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Abstract 
This paper presents an empirical study of some non- 

exhaustive approaches to optimizing preferences within 
the context of constraint-based, mixed-initiative planning 
for mission operations. This work is motivated by the 
experience of deploying and operating the MAPGEN 
(Mixed-initiative Activity Plan GENerator) system for the 
Mars Exploration Rover Mission. Responsiveness to the 
user is one of the important requirements for MAPGEN, 
hence, the additional computation time needed to optimize 
preferences milst be kept within reasonabble bounds. This 
was the primary motivation for studying non-exhaustive 
optimization approaches. 

The specific goals of rhe empirical study are to assess 
the impact on solution quality of two greedy heuristics 
used in MAPGEN and to assess the improvement gained 
by applying a linear programming optimization technique 
to the final solution. 

Introduction 
This paper presents an empirical study of some non- 

exhaustive approaches to optimizing preferences within 
the context of constraint-based, mixed-initiative planning 
for mission operations. Our motivation derived from the 
problem of activity planning for the Mars Exploration 
Rover (MER) mission and the system used to accomplish 
this task: MAPGEN, Mixed-initiative Activity Plan 
GENerator (Bresina, et al., 2005a). Responsiveness to the 
user is one of the important requirements for MAPGEN, 
hence, the additional computation time needed to 
optimize preferences must be kept within reasonable 
bounds. This was the primary motivation for studying 
non-exhaustive optimization approaches. A secondary 
concern was to incorporate preference optimization into 
MAPGEN without major changes to the planner's seafch 
aIgonthm. 

The MAPGEN system represents a successful mission 
infusion of mixed-initiative planning technology. 
W G E N  was deployed as a mission-critical component 
of the ground operations system for the Mars Exploration 
Rover (MER) mission. Each day, the Tactical Activity 
Planner (TAP) employs MAPGEN to collaboratively plan 
the activities of the Spirit and Opportunity rovers, with 
the objective of achieving as much science as possible 
while ensuring rover safety and keeping within the 
Limitations of the rover's resources ( e g ,  power). 

The MER mission has been operating with great 
success for over two years, and MAPGEN continues to be 
employed for activity plan generation for the Spirit and 

Opportunity rovers. During the multi-year deployment 
effort and subsequent mission operations experience, we 
have learned valuable lessons regarding application of 
mixed-initiative planning technology mission 
operations (Bresina, et al., 2005b). These lessons have 
stimulated new research in mixed-initiative planning with 
preferences. 

The MER scientists express their intent to the 
MAPGEN system through the requested activities, the 
associated priorities, and science constra 
enforcing the specified science constraints, 
ensured that the data collected satisfied the science intent. 
However, in addition to these hard constraints, the 
scientists often have temporal preferences in mind, which 
could yield higher quality data. Such temporal 
preferences cannot be formally encoded in IvfAPGEN. 
Some of these preferences are verbally communicated to 
the TAPS, and if they have time, they try to satisfy them 
by fine-tuning the plan. In addition, there are other more 
global preferences related 10 solution quality that were not 
formally encoded and were left zp t:, the TAPS tc~ satisfy. 

We have extended our research version of MAPGEN 
by enabling the system to enter temporal preferen?es and 
are exploring alternative techniques for optimizing the 
satisfaction of (possibly competing) preferences. In this 
paper, we focus on non-exhaustive approaches that are 
more efficient and easier to integrate into MAPGEN, and 
we present the results from an empirical study aimed at 
evaluating these approaches. Specifically, the goals o f  the 
empirical study are the following: (i) assess the impact on 
solution quality of a greedy priority-based heuristic used 
in W G E N ,  (ii) assess the additional impact of a greedy 
preference-based heuristic used in MAPGEN, and (iii) 
assess the improvement gained by applying a linear 
progsramrning technique to the final solution, J.n 
make it easier to p&om a &&rolled e 
employed analogs of MAPGEN and the MER planning 
problems. 

In the next section, we present background material on 
aspects of MAPGEN that are relevant to the empirical 
study, the representation and types of temporal 
preferences, and our linear programming optimization 
technique. In the subsequent sections, we describe the 
design of the empirical study and discuss the results. We 
close with some concluding remarks. 
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ackground 
The core of the plan representation and reasoning 

capabilities in MAPGEN is a constraint-based planning 
framework called EUROPA (Extendable Uniform 
Remote Operations Planning Architecture), developed at 
NASA Ames Research Center (J6nsson, et al., 1999; 
Frank and Jbnsson, 2003). 

In constraint-based planning, domain rules are 
specified in terms of activitylstate patterns and constraint 
schemas. A given constraint schema is applied to any 
instance matching the associated pattern. Search methods 
and other techniques for manipulating partial plans then 
build on this framework. 

The science constraints are relations between specific 
activities in a planning problem instance. The scientists 
use two types of science constraints: temporal bounds and 
temporal ordering relations. The temporal bounds are 
typically constraints on when an activity can start due to, 
for example, lighting conditions or temperature. The 
typical ordering relations are constraints between the end 
of one activity and the start of another. For example, a 
hazcam documentation image of an arm placement must 
be taken at least two minutes after the arm is placed (to 
ensure vibrations have subsided) and before it is moved 
again. 

Consistency of the developing plan is maintained using 
an underlying simple temporal constraint network, or 
STN [4]. One advantage of STNs is that rather than doing 
simple consistency checking, they work by eliminating 
inconsistent values from variable domains. Specifically, 
they maintain arc-consistency, which for STNs is 
equivalent to full consistency. In effect, they maintain a 
family of related solutions, called a flexible solution, 
rather than just a single grounded solution. A flexible 
solution provides flexibility because it can often merely 
be refined, i.e., further restricted, In response to additional 
constraints instead of requiring search for a new solution. 

Minimum Perturbation Heuristic 
Although MAPGEN constructs flexible plans, the plan 

that is displayed to the user is a grounded solution; i.e., a 
specific consistent instantiation of the underlying flexible 
plan. This is selected to be as close as possible to an 
internally maintained reference schedule. More 
importantly, the reference schedule is used to support a 
minimum perturbation approach, where planner-initiated 
changes to the previous plan are minimized. Users tend 
to expect that small extensions to a plan will cause only 
minor plan modifications and dislike it when they cause 
drastic global modifications. The minimal perturbation 
heuristic biases the ordering decisions such that the 
activities remain as close to their reference times as 
possible. 

The reference schedule is initially based on the science 
constraints and the initial start times of the activities, 
which are set by the scientists. This initial reference is 
computed by first solving a relaxed version of the 

planning problem composed of only the science 
constraints; the solution produced is a flexible plan. The 
reference schedule is determined by grounding this 
flexible plan, by the following solution grounding 
algorithm, to be close to the initial activity start times. 

For each timepoint x with reference position t do the 
following: 

(i) If t is within the STN bounds for x, 
then add a grounding constraint that sets x to t. 

then add a grounding constraint that sets x to Ib. 
Else if t is less than the lower bound ob) for X, 

Else if t is greater than the upper bound (ub) for x, 
&en add a grounding cons~aitit that sets x to ub. 

(ii) Propagate the effect of the new constraint. 

The scientists can bias the initial reference schedule to 
reflect their preferences. One option is to bias the 
placement of activities to be when solar power is at a 
maximum by setting all start times to the time of peak 
power. During the planning process, the reference 
schedule is continually updated to reflect the evolving 
plan. 

Priority Neuristic 
A key factor in the design of MAPGEN planning 

methods was that the set of science observation requests 
oversubscribes available rover resources and, thus, each 
activity has a given priority that had to be taken into 
~ C C C X I ~ .  The zssigzed priority is based cz t!!e science 
team’s judgment of relative importance; the MER 
scientists used five different priority levels. 

The priorities are the dominant factor in assessing 
solution quality. The priorities are treated 
lexicographically; that is, getting one activity at a given 
priority level into the plan is worth more than any number 
of activities of lower priority. 

During planning, the priorities are used to determine 
the order in which activities were planned. Furthermore, 
if a planning request cannot be completed, W G E N  can 
reject lower-priority activities to make room for higher- 
priority activities in the plan. 

~ ~ ~ ~ r ~ n ~ ~  
We have extended the research version of the 

Constraint Editor to allow specifying temporal 
preferences on an activity’s start or end time, as well as 
on distances between startlend time points of two 
activities (see Figure 1). In particular, we have enhanced 
the Constraint Editor tool to allow specification of a weet  
spot in addition to a base constraint. The sweet spot is an 
interval of maximum preference and outside the interval, 
the preference drops linearly from its maximum value. 
Note that a sweet spot in a science preference can be a 
single point to indicate, for example, the preference to 
start as early or late as possible. This preference function 
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Figure 1: Editing science preferences in CE. 

late deviation (from the reference time) of the same 
magnitude have equal preference, the zero crossings of 
the preference function must be equidistant from the 
reference time. To accomplish this, one of the zero 
crossings may lie outside the base constraint. We refer to 
these temporal preferences as reference preferences. 

Figure 2 illustrates the form of a typical science 
preference and typica1 reference preference. In this 
figure, the preferences have a maximal value of one; 
however, each preference is associated with a weighting 
factor, which determines the relative impact of the 
preference during optimization. 

U ~ ~ ~ a ~ i ~  ation - To effectively solve constraint problems with 
preferences, it is necessary to be able to order the space of 
assignments to times based on some notion of global 
preference and to have a mechanism to guide the search 
for solutions that are globally preferred. Such a 
framework arises as a simple generalization of the Simple 
Temporal Problem (STP) (Dechter, Meiri, and Pearl, 
1991), in which temporal constraints are associated with a 
local preference function that maps admissible times into 
values; the result is called Simple Temporal Problem with 
Preferences (STPP} (Khatib, et al., 2001). Globally 
optimal solutions to STPPs emerge as a result of well- 
defined operations that compose and order partial 

Science Preference 

Preferred interval (sweet spot) 

- 
Constrained interval (scienti$cally valid) 

efere~ce Frefereoee 

Start time constrained interval 

form corresponds to the temporaI preferences most 
frequently expressed by the MER scientists. 

The preferences represented by the initial reference 
schedule can also be represented in this same way. In this 
case, the temporal preference is on an activities start time 
and the sweet spot is a single timepoint determined by the 
reference schedule. In order to ensure that an early and a 



solutions. Different concepts of composition ‘and 
comparison result in different characterizations of global 
optimality. One natural criteri 
global value of a solution is the 

It has been shown in (P. iMoms, et al., 2004) that 
determining the set of all utilitarian optimal solutions as 
an STP is tractable where all the preference functions are 
convex and piecewise linear, which is the case for our 
preference functions. The paper shows that this utilitarian 
optimization problem can be reduced to a Linear 
Programming Problem (LPP), which is known to be 
solvable in polynomial time by Karmarkar’s Algorithm 
(Corman, Leiserson, and Rivest, 1990). Furthermore, the 
paper shows that constructin 

the constraints to add can be determined by solving the 
dual of the original LPP. 

In our research version of MAPGEN, we have 
incorporated an optimization technique based on this 
approach. Given a flexible plan duced by MAPGEN, 
this new facility further rest s the plan to one 
containing only utilitarian-optimal solutions with respect 
to a set of given temporal preferences. 

Empirical Study Design 
The underlying question that initially motivated this 

empirical study is: “Can we incorporate preference 
o p t e a t i o n  into MAIPGEN without undue irnpzct on the 
responsiveness of the system to the user?’ A secondary 
concern was to incorporate this new capability without 
major changes to the planner’s search algorithm. 

We were interested in trying to incorporate the linear 
programming based utilitarian optimization into 
MAPGEN and designed a couple of ways this technique 
could be employed. One use is to apply the optimization, 
as a post-process, to the family of solutions represented 
by a flexible MAPGEN plan in order to display the most- 
preferred grounded solution to the user. The technique 
can also be employed in a pre-processing step to compute 
a different type of reference schedule - one that 
represents a globally optimal solution to the relaxed 
planning problem with temporal preferences (science and 
reference). Hence, the minimal-perturbation method 
could be employed to bias the planning decisions so as to 
stay close to this “ideal” reference schedule. 

The search algorithm in MAPGEN already includes 
aspects that could be employed to support the 
optimization of preferences; namely, the activity priority 
heuristic, as well as the reference schedule mechanism 
and the associated minimal perturbation heuristic. Hence, 
one question to be answered is what is the impact of each 
of these two greedy heuristics on the quality of solutions 
generated, when the quality criteria included preferences 
in addition to the priorities of the activities that made it 
into the plan. 

In order to achieve the goals of the empirical study, we 
needed to be able to vary the configuration of the problem 
solver. The MAPGEN system was not designed to be 
configurable in this way; hence, it was not practical to use 
the system directly. Thus, we built a configurable 
problem solver that is an analog to the planner in 
MAPGEN. We also wanted to be able to control the 
composition of the suite of problem instances; this was 
easier to accomplish with an analog to the MER domain 
model and a problem generator for this analog model. 

Problem Suite 
The domain godel-for the spdy has one activity- type, 

C Sample.  The planning horizon for all 
problems is between 1O:OO and 16:OO (local time), and all 
activities in the plan must occur within this time span. A 

of the following aspects: 
ample instantiations, each with a 

set duration and prio-rity. 
precedence ordering constraints 

between pairs of Takesample activities. 
A set of temporal bound constraints on the start 
time of the Takesample activities. 
A set of science temporal preference functions 
(i.e., “sweet spots”) w.r.t. the start times. 
A set of reference temporal preferences w.r.t. 
the start times. 

In the pioblem mite, all instaiices have foity 
Takesample activities, and all the initial start times are set 
to noon. Thus, the computed reference preferences will 
be biased to schedule activities near the solar power peak 
time. Note that the reference preferences will vary across 
problem instances since the set of temporal constraints 
(bounds and orderings) will vary. Each activity is 
assigned a priority randomly chosen from the set {I, 2, 3, 
4,5}, where 5 i s  the highest priority. 

There are three control parameters for the generator: 
the number of precedence ordering constraints, the 
maximum activity duration, and the mzximum percentage 
of the sweet spot. 

For each problem, the generator assigns each activity a 
duration, iandamly chosen between one minute and the 
specified maximum value. The ordering constraints are 
generated by randomly choosing the specified number of 
pairs of unordered activities and imposing a precedence 
constraint between them. The transitive closure of the 
ordering constraints is maintained during this process, so 
that two activities are considered unordered only if no 
explicit precedence or transitive ordering exists between 
them. 

The set of constraints must be consistent; to ensure this, 
the generation of temporal bounds on start times is based 
OD. the generated ordering constraints, as follows. The 
activities are first temporarily assigned random star? 
times, restricted such that they obey the precedence 
orderings. Second, for each activity a lower bound is 
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randomly chosen within the interval [10:00, SI, where S is 
the activities assigned start time. Likewise, an upper 
bound is randomly chosen within the interval [S, 16:00]. 
Note that it is possible for a bound constraint to equal the 
planning horizon, and it is possible for an activity's start 
time to be restricted to a single timepoint. 

The science preferences are generated by first 
randomly choosing the sweet spot's length betw- zero 
and the specified maximum. Second, the lower bound is 
randomly chosen such that both sweet spot bounds are 
within the bounds of the associated hard constraint. Note 
that the sweet spot may be a single point. 

The complete problem suite is generated from the 
following control parameter ranges: 

e Constraint Count (CC) - The number of ordering 
constraints to add between activities. The values 
are {20,40,60,80, loo} 
Duration Bound (DB) - The maximum activity 
duration allowed. Tine values are (500, i500, 
2500,3500,4500) 

* Sweet Spot Percent (SS) - The maximum 
percentage of the start time bounds that can be 
used for the sweet spot in expressing a temporal 
preference. The values are {25,75). 

This yields fifty control parameter combinations, or 
problem types. For each problem type, ten distinct 
problem instances are generated. The ten scores are 
averaged to obtais a score for the prob!em type- 

The primary problem characteristics of interest are the 
degree of oversubscription, the number of alternate 
solutions, and the variance of quality in the solution 
space. If it is easy to fit ail the activities into a plan, then 
the priority heuristic will not have much, if any, impact on 
solution quality. If there are very few solutions or very 
little variance in solution quality, then optimizing 
tec'hniques will not have much affect. 

Given that the problems all have the same number of 
activities, we can indirectly affect these characteristics 
with the three control parameters of the generator. 
Increasing the number of ordering constraints will tend to 
reduce the number of solutions, and increasing the 
maximum activity duration will tend to increase the 
degree of oversubscription. The affect of the control 
parameters on the quality variance in the solution space is 
more difficult to predict because they all interact. 

e 

Solution Quality Function 
We present the priority and preference solution quality 

factors separately so that we can better illustrate the 
impact of the different problem solver configurations. 
Both factors are defined in terms of a number of 
individual attributes and evaluated with respect to a 
grounded solution. 

Each quality attibute is assigned a real value between 
zero and one that indicates the degree to which it is 

satisfied, where one indicates full satisfaction. Each 
attribute is weighted based on its relative importance. 
Each of the two factors is a summation of all the 
associated weighted attibute values. 

As was the case in the MER mission, the activity 
priority levels are treated lexicographically. There is a 
priority attribute for each activity. The attribute value is 
one if it is in the plan and zero if not. The attribute 
weight is ten raised to the power of the associated 
activity's priority. 

For the purpose of this experiment, we assume that all 
science preferences have equal importance and that all 
reference preferences have equal importance. 
Furthermore, we want each of the two preferences classes 
to have equal impact on the overall score. We weight 
each science preference by one divided by the number of 
science preferences; similarly, we weight each reference 
preference by one divided by the number of reference 
preferences. 

Solver Configurations 
A11 the configurations are based on a EUROPAZ 

Solver, which uses chronological backtracking. As a 
baseline configuration, we are using a Solver without any 
heuristic bias. The planning order of the activities is 
randomly selected, and which activities get into the plan 
is random; i.e., it is not based on the activity priorities. 
The temporal preferences are ignored and the ordering 
decisions are made arbitrarily. 

The second configuration is a priority-only solver; it is 
a customization of the baseline solver that includes an 
analog of MAPGEN's priority heuristic. This solver 
determines planning order based on activity priority. As 
in the baseline solver, ordering decisions are still made 
arbitrarily. 

The third configuration is a priority-plus-preference 
solver, built from the priority-only solver by adding a 
greedy technique for satisfying temporal preferences. 
This solver uses an analog of MAPGEN's minimal 
perturbation heuristic biased towards an "ideal" reference 
schedule; we refer to this g as--the pr@erertce 
heuristic. As described at the beginning of this sec~oion, 
the ideal reference schedule is produced via our LP 
optimization technique and it represents a globally 
optimal solution to the relaxed planning problem with 
temporal preferences. Hence, in this solver, the planning 
order is determined by priorities, and the ordering 
decisions are biased so that activities stay as close to their 
ideal reference time as the hard constraints allow. 

Evaluation Ii4ethodoiogy 
The primary aims of the empirical study are to 

evaluate the impact of the priority heuristic, the 



preference heuristic, and the LP optimization. We first 
measure the impact of using the priority heuristic to 
determine planning order by comparing the performance 
of the baseline solver with that of the priority-only solver. 
We then measure the additional impact of using the 
preference heuristic to bias ordering decisions during 
search by comparing the performance of the priority-only 
solver with that of the priority-plus-preference solver. 
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Figure 3: Priority Improvement (1) 
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Figure 4: Priority Improvement (2) 

Note that each of these three solvers constructs a 
flexible plan; hence, we cannot directly apply the solution 
quality function to obtain a performance measure. Each 
flexisle plan represents a set of ground solutions of (most 
likely) varied quality. The quality measure that we've 
chosen is the expected quality of the flexible plan's 
execution, and we estimate this measure via sampling. 
Each sample yields a randomly chosen execution trace as 
follows. At each execution step, first, the set of activities 
that is eligible to execute next is determined from the 
flexible plan's underlying constraint network. One of 
these activities is chosen randomly and its execution is 
simulated by advancing time. The impact of grounding 
the activity's start time is also propagated through the 
constraint network. Each sampled execution trace 

corresponds to a grounded plan and can, thus, be scored 
with our solution quality functions. The mean of the 
resultant set of scores is an estimate of our expected 
quality measure. 

In  addition to using the mean quality scores to 
compare two solvers, we use the mean scores to measure 
the added impact of LP optimization for each of these 
three solvers. Applying the LP optimization technique to 
the flexible plan output of a solver determines the optimal 
quality score achievable with the flexible plan. We 
compute the improvement, expressed as a percentage, 
obtained by this LP optimization post-process as one 
hundred times the difference between the optimum and 
the mean, divided by the mean. 

Another important aspect of problem solving 
performance, besides solution quality, is computational 
cost. Thus, as part of this empirical study, we compare 
the different configurations with respect to computation 
time. 
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Figure 5: Post-process LP Optimization Impact 

Empirical Results 
Figure 3 shows the improvement gained by employing 

the priority heuristic. For a given problem, the 
impro-vement is computed as one hundred times the 
difference between the priority-only solver's p M q  
score and the baseline solver's priority score, divided by 
the baseline solver's priority score. For a given value of 
the duration bound control parameter, there are ten 
problem types and, hence, one hundred problem 
instances. In Figure 3, the average improvement over the 
one hundred problem instances is plotted for each of the 
five values of the duration bound control parameter. The 
results clearly show the strong increase in perforqance of 
the priority heuristic as the problem becomes increasingly 
over-subscribed. 

Figure 4 illustrates the same improvement computation 
in relation to the constraint count control parameter. 



Interestingly, the results indicate that the priority heuristic 
performs well across all constraint counts. 

Figure 5 illustrates the impact of applying the post- 
process LP optimization to the flexible plan generated by 
each solver configuration. The percentage improvement 
(defined in the previous section) is plotted for each of the 
fifty problem types; hence, it is an average over the ten 
instances of that type. The x-axis in Figure 5 orders the 
problem types in terms of increasing values of the 
duration bound parameter. 

The results are skiking in terms of the strong negative 
correlation between LP improvement and duration 
bounds. -For problems with a duration bound control 
value of 500, LP provides a markedly greater 
improvement t h k  for higher values, where it appears to 
offer little value. Moreover, the improvement using LP 
post-processing is greatest for configurations using the 
preference heuristic during search. These data suggest 
that as activity durations grow larger, the avaiiable slots in 
which to place an activity diminish in a way that greatly 
limits the capabilities of the preference heuristic. The 
data further indicate that the preference heuristic 
compliments the post-process LP optimization. An 
explanation for this effect is that, where such a heuristic is 
effective, the flexible solution generated is more likely to 
contain very good solutions (w.r.t. preference score); thus, 
LP has a better optimal solution to find. 

Figure 6 illustrates the improvement obtained by 
employing the preference heuristic; that is, the percent 
improvement gained by the priority-plus-preference 
solver as compared to the priority-only solver. The 
improvement in preference score is plotted for both the 
mean value of the flexible plans and the optimal value 
obtained by the post-process LP optimization. The 
problem types along the x-axis are ordered by duration 
bound and, within each duration bound, the problem types 
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Figure 6: Temporal Preference Improvement 

are ordered by constraint count. The data strongly 
supports the expectation that the impact of the preference 
heuristic decreases as the problem becomes more highly 
constrained. The effects of increased activity duration 
(Le., greater over-subscription) are dominant. Secondly, 
as the constraint count increases, the improvement 
obtained by the preference heuristic further declines. 

Table 1 shows aggregate results on the costs and 
benefits of LP optimization and the preference heuristic. 
Recall that the priority-plus-preference solver requires an 
additional run of LP to find an initial optimum solution to 
the relaxed problem in order to seed the heuristic (Le., 
initialize the reference schedule). We do not show the 
costs of the priority heuristic compared to the baseline 
since its overhead is negligible. 
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Concluding Remarks 
There are two main findings of this work. First, we 

find that the priority heuristic is increasingly effective as 
the problem beccmes more over-subscribed. In a mission 
where resources are over-subscribed and activity 
preferences have a lexicographic ordering, this heuristic is 
very relevant. Second, we find the value of using the 
post-process LP optimization or of using the preference 
heuristic during search is more dependent on the problem- 
solving context. The costs of LP were high by 
comparison to solving the single planning problem, and 
the be3efits +minished quicMy as - the . . problem - . became - . 

more highly constrained. However, in many problem- 
solving contexts the improvement quality gained is well 
worth the wait. 

There are a number of additional interesting 
observations to make. The baseline solver did not employ 
heuristics to improve search efficiency. We did not find 
any degradation in  search efficiency across solver 
configurations. When heuristics can be effectively used 
to improve search efficiency, there may be a conflict with 
the methods evaluated to improve solution quality; thus 
leading to a greater overhead to achieve quality 
improvements. The rapid degradation of performance of 
the preference heuristic based on activity duration was 
surprising. We have not studied cases of highly over- 
subscribed problems with small activity durations. This 
might yield better performance from this technique and 
we plan to evaluate this question in further experiments. 
Finally, our work focused on non-exhaustive techniques. 
We plan to explore uses of branch-and-bound aIgorithms 
to find complete optimal solutions. 
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