momentum thickness 

for the laminar solution.  Using a transition criterion of Re  of 200, the stagnation point and windward 

portion of the heatshield is seen to remain laminar, while the leeside of the heatshield becomes turbulent 

(consistent with Figure 28). Figure 54 also shows both the laminar (on the figure's left half) and turbulent 

(on the figure's right half) heating levels obtained from the Navier-Stokes solver.  As can be seen, 

turbulent peak heating actually occurs on the leeward-most shoulder far in excess of the stagnation point 

heating level. This turbulent heating susceptibility of the 70° sphere-cone suggests that, where turbulent 

transition early in the trajectory is likely, a search for a heatshield geometry as an alternative to the 70° 

sphere-cone may result in a decreased design heating pulse, both integrated and peak levels, with a 

possibility for relatively lighter density TPS materials and lower forebody TPS mass. 

In order to explore this potential, an ellipsoidal heatshield configured to match the aerodynamic lift 

and drag properties of the 4.65 m diameter 70° sphere-cone heatshield at hypersonic velocities for the 

Mars atmosphere was assessed.  Figure 55 depicts the ellipsoidal heatshield surface results obtained by 

the DPLR Navier-Stokes solver for the same trajectory conditions as for the Figure 54 70° sphere-cone 

heatshield results. For the ellipsoidal heatshield, transition occurs on the leeward side of the heatshield 

similar to the 70° sphere-cone.  However, the peak turbulent heating for the ellipsoid heatshield is at a 

much reduced level relative to the 70° sphere-cone.  The turbulent peak heating for the ellipsoidal 

heatshield is 163 W/cm
2
 compared to 323 W/cm

2
 for the 70° sphere-cone, a reduction of nearly 50%.  
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TPS sizing for the ellipsoid heatshield has been accomplished using a reduction of 50% in peak 

convective heat transfer as a characterization of the ellipsoid heatshield and applying that to the trajectory 

heating pulse of  Figure 32.  The FIAT material response code accounts for the reduction in convective 

heat transfer coefficient associated with the ablative mass blowing effect.  For the simplified single-point 

approach used, similar to how the baseline TPS design was established, it is determined that SLA-561V is 

suitable for this peak heat transfer level with a thickness of 1.176 cm and a unmargined forebody 

heatshield TPS mass of 63.67 kg.  Figure 56 compares this estimate for unmargined mass of the SLA-

561V ellipsoidal heatshield with the 231.8 kg for the unmargined mass for the PICA baseline 70° sphere-

cone heatshield.  The considerable saving in TPS mass for the ellipsoidal heatshield relative to the 70° 

sphere-cone is the consequence not only of the reduction in thickness of the heatshield but also that a 

switch to the lighter density SLA 561V due to the much lower peak heating level.  The reduction in peak 

heating by 50% for the ellipsoidal heatshield over the 70° sphere-cone thus leads to forebody heatshield 

with only 27% of the TPS mass. 

A more thorough aerodynamic stability and aerothermodynamic analysis of the ellipsoid heatshield, 

followed by experimental validation, would be required before its use could be confidently recommended 

for a Mars mission.  No optimization of the heatshield geometry was attempted, only that the hypersonic 

lift and drag levels were matched to the baseline 70° sphere-cone heatshield.  The mass savings advantage 

of the ellipsoid heatshield seen here would likely be reduced for a variable thickness heatshield.  

However, there is sufficient potential demonstrated in this brief analysis to justify further exploration of 

heatshield geometry alternatives to the traditional 70° sphere-cone for future Mars missions. 
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Tables 

Table 1:  Comparison of MASS Aerocapture to Entry Missions 

Parameter Viking MPF MPL MER Phoenix 

(2007) 

MSL 

2009 

(05-22) 

MASS 

Trajectory Deorbit Direct Direct Direct Direct Direct Direct 

Entry Mass (kg) 980 585 494 832 538 2804 8279 

Payload Mass (kg) 600 370 290 421 364 1791 7087 

Payload/Entry Mass 
Fraction 

61.2% 63.2% 58.7% 50.6% 67.7% 63.9% 85.6% 

Diameter (m) 3.54 2.65 2.4 2.65 2.65 4.5 4.65 

Ballistic Coeff. (kg/m
2
) 63 63 60 89 64 121 365 

Entry Velocity (m/s) 4610 7260 6900 5700 5790 5601 7150 

Peak Heat Rate (W/cm
2
) 21 106 80 41 47 179 372 

Heat Load (J/cm
2
) 1100 3865 4322 3687 2827 5013 24,200 

Peak Decel. (Earth g’s) 7.24 11 12 6.2  12.7 5.2 

L/D 0.18 -- -- -- -- 0.24 0.24 

G&C 3-Axis Spin Spin Spin Spin 3-Axis 3-Axis 

Aeroshell Packing 
Density (kg/m

3
) 

140.6 178.3 194 248.5 164 287.3 338.2 

 

Table 2:  Comparison of MASS to Other Aerocapture Studies 

Parameter Titan Study Neptune 

Study 

Venus 

Study 

MSP-01 MASS 

Entry Mass (kg) 1026 1834 1087.7 554 8279 

Payload Mass (kg) 600 949 788.2 347 7087 

Payload/Entry Mass Fraction 58.5% 51.7% 72.5% 62.6% 85.6% 

Diameter (m) 3.75 -- 2.65 2.4 4.65 

Ballistic Coeff. (kg/m
2
) 90 895 114 63.4 365 

Entry Velocity (m/s) 6500 29,000 11,250 6520 7150 

Peak Heat Rate (W/cm
2
) 280 12,000 1200 68 372 

Heat Load (J/cm
2
) 33,000 3 x 10

9
 15,900 9800 24,200 

Peak Decel. (Earth g’s) 3.5 22 15.3 4.4 5.2 

L/D 0.25 0.8 0.25 0.18 0.24 

GNC Algorithm HYPAS HYPAS HYPAS HYPAS HYPAS 

Theoretical Corridor Width 
(degrees) 

3.5 2.27 1.55 -- 2.42 

Drag Pass Duration (minutes)  1834 1087.7 554 8279 

Aeroshell Packing Density (kg/m
3
)  949 788.2 347 7087 
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Table 3:  Comparison of MASS with an All-Propulsive MOI 

 MASS All-Propulsive 

Total Mission Duration 1.77 years 1.77 years 

ERV Delta-V 3787 m/s 3787 m/s 

Prop Module Delta-V 1729 m/s 3881 m/s 

Cruise Stage Delta-V 60 m/s 0 m/s 

Total Delta-V 5576 m/s 7668 m/s 

   

ERV (+EEV) - Dry 882 kg 882 kg 

Prop Module – Dry 1135 kg 3959 kg 

Aerocapture – Dry 1247 kg 0 kg 

Cruise Stage – Dry 502 kg 0 kg 

Sub-total – Dry 3766 kg 4841 kg 

   

ERV Propellant 2120 kg 2120 kg 

Prop Module Propellant 2950 kg 17,550 kg 

Cruise Stage Propellant 260 kg 0 kg 

Sub-Total Propellant Mass 5330 kg 19,870 kg 

Total Launch Mass 9096 kg 24,711 kg 

 

Table 4: Sampling of MSR Aerocapture Architectures available in 2013/2016 

 "Slow" 2013 / ERV "Fast" 2013 /ERV "Medium" 2016 /ERV 

Earth Depart Trajectory    

Launch Date Dec 2013 Dec 2013 Aug 24 2016 

Launch Vehicle Atlas V 521 Delta IV-4050H-19 Atlas V 531 

Launch C3 13.7 km
2
/s

2
 10.3 km

2
/s

2
 23.5 km

2
/s

2
 

Mars Arrival Vinf 6.3 km/s 4.7 km/s 6.1 km/s 

Earth Return Trajectory    

Mars Departure C3 11.1 km
2
/s

2
 29.8 km

2
/s

2
 6.5 km

2
/s

2
 

Deep Space DV None 1.2 km/s None 

Trajectory Ballistic VGA on Earth Return Ballistic 

Arrival Vinf 4.0 km/s 3.2 km/s 3.7 km/s 

Total Orbiter DV 3.1 km/s 5.6 km/s 2.7 km/s 

Mission Duration 32 months 21.5 months 27 months 

Earth to Mars 10 months 6.5 months 18 months 

At Mars 9 months 3 months 1.5 months 

Mars to Earth 13 months 12 months 6.5 months 

Spacecraft Configuration 2 Stages 3 Stages 2 stages 

Stage 1 Aeroshell Stage Aeroshell Stage Aeroshell stage 

Stage 2 ERV Stage Propulsion Stage ERV stage 

Stage 3  ERV Stage  

Notes  Negative Launch Mass 

Margin: -550 kg 

About 200 kg  propellant 

saved relative to "slow" 

2013 option 
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Table 5: MSR “Fast” Aerocapture Options from 2013 to 2025 

Trajectory 

No. 

Mars  

Departure Date 

Earth  

Arrival Date 

Flight Time 

(days) 

Viable for MSR? 

1 9/30/2014 10/4/2015 368.7 Yes; Baseline Trajectory 

2 7/2/2015 2/25/2017 604.5 No; Return flight time too long 

3 7/26/2016 6/18/2017 327.4 No; Stay time <45 days 

4 5/1/2017 2/25/2019 644.6 No; Return flight time too long 

5 5/22/2018 6/13/2019 386.5 No; Bad arrival phasing 

6 2/27/2019 1/8/2021 680.4 No; Return flight time too long 

7 4/5/2020 4/2/2022 727.7 No; Return flight time too long 

8 1/6/2021 1/21/2022 379.8 No; Mars depart C3 too high 

8(b) 2/3/2021 2/3/2022 365 No; Mars depart C3 too high 

9 12/28/2021 7/18/2023 566.5 No; Return flight time too long 

10 10/26/2022 12/6/2023 405.4 No; Bad arrival phasing 

11 10/20/2023 6/8/2025 597.1 No; Return flight time too long 

12 8/30/2024 12/27/2025 484.1 No; Outbound flight time too long 

13 8/19/2025 6/8/2027 657.2 No; Return flight time too long 

 

 

Table 6: Mars Sample Return Orbiter/ERV Maneuver List 

Maneuver DV Requirement Propellant Mass Requirement 

Mars Arrival Maneuvers   

Trajectory Correction 60 m/s  

Aerocapture RCS  5 kg 

Circularize, Clean up, and Rendezvous with OS 420 m/s  

Mars Departure Maneuvers   

Apocenter Raise Maneuver 1 664 m/s  

Apocenter Raise Maneuver 2 635 m/s  

Pericenter Lowering Maneuver 10 m/s  

Attitude Control Maneuvers  20 kg 

Trans-Earth Injection Maneuver and Cleanup 2527 m/s  

Post-Mars Departure Maneuvers   

Deep Space Maneuver 1200 m/s  

Earth Entry Targeting 30 m/s  

Post-EEV Release Deflection Maneuver 30 m/s  

Total 5576 m/s  
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Table 7: Example auxiliary profile data (TES), for use in Mars-GRAM simulations 

 (Data used as a substitute for conventional Ames MGCM climatology.  These data were averaged from 17 TES 

limb-sounding profiles, obtained from TES mapping year 1, near Ls = 78°, and local time = 14  hrs.  Wind values of  

0.0 mean that winds were not observed, so default values from conventional MGCM climatology values are used.) 

Height (km) Lat (deg) LonE (deg) Temp (K) Pressure 

(Pa) 

Density 

(kg/m
3
) 

Uwind (m/s) Vwind (m/s) 

2.172 67.5 223.1 209.39 4.75E+02 1.19E-02 0.0 0.0 

4.825 67.5 223.1 203.59 3.70E+02 9.51E-03 0.0 0.0 

7.408 67.5 223.1 197.79 2.88E+02 7.62E-03 0.0 0.0 

9.921 67.5 223.1 192.08 2.24E+02 6.11E-03 0.0 0.0 

12.365 67.5 223.1 186.63 1.75E+02 4.90E-03 0.0 0.0 

14.744 67.5 223.1 181.46 1.36E+02 3.93E-03 0.0 0.0 

17.062 67.5 223.1 176.77 1.06E+02 3.14E-03 0.0 0.0 

19.326 67.5 223.1 172.53 8.26E+01 2.50E-03 0.0 0.0 

21.54 67.5 223.1 168.64 6.43E+01 2.00E-03 0.0 0.0 

23.709 67.5 223.1 165.22 5.01E+01 1.59E-03 0.0 0.0 

25.838 67.5 223.1 162.06 3.90E+01 1.26E-03 0.0 0.0 

27.931 67.5 223.1 159.2 3.04E+01 9.98E-04 0.0 0.0 

29.992 67.5 223.1 156.83 2.37E+01 7.89E-04 0.0 0.0 

32.029 67.5 223.1 155.03 1.84E+01 6.22E-04 0.0 0.0 

34.048 67.5 223.1 153.86 1.44E+01 4.88E-04 0.0 0.0 

36.057 67.5 223.1 153.15 1.12E+01 3.82E-04 0.0 0.0 

38.061 67.5 223.1 152.5 8.70E+00 2.99E-04 0.0 0.0 

40.051 67.5 223.1 151.68 6.78E+00 2.34E-04 0.0 0.0 

42.039 67.5 223.1 150.77 5.28E+00 1.84E-04 0.0 0.0 

44.019 67.5 223.1 149.83 4.11E+00 1.44E-04 0.0 0.0 

45.987 67.5 223.1 148.78 3.20E+00 1.13E-04 0.0 0.0 

47.948 67.5 223.1 147.71 2.49E+00 8.85E-05 0.0 0.0 

49.888 67.5 223.1 146.72 1.94E+00 6.95E-05 0.0 0.0 

51.825 67.5 223.1 145.76 1.51E+00 5.45E-05 0.0 0.0 

53.72 67.5 223.1 144.75 1.18E+00 4.29E-05 0.0 0.0 

55.646 67.5 223.1 143.68 9.17E-01 3.36E-05 0.0 0.0 

57.546 67.5 223.1 142.68 7.14E-01 2.64E-05 0.0 0.0 

 

Table 8: Monte Carlo Uncertainties for 300 kg/m
2
 Ballistic Coefficient 

Category Variable Nominal ±3  or min/max Distribution 

Initial Conditions Flight path angle -12.731° ± 0.35 Gaussian 

Aerodynamics CL (lift force) multiplier 1.0 ± 10% Gaussian 

 CD (drag force) multiplier 1.0 ± 10% Gaussian 

Atmosphere Perturbation seed 1 1:29999 Integer 

 Dust tau 0.45 0.1:0.9 Uniform 

Mass Properites Mass 7285 kg ± 25 Normal 

 

Table 9: Monte Carlo Results Summary: 300 kg/m
2
 Ballistic Coefficient 

Category Mean Std. Dev. Max Min 

Apoapsis Altitude (km) 504.5 8.8 527.8 448.1 

Periapsis Altitude (km) -21.5 13.7 17.9 -62.8 

Post Aerocapture V (m/s) 122.8 3.4 140.3 115.7 

Peak Laminar Heat Rate (W/cm
2
) 120.7 3.8 134.6 108.6 

Laminar Heat Load (J/cm
2
) 12023.5 363.9 13064.5 10779.6 

Deceleration Load (g) 4.3 0.3 5.6 3.6 

Peak Turbulent Heat Rate (W/cm
2
) 275.5 15.1 331.3 231.4 

Turbulent Heat Load (J/cm
2
) 19003.0 595.9 21260.5 17124.6 
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Table 10: Monte Carlo Uncertainties for 200 kg/m
2 

Ballistic Coefficient 

Category Variable Nominal ±3  or min/max Distribution 

Initial Conditions Flight path angle -12.497° ± 0.35 Gaussian 

Aerodynamics CL (lift force) multiplier 1.0 ± 10% Gaussian 

 CD (drag force) multiplier 1.0 ± 10% Gaussian 

Atmosphere Perturbation seed 1 1:29999 Integer 

 Dust tau 0.45 0.1:0.9 Uniform 

Mass Properites Mass 7285 kg ± 25 Normal 

 

Table 11: Monte Carlo Results Summary: 200 kg/m
2 

Ballistic Coefficient 

Category Mean Std. Dev. Max Min 

Apoapsis Altitude (km) 510.5 4.8 542.9 491.4 

Periapsis Altitude (km) 0.5 10.7 31.8 -44.8 

Post Aerocapture V (m/s) 117.7 2.1 127.2 112.5 

Peak Laminar Heat Rate (W/cm
2
) 99.2 3.2 110.6 87.5 

Laminar Heat Load (J/cm
2
) 9947.6 326.2 10892.2 8822.8 

Deceleration Load (g) 4.3 0.4 5.6 3.5 

Peak Turbulent Heat Rate (W/cm
2
) 198.8 11.2 240.6 160.8 

Turbulent Heat Load (J/cm
2
) 13674.5 435.6 15321.9 12377.0 

 

 

Table 12: Candidate TPS materials:  Low-Moderate Density TPS 

 PICA TUFROC SRAM-20 (ARA) PhenCarb 20 (ARA) 

Density 0.24 gm/cm^3 Varies with layer sizing 0.32 gm/cm^3 0.32 gm/cm^3 

Description Low density carbon 

fiberform partially 

filled with phenolic 

resin 

Multilayer composite. 

Carbon fiberform/AETB 

tile with high emissivity, 

high temperature coating 

Low density cork 

silicone composite 

fabricated with strip 

bonding technique 

Low-moderate density 

phenolic composite 

fabricated with strip  

bonding technique 

Optical 

Properties 

    

 Solar 

Absorptance 

TBD Approx. 0.9 Approx. 0.5 Approx. 0.5 

 Total 

Hemi. 

Emittance 

Approx. 0.8 Approx. 0.9 Approx. 0.78 Approx. 0.78 

Performance 
Limits 

Ablative 
No recession in non-
oxidizing atmosphere 
at heat rate <1000 
W/cm

2
. Excellent low 

density ablator, but 
not best insulator 

Non-ablative 
May be usable to heat rate 
up to 300 W/cm

2
. Has to 

be fabricated as a tile. 

Ablative 
No (little) recession at 
heat rate < 100 W/cm

2
. 

Differential recession 
between composite and 
interface strips may 
cause boundary layer 
transition 

Ablative 
No recession in non-
oxidizing environment. 
Differential recession 
between composite and 
interface strips may 
cause boundary layer 
transition 

Uncertainties Low density, porous 
material.  
In-depth radiant 
transmission may be 
important 

Heat flux limit currently 
uncertain. 
Spectral emittance data on 
coating shows very high 
emittance at CN violet 
wavelengths. Will absorb 
(not transmit) radiation 

Low density, porous 
material. 
In-depth radiant 
transmission may be 
important 

Higher density and 
higher char yield of 
phenolics may mitigate 
in-depth radiant 
absorption at the 
penalty of higher 
thermal conductivity. 
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Table 13: PICA TPS Mass & Thickness - With Margin (Baseline TPS) 

Parameter Thickness (cm) Mass (kg) 

FOREBODY TPS (PICA-15) MASS & THICKNESS   

Unmargined TPS (maintains bond line below 250 C)  
NOTE:  Found using areal density and TPS mid-thickness surface area. 

4.724 231.8 
( areal = 11.66 kg/m

2
) 

30% Contingency (50 C bondline margin plus manufacturing, etc.) +1.417 +69.5 

TPS Recession Factor of Safety  
(50% of recession - 2.032 cm of recession) 

+1.016 +46 kg 

Final Forebody TPS Thickness & Mass  (with 30% Contingency and 
50% Recession Factor of Safety)   
NOTE:  Mass calculated using TPS mid-thickeness surface area 

7.158 347.3 

AFTERBODY TPS (SLA-561V) MASS & THICKNESS   

Unmargined TPS (maintains bond line below 250 C) 
NOTE:  Found using areal density and TPS OML surface area 

1.98 145.75 kg 
( areal = 5.06 kg/m

2
) 

30% Contingency (50 C bondline margin plus manufacturing, etc.) +0.594 +43.7 

TPS Factor of Safety (10% of unmargined thickness) +0.198 +14.58 

Final Aftbody TPS Thickness & Mass (with 30% Contingency and 10% 
Factor of Safety)   
NOTE:  Mass calculated using OML surface area. 

2.772 204.1 

 

Table 14:  SRAM-20 TPS Mass and Thickness –With Margin (Alternative TPS) 

Parameter Thickness (cm) Mass (kg) 

FOREBODY TPS (SRAM-20) MASS & THICKNESS   

Unmargined TPS (maintains bond line below 250 C)  
NOTE:  Found using areal density and TPS mid-thickness surface area. 

1.778 113.1 
( areal = 5.69 kg/m

2
) 

30% Contingency (50 C bondline margin plus manufacturing, etc.) +0.53 +33.7 

TPS Recession Factor of Safety  
(50% of recession – 0.58 cm of recession) 

+0.29 +18.5 kg 

Final Forebody TPS Thickness & Mass  (with 30% Contingency and 
50% Recession Factor of Safety)   
NOTE:  Mass calculated using TPS mid-thickeness surface area 

2.598 165.3 

 

 

Table 15:  Carbon-Carbon TPS Mass - (Alternative) 

Component Mass with Contingency (kg) 

Stiffened carbon-carbon shell 239 kg 

TPS – Carbon-Carbon portion 36 kg 

TPS – Calcarb 138 kg 

High Temperature Blankets 113 kg 

Carbon-Carbon Total 526 kg 

 

Table 16:  Forebody TPS Material Comparisons – Mass Only 

Component Baseline PICA Alternative - Carbon-

Carbon Hot Structure 

Alternative – 

SRAM-20 

Aeroshell Forebody Structure 273 kg 239 kg 273 kg 

TPS 347 kg  165 kg 

Insulation   287 kg  

Total Mass with Contingency 620 kg 526 kg 438 kg 

Difference from Baseline -- -94 kg -182 kg 
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Table 17:  Payload Structure Mass Summary 

Item Structure Mass (kg) Est. fitting mass (kg) Total Mass (kg) 

Lower truss 140 48 188 

Lower ring 40 8 48 

Mid truss 194 48 242 

Mid ring 89 8 97 

Upper truss 155 48 203 

Upper ring 17 4 21 

TOTAL MASS   799 

 

Table 18:  Aeroshell Structure Mass 

Item Primary Structure 

mass (kg) 

CBE TPS mass (kg) TCS, harness mass 

(kg) 

Total mass (kg) 

Forebody 210.0 292.3 15.8 375.4 

Backshell 155.3 145.8 14.5 215.8 

Payload ring 14.7 -- -- 14.7 

TOTAL MASS    605.9 

 

Table 19: MSR Aerocapture Mass Summary 

Element Dry Mass 

CBE (kg) 

Dry Mass w/ 

Contingency 

(kg) 

Propellant 

Mass (kg) 

Total Wet Mass 

w/ Contingency 

(kg) 

Earth Return Vehicle, Total 678 882 2120 3002 

ERV, Earth Entry Vehicle  56   

ERV, Jettisoned Sample Capture Hardware  79   

ERV, Bus+Retained Sample Capture Hardware  747   

Propulsion Stage 672 874 2950 3824 

Mid-Truss Stage 201 261  261 

Aeroshell/Backshell 917   1247 

Cruise Stage 386 502 260 762 

Total Launch Mass    9096 

 Launch Vehicle Delta 4050H-19 
 C3 (km

2
/s

2
) 10.3 

 Launch Vehicle Capability 7760 
 Launch Vehicle Margin (kg) -1335 
 Launch Vehicle Margin (%)* -17.2% 

* %Margin= (Launch Capability – Wet Mass w/ Contingency)/ Launch Capability 
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Table 20: Comparison of Current Study Results to Team X Study (Ref 6) 

 Current Study Team X Study 

Element Dry Mass w/ 

Contingency 

(kg) 

Propellant 

Mass (kg) 

Total Wet Mass 

w/ Contingency 

(kg) 

Dry Mass w/ 

Contingency 

(kg) 

Propellant 

Mass (kg) 

Total Wet Mass 

w/ Contingency 

(kg) 

Earth Return 
Vehicle, Total 

882 2120 3002 843 1993 2836 

ERV, Earth Entry 
Vehicle 

56   56   

ERV, Jettisoned 
Sample Capture 
Hardware 

79   79   

ERV, 
Bus+Retained 
Sample Capture 
Hardware 

747   708   

Propulsion Stage 874 2950 3824 728 2693 3391 

Mid-Truss Stage 261  261    

Aeroshell/Backshell   1247 2752  2752 

Entry Mass   8334   9159 

Cruise Stage 502 260 762 300 100 400 

Aeroshell /Entry 
Mass Fraction 

  15.0%   30.0% 

Total Launch Mass   9096   9559 

 Launch Vehicle Delta 4050H-19   Delta 4050H-19 

 C3 (km
2
/s

2
) 10.3   10.3 

 Launch Vehicle Capability 7760   7760 

 Launch Vehicle Margin (kg) -1335   -1799 

 Launch Vehicle Margin (%)* -17.2%   -23.2% 
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Table 21:  MASS Summary Cost Estimate Results 

Element FY05-$M Estimating Methodology 

Phase A $1.0 Standard 

Phase B/C/D   

PM/SE/MA/PA $94.1 NAFCOM 

Instruments $64.1  

Sample Cature System including 
Op-Nav Camera 

$44.8 2004 Team X Report 

EEV $19.3 2004 Team X Report 

Flight System $221.5  

ERV $61.7 NAFCOM 

Prop. Stage $37.8 NAFCOM 

Mid-Truss Stage $6.8 NAFCOM 

Cruise Stage $41.6 NAFCOM 

Aeroshell $73.6 NAFCOM 

GDS/MOS $12.0 2% on Non-Rec; 10% of Rec. H/W 

Science Team $6.6 5% on Non-Rec; 20% of Rec 
Instrument H/W 

EPO $4.6 AO Required 1% 

Phase B/C/D Subtotal w/o 

Reserves 

$466.9  

Phase B/C/D Reserves $140.1 JPL Design Principles (30%) 

Phase B/C/D Subtotal w/ Reserves $607.0  

Phase B/C/D Fee $60.7 10% Phase B/C/D Subtotal w/ 
Reserves 

Phase B/C/D Contingency $151.8 25% Phase B/C/D Subtotal w/ 
Reserves 

Total Phase B/C/D $819.5  

Launch Services $288.0 MSR Orbiter 

Phase E   

MO&DA $7.0 SOCM 

DSN $3.3 $0.5M for Tracking Network + 
$1.5M/year 

EPO $0.1 AO Required 1% 

Phase E Subtotal w/o Reserves $10.4  

Phase E Reserves $1.6 JPL Design Principles (15%) 

Phase E Subtotal w/ Reserves $12.0  

Phase E Fee $1.2 10% Phase E Subtotal w/ Reserves 

Phase E Contingency $3.0 25% Phase E Subtotal w/ Reserves 

Total Phase E $16.1  

Total Life Cycle Cost $1,124.6  
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Figures 

 

Figure 1:  Aerocapture Schematic 

 

 

 

Figure 2: Baseline 2013 “Fast” Mars Sample Return Trajectory 
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Figure 3:  MASS - Mass throughout the mission 
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Figure 4: Mars Sample Return Mass/Maneuver History 
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Figure 5: Ratio of atmospheric density from TES auxiliary profile to Mars-GRAM standard profile 

(Data from  Table 7  for TES profile compared to density from a Mars-GRAM vertical profile at the 

same latitude and longitude, using conventional climatology. See additional comparison results in 

Appendix D.) 

 

Figure 6: Mean percentage difference in density between Mars-GRAM conventional MGCM climatology and 

TES-observed limb sounding data.   

(Results have been averaged over TES mapping years 1 and 2, for all times of year and both 2 and 14 

hours local time.  Negative contours mean that TES observed densities are larger than Mars-GRAM 

values obtained from conventional MGCM climatology.) 
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Figure 7: Modfied Newtonian L/D and CD for 60°  and 70°  Sphere Cones 

 

  

 

 

 

 

 

 

 

 

0

20000

40000

60000

80000

100000

120000

140000

0 1000 2000 3000 4000 5000 6000 7000 8000

Rel. Vel. (m/s)

A
lt

it
u

d
e

 (
m

)

Lift-Up, L/D=0.24, BC=300 Lift-Down, L/D=0.2, BC=200

CFD Solutions at Symbols

Figure 9: Symmetry Plane Mach Number (left) 

and Surface Pressure (right) Contours at V=6406 

m/s on the Lift-Up, L/D=0.24, BC=300 kg/m
2
 

Trajectory ( =16°) 

Figure 8:  Aerocapture Performance Design 

Trajectories and CFD Solutions 
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Figure 12: Axial CG Location for Trim ( =16°) 
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Figure 10: Aerocapture CD on the Performance 

Design Trajectories (  = 16°) 
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Figure 13: Nominal BC = 300 kg/m
2
 Guidance Profile 

 

  

 

 

 

Figure 15: Post Aerocapture Circularization V 

(300 kg/m
2
) 

Figure 14: Apoapsis vs. Periapsis Altitude (300 

kg/m
2
) 
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Figure 17: Maximum Deceleration (300 kg/m
2
) Figure 16: Maximum Laminar Heat Rate vs. Heat 

Load (300 kg/m
2
) 

Figure 19: Maximum Turbulent Heat Rate (300 

kg/m
2
) 

Figure 18: Maximum Turbulent Heat Load (300 

kg/m
2
) 
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Figure 20: Nominal BC = 200 kg/m
2
 Guidance Profile 

 

  

 

 

 

 

Figure 22: Post-Aerocapture V (200 kg/m
2
) 

 
Figure 21: Apoapsis versus Periapsis Altitude (200 

kg/m
2
) 
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Figure 23: Maximum Deceleration (200 kg/m
2
) Figure 24: Maximum Laminar Heating (200 

kg/m
2
) 

Figure 26: Maximum Turbulent Heat Rate (200 

kg/m
2
) 

Figure 25: Maximum Turbulent Heat Load (200 

kg/m
2
) 
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Figure 29: Forebody Convective Heating Environments Including 50% Uncertainty 

 

  

Figure 27: LAURA Laminar and Turbulent 

Forebody Heat Rate (No Uncertainties) 

Figure 28: LAURA Laminar Forebody Req 
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Figure 30: Afterbody Convective Heating Environments Including 200% Uncertainty 

 

 

Figure 31:  Radiative Heat Rate for 3  low trajectory 
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 Figure 32: Heating Pulse, Mars Aero Trajectory, includes 50% Uncertainty on Turbulence Trajectory with 

peak heat transfer.   

Source: MASS_Guided_BC300_99.87HR2.dat 

 

 

Figure 33: Baseline PICA TPS Heatshield Specifications, without margins. 
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Figure 34:  Thermal response of the SRAM-20 ablative TPS 

 

 

Figure 35:  Spacecraft Separation Planes 
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Figure 36:  Comparison of the changes in the flight system mass from the initial Team X configuration. 

 

 

Figure 37:  Finite Element Model of the Payload Structure 
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Figure 38: Aeroshell FEM with Inertial Loads (Launch) and Pressure Distribution (Aerocapture) 

 

 

Figure 39: Sphere-Cone Aeroshell Forebody Structure Mass Trend Curves 
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Figure 40: TPS Mass Trend Curve for Mars 

 

 

Figure 41:  Aeroshell Buckling Mode Shape 
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Figure 42: MSR Vehicle Configuration, no Primary Structure 

 

 

Figure 43: MSR Vehicle Configuration, w/Primary Structure.   

(Primary structure within Prop Stage and ERV connects to mid-plane; mid-plane, through trusses, 

connects to payload ring and to cruise separation plane, avoiding pass-through loads in either vehicle.) 
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Figure 44: Propulsion Stage Configuration (Primary Structure Omitted for Clarity) 

 

 

Figure 45: Earth Return Vehicle Configuration (Primary Structure Omitted for Clarity) 
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Appendix Tables and Figures 

Table 22:  APPENDIX A - Master Equipment List for Earth Return Vehicle 

 Mass, CBE 

(kg) 

Contingency CBE + 

Contingency 

(kg) 

ERV Payload 129.0 30% 167.7 

Earth Entry Vehicle 43.0 30% 55.9 

Sample Capture Hardware, Jettisoned 61.0 30% 79.3 

Sample Capture Hardware, Retained 25.0 30% 32.5 

ERV Bus 549.5 19% 653.2 

Attitude Control 16.6 10% 18.3 

Sun Sensors 0.6 10% 0.6 

Star Trackers 5.0 10% 5.5 

IMU 1.5 10% 1.7 

HGA Drive Motors 2.6 10% 2.9 

S/A Drive Motors 4.0 10% 4.4 

Gimbal Drive Electronics 3.0 10% 3.3 

Command & Data Handling 16.0 30% 20.8 

PPC 750 w/L2 Cache 1.1 30% 1.4 

NVM:  256 MB 1.3 30% 1.7 

FPGA SIO 1.0 30% 1.3 

GIF 0.7 30% 0.9 

ULDL 1.0 30% 1.3 

DTCI 1.0 30% 1.3 

CPS 2.7 30% 3.5 

Backplane (cPCI) 1.7 30% 2.2 

Chassis/Enclosure/Rear Cover 5.6 30% 7.3 

Power 60.5 30% 78.6 

Solar Array 14.0 30% 18.2 

Ni-H2 (IPV) Battery 35.3 30% 45.9 

Array Switching Boards 0.8 30% 1.0 

Load Switching* Boards 0.8 30% 1.0 

Thruster Drivers Boards 2.4 30% 3.1 

Pyro Switching Boards 0.8 30% 1.0 

Converters* Boards 4.8 30% 6.2 

Battery Control* Boards 0.8 30% 1.0 

Diodes Boards 0.8 30% 1.0 

Propulsion 138.6 26% 174.3 

Gas Service Valve 0.9 2% 0.9 

HP Latch Valve 0.7 2% 0.7 

Solenoid Valve 1.4 0% 1.4 

HP Transducer 0.5 2% 0.6 

Gas Filter 0.2 2% 0.2 

NC Pyro Valve 0.2 2% 0.2 

Temp. Sensor 0.0 2% 0.0 

Liq. Service Valve 0.6 2% 0.6 

Test Service Valve 0.5 2% 0.5 

LP Transducer 2.2 2% 2.2 

Liq. Filter 0.8 2% 0.8 

LP Latch Valve 1.8 2% 1.8 

NC Pyro Valve 1.0 2% 1.0 
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 Mass, CBE 

(kg) 

Contingency CBE + 

Contingency 

(kg) 

Mass Flow Control 0.1 2% 0.1 

Temp. Sensor 0.2 2% 0.2 

Lines, Fittings, Misc. 3.5 30% 4.6 

DM Monoprop Thrusters 1 1.6 5% 1.7 

DM Monoprop Thrusters 2 2.7 10% 3.0 

Biprop Main Engine 17.3 20% 20.8 

Ox Pressurant Tank 14.0 30% 18.2 

Fuel Pressurant Tank 29.5 30% 38.3 

Fuel Tanks 37.5 30% 48.8 

Oxidizer Tanks 21.4 30% 27.8 

Structures & Mechanisms 220.1 30% 286.2 

Primary Structure 144.8 30% 188.2 

Secondary Structure 24.8 30% 32.2 

Mid Separation Plane 21.0 30% 27.3 

EEC Interface and Release  6.4 30% 8.4 

Solar Array Actuator(s)+Latch/Release 5.3 30% 6.9 

Antenna Articulation Mechanism 5.7 30% 7.4 

Integration Hardware & MHSE 5.6 30% 7.3 

Balance Mass 6.5 30% 8.4 

Telecon 32.0 23% 39.4 

X- LGA (8dB) Cassini 0.6 25% 0.8 

X/X 1.0m diam High Gain Antenna(HGA) 4.9 20% 5.8 

UHF-Quadrafilar Helix (Reconfigurable) 1.5 20% 1.8 

SDST X-up/X down  5.8 15% 6.7 

Electra (w/ X-band) 11.3 30% 14.7 

X-band SSPA, RF=17W 4.0 15% 4.6 

Coax Transfer Switch (CXS) 0.2 30% 0.3 

X-band Diplexer, high isolation 1.3 20% 1.6 

Filter, low power 0.2 10% 0.2 

Hybrid Coupler 0.0 30% 0.1 

X-band Rotary Joint 0.3 30% 0.4 

Waveguide Transfer Switch (WGTS) 1.1 30% 1.5 

WR-112 WG, rigid (Al) 0.8 35% 1.1 

Thermal 27.7 29% 35.6 

Multilayer Insulation  11.7 30% 15.2 

Thermal Surfaces 1.6 30% 2.0 

Thermal Conduction Control 3.0 30% 3.9 

Heaters/Thermostats 5.8 26% 7.3 

Temp Sensors 0.6 10% 0.7 

Venus Shade  5.0 30% 6.5 

Cabling Harness 38.0 30% 49.4 

Launch Vehicle Adapter 0.0 30% 0.0 

ERV Total (kg) 678.5 28% 870.3 

System Contingency  2% 11.7 

ERV Dry Total with Contingency (kg)   882 

Propellant + Pressurant   2120 

ERV Total Wet Mass (kg)   3002 
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Table 23:  APPENDIX A - Master Equipment List - Propulsion Module 

 Mass, CBE 

(kg) 

Contingency CBE + 

Contingency 

(kg) 

Propulsion Stage 672.1 25% 837.0 

Attitude Control 0.0  0.0 

Command & Data Handling 0.0  0.0 

Power 0.0  0.0 

Propulsion 221.8 26% 280.2 

Gas Service Valve 0.9 2% 0.9 

HP Latch Valve 0.7 2% 0.7 

Solenoid Valve 1.4 0% 1.4 

HP Transducer 0.5 2% 0.6 

Gas Filter 0.2 2% 0.2 

NC Pyro Valve 0.2 2% 0.2 

Temp. Sensor 0.0 2% 0.0 

Liq. Service Valve 0.6 2% 0.6 

Test Service Valve 0.5 2% 0.5 

LP Transducer 2.2 2% 2.2 

Liq. Filter 0.8 2% 0.8 

LP Latch Valve 1.4 2% 1.4 

NC Pyro Valve 1.0 2% 1.0 

Mass Flow Control 0.1 2% 0.1 

Temp. Sensor 0.2 2% 0.2 

Lines, Fittings, Misc. 2.5 0% 2.5 

DM Monoprop Thrusters 1 1.6 2% 1.7 

DM Monoprop Thrusters 2 2.7 10% 3.0 

Biprop Main Engine 17.3 10% 19.0 

Ox Pressurant Tank 28.6 30% 37.2 

Fuel Pressurant Tank 56.9 30% 74.0 

Fuel Tanks 59.9 30% 77.9 

Oxidizer Tanks 41.6 30% 54.1 

Structures & Mechanisms 405.9 30% 527.7 

Primary Structure 169.2 30% 219.9 

Secondary Structure 19.3 30% 25.1 

Aeroshell Ring Separation Plane/Devices 16.8 30% 21.8 

Midplane to Aeroshell Plane Truss 168.0 30% 218.4 

Mid Separation Plane / Devices 15.8 30% 20.5 

Integration Hardware & MHSE 11.3 30% 14.7 

Balance Mass 5.6 30% 7.3 

Telecon   0.0 

Thermal 22.6 29% 29.1 

Multilayer Insulation  14.9 30% 19.4 

Thermal Surfaces 1.3 30% 1.7 

Thermal Conduction Control 3.4 30% 4.4 

Heaters/Thermostats 2.1 26% 2.6 

Temp Sensors 0.8 10% 0.9 

Cabling Harness 21.7 30% 28.2 

Launch Vehicle Adapter 0.0 30% 0.0 

Propulsion Stage Total (kg) 672.1 29% 865.2 

System Contingency  1% 8.5 

Prop Stage Dry Total w/Contingency (kg)   873.7 

Propellant + Pressurant   2950.0 

Propulsion Stage Total Wet Mass (kg)   3823.7 
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Table 24:  APPENDIX A - Master Equipment List – Mid-Truss Stage 

 Mass, CBE 

(kg) 

Contingency CBE + 

Contingency 

(kg) 

Truss Stage Total 200.6 30% 260.7 

Attitude Control 0.0 10% 0.0 

Command & Data Handling 0.0 30% 0.0 

Power 0.0 30% 0.0 

Propulsion 0.0 2% 0.0 

Structures & Mechanisms 200.6 30% 260.7 

Primary Structure 0.0 19% 0.0 

Secondary Structure 0.0 26% 0.0 

Mid Separation Plane 15.8 30% 20.5 

Cruise to Mid Plane Truss 168.0 30% 218.4 

Cruise Separation Plane 16.8 30% 21.8 

Integration Hardware & MHSE 0.0 30% 0.0 

Balance Mass 0.0 30% 0.0 

Telecon 0.0 20% 0.0 

Thermal 0.0 30% 0.0 

Cabling Harness 0.0 30% 0.0 

Launch Vehicle Adapter 0.0 30% 0.0 

Mid-Truss Total (kg) 200.6 30% 260.7 

System Contingency  0% 0.0 

Mid-Truss Dry Total with Contingency (kg)   261 

Propellant + Pressurant   0 

Mid-Truss Total Wet Mass (kg)   261 

 

Table 25:  APPENDIX A - Master Equipment List - Aeroshell Stage 

 Mass, CBE 

(kg) 

% 

Contingency 

CBE + 

Contingency 

(kg) 

Aeroshell Stage Total 917.2 36% 1246.9 

Forebody Primary Structure 210.0 30% 273.0 

Forebody Secondary Structure 14.7 30% 19.1 

Forebody TPS 292.3 44% 420.0 

Forebody TCS/harness 15.8 30% 20.5 

Backshell Primary Structure 155.3 30% 201.9 

Backshell Secondary Structure 10.9 30% 14.2 

Backshell TPS 145.8 40% 204.1 

Backshell Separation Devices 18.0 30% 23.4 

Backshell TCS/Harness 14.5 30% 18.9 

Aeroshell Ring Separation Plane/Devices 25.2 30% 32.8 

Payload Ring 14.7 30% 19.1 

Aeroshell Stage Total (kg) 917.2 36% 1246.9 

System Contingency  0% 0.0 

Aeroshell Stage Total with Contingency (kg)   1246.9 

Propellant + Pressurant   0.0 

Aeroshell Stage Total Wet Mass (kg)   1246.9 
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Table 26:  APPENDIX A - Master Equipment List - Cruise Stage 

 Mass, CBE 

(kg) 

% 

Contingency 

CBE + 

Contingency 

(kg) 

Cruise Stage Total 386.2 21% 466.0 

Attitude Control 5.0 10% 5.5 

Sun Sensors 0.0 10% 0.0 

Star Trackers 5.0 10% 5.5 

Command & Data Handling 0.0 30% 0.0 

Power 16.3 30% 21.2 

Solar Array 13.9 30% 18.1 

Array Switching Boards 0.8 30% 1.0 

Converters* Boards 0.8 30% 1.0 

Diodes Boards 0.8 30% 1.0 

Propulsion 25.8 23% 31.6 

Gas Service Valve 0.5 2% 0.5 

HP Latch Valve 1.1 2% 1.1 

HP Transducer 0.3 2% 0.3 

Gas Filter 0.1 2% 0.1 

NC Pyro Valve 0.1 2% 0.1 

NO Pyro Valve 0.1 2% 0.1 

Temp. Sensor 0.0 5% 0.0 

Liq. Service Valve 0.3 2% 0.3 

Test Service Valve 0.0 2% 0.0 

LP Transducer 0.5 2% 0.6 

Liq. Filter 0.4 2% 0.4 

LP Latch Valve 0.7 2% 0.7 

Temp. Sensor 0.1 2% 0.1 

Lines, Fittings, Misc. 1.8 50% 2.7 

DM Monoprop Thrusters 1 3.3 10% 3.6 

DM Monoprop Thrusters 2 1.4 0% 1.4 

Fuel Pressurant Tank 1.0 30% 1.3 

Fuel Tanks 14.1 30% 18.4 

Structures & Mechanisms 290.2 27% 369.8 

Primary Structure 62.7 19% 74.6 

Secondary Structure 15.4 26% 19.4 

Solar Array Structure 16.1 30% 20.9 

Cruise Stage Adapter 168.0 30% 218.4 

Cruise Separation Plane/ Devices 25.2 30% 32.8 

Integration Hardware & MHSE 2.8 30% 3.6 

Balance Mass 0.0 30% 0.0 

Telecon 2.0 23% 2.5 

X- Medium Gain Antenna (19dBi) MER 1.6 25% 2.0 

Polarizer 0.3 20% 0.4 

WR-28 EG, rigid 0.1 0% 0.1 

Thermal 27.4 29% 35.4 

Multilayer Insulation  21.3 30% 27.7 

Thermal Surfaces 0.7 30% 1.0 

Thermal Conduction Control 2.1 30% 2.7 

Heaters/Thermostats 2.7 26% 3.4 

Temp Sensors 0.6 10% 0.7 

Cabling Harness 11.4 30% 14.8 

Launch Vehicle Adapter 8.1 30% 10.5 

Cruise Stage Total (kg) 386.2 27% 491.3 

System Contingency  3% 10.8 
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 Mass, CBE 

(kg) 

% 

Contingency 

CBE + 

Contingency 

(kg) 

Cruise Stage Dry Total with Contingency (kg)   502 

Propellant + Pressurant   260 

Cruise Stage Total Wet Mass (kg)   762 

 

 

Figure 46:  APPENDIX B – Minimum energy Mars departure for 2016, 2018, 2021, 2022, 2024 (B) occurs 

before the spacecraft will arrive, and thus disallows the “fast” option from occurring. 

Minimum energy type II outbound trajectory represented by (A). Minimum Mars departure energy (B) 

occurs before the spacecraft arrives, disallowing the “fast-return” option.  Even if a type I transfer were 

used for the outbound leg, the Mars low energy departure occurs too late, with C3’s in excess of 100 

km
2
/s

2
 needed to meet the stay time requirements.  This is the basis for not selecting entries 3,5,8,10, and 

12 in Table 5. 

 

Figure 47:  APPENDIX B – Alternative trajectory – fails due to excessive trip to Mars for 2015, 2017, 2019, 

2020, 2021, 2023, and 2025 opportunities. 

This figure does not include an outbound trajectory, as the return leg itself is responsible for the failure 
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in this alternative. Through the phasing that is available, this is the other form of Mars-Venus-Earth 

trajectory that presents itself, requiring an additional revolution about the sun before returning to Earth.  

The flight times typically exceed 600 days and therefore are not viable for the “fast-return” mission 

architecture.  This is the basis for not selection entries 2,4,6,7,9,11, and 13 from Table 5. 
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Figure 48:  APPENDIX C - Mass/Maneuver Calculation Table for “Fast” Aerocapture Mars Sample Return 

Mission 
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Figure 49:  APPENDIX C - Mass/Maneuver Calculation Table for “Fast” All-Propulsive (Chemical 

Propulsion Only) Mars Sample Return Mission 
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Figure 50:  APPENDIX D - Apoapsis Altitude vs. Periapsis Altitude – Using TES profile vs normal 

MarsGRAM Profile 

 

 

Figure 51:  APPENDIX D - Circularization Delta-V – Using TES profile vs normal MarsGRAM Profile 

 

 

Figure 52: APPENDIX D - Maximum LAURA Turbulent Heating Rate Estimate – Using TES profile vs 

normal MarsGRAM Profile 
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Figure 53:  APPENDIX D - Maximum G-Loading - Using TES profile vs normal MarsGRAM Profile 

 

 

Figure 54:  APPENDIX E - Convective heating results for 70°  sphere cone heatshield; with uncertainties, 

DPLR. 

(4.65 m dia, angle of attack=16°, L/D=0.24, peak heating trajectory point.)   
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Figure 55:  APPENDIX E - Convective Heating results for Ellipsoidal Heatshield 

(4.65 m dia, angle of attack=16°, L/D=0.24, peak heating trajectory point.) 

 

 

Figure 56:  APPENDIX E – TPS Sizing for Ellipsoidal Heatshield vs 70°  Sphere Cone Heatshield, 

unmargined mass 
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