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I. Extended Abstract/Introduction 

ir Traffic Management decisions are often influenced by surface and enroute weather conditions. Surface A visibility and wind conditions result in reduction of airport arrival rate and airport deparhu-e rate. Similarly, 
severe convective weather condition reduces the capacity of enroute airspace. Under such conditions, kaffic flow 
management initiatives are employed to balance the demand against the remaining available capacity. Traffic flow 
management initiatives consist of ground stops, ground delay programs, miles-in-trail restrictions, rerouting and 
airborne holding. These initiatives eventually result in flight delays, which are detrimental to the airline operations. 
Of the various causes of delay, weather is often cited as the biggest cause; responsible for approximately 70% of the 
delays in the National Airspace System (NAS).' Unusual operations due to weather sometime cause schedule 
disruption to the extent that it takes several days for the airline to recover from it. In addition to the operational 
consequences, severe weather also poses a risk to the aircraft itself. Since weather plays such a dominant role in 
aviation, airlines and air traffic service provider use meteorological forecasts, pilots are briefed about weather prior 
to and during flight, and aircraft are instrumented with weather radar. 

With the availability of numerical weather prediction models, advent of faster computers and communications 
networks, a variety of convective weather forecasts are produced operationally and distributed by the National 
Center for Atmospheric Research (NCAR) and the National Weather Service (NWS) .  The operational National 
Convection Weather Detection (NCWD) product and the National Convective Weather Forecast (NCWF) product 
are provided by NCAR. The Collaborative Convective Forecast Product (CCFP) and Convective Significant 
Meteorological Advisories (C-SIGMET) forecasts are issued by the Aviation Weather Center (AWC) of the NWS. 

The NCWD product provides observed ongoing convective activity data in a grid using a combination of the 
Next Generation Radar (NEXRAD) Vertical Integrated Liquid (VIL) product and lightning data. The NCWF 
product provides one-hour and two-hour forecasts of convective activity. These data are also reported in a grid and 
are updated once every five minutes based on radar observations and cloud-to-ground lightening data. The CCFP 
product is prcducsd though a co!!aborative process between the AWC, airline a d  Air Rocte Traffic Control Cmtsr 
(ARTCC) meteorologists, and meteorologists from the Meteorological Service of Canada. CCFP consists of areas 
that are forecast to experience intense convection and thunderstorms. Areas of size 3000 square miles or larger 
containing at least 25% convection with at least 40dI3Z composite reflectivity with echo tops of 25,000 feet and 
higher are denoted by polygons in CCFP. Once every two hours, two-hour, four-hour and six-hour forecasts are 
generated. C-SIGMET, which is generated by forecasters at AWC, is issued hourly in a text format and is valid for 
up to two hours. Regions with ongoing severe convective weather activity or regions where it is forecast to occur 
within 30 minutes are shown enclosed in polygons. The forecast regions are 3000 square miles or larger with at 
least 40% severe weather footprint. 
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As interest in the forecast products has increased, forecast accuracy has become a topic of several investigations. 
Forecast accuracy is important both from the perspectives of the forecasters and of those who use the forecasts for 
their decision-making. Reference 2 describes a statistical verification method based on measures of forecast quality 
derived from a 2 x 2 classification table, with elements consisting of numbers of grid locations correctly predicted, 
and grid locations incorrectly predicted (missed alerts or false alarms). Reference 3 describes an alternative method 
for computing quality metrics based on the differences seen in the structures of the forecast regions and observed 
regions. The technique consists of identifying and grouping adjacent regions that appear to be part of the same 
weather system in the forecast data and finding a corresponding grouped region in the observation data. The 
difference in the properties of the two identified regions, for example the position of the centroids, then provides 
measures of forecast accuracy. This technique is very similar to “feature correspondence” techniques used in 
coniputer vision. 

Since numerical weather prediction models are unable to accurately forecast the severity and the location of the 
storm cells several hours into the future when compared with observation data, there has been a growing interest in 
probabilistic description of convective weather. The classical approach for generating uncertainty bounds consists of 
integrating the state equations and covariance propagation equations forward in time. This step is readily recognized 
as the “process update” step of the Kalman Filter alg~rithm.~ The second well known method, known as the Monte 
Carlo method, consists of generating output samples by driving the forecast algorithm with input samples selected 
from distributions. The statistical properties of the distributions of the output samples are then used for defining the 
uncertainty bounds of the output variables. This method is computationally expensive for a complex model 
compared to the covariance propagation method. The main advantage of the Monte Carlo method is that a complex 
non-linear model can be easily handled. Recently, a few different methods for probabilistic forecasting have 
appeared in the literature. A method for computing probability of convection in a region using forecast data is 
described in Ref. 5. Probability at a grid location is computed as the fraction of grid points, within a box of specified 
dimensions around the grid location, with forecast convection precipitation exceeding a specified threshold. The 
main limitation of this method is that the results are dependent on the chosen dimensions of the box. The examples 
presented Ref 5 show that this process is equivalent to low-pass filtering of the forecast data with a finite support 
spatial filter. References 6 and 7 describe the technique for computing percentage coverage within a 
92 x 92 square-kilometer box and assigning the value to the center 4 x 4 square-kilometer box. This technique is 
same as that described in Ref. 5.  Characterizing the forecast, following the process described in Refs. 5 through 7, in 
terms of percentage coverage or confidence level is notionally sound compared to characterizing in terms of 
probabilities because the probability of the forecast being correct can only be determined using actual observatiom8 
References 5 through 7 only use the forecast data and not the observations. The method for computing the 
probability of detection, false alarm ratio and several forecast quality metrics (Skill Scores) using both the forecast 
and observation data are given in Ref. 2. 

This paper extends the statistical verification method in Ref. 2 to determine co-occurrence probabilities. The 
method consists of computing the probability that a severe weather cell (grid location) is detected in the observation 
data in the neighborhood of the severe weather cell in the forecast data. Probabilities of occurrence at the grid 
location and in its neighborhood with higher severity, and with lower severity in the observation data compared to 
that in the forecast data are examined. The method proposed in Refs. 5 through 7 is used for computing the 
probability that a certain number of cells in the neighborhood of severe weather cells in the forecast data are seen as 
severe weather cells in the observation data. Finally, the probability of existence of gaps in the observation data in 
the neighborhood of severe weather cells in forecast data is computed. Gaps are defined as openings between severe 
weather cells through which an aircraft can safely fly to its intended destination. 

The rest of the paper is organized as follows. Section I1 summarizes the statistical verification method described 
in Ref. 2. The extension of this method for computing the co-occurrence probabilities in discussed in Section HI. 
Numerical examples using NCWF forecast data and NCWD observation data are presented in Section 111 to 
elucidate the characteristics of the co-occurrence probabilities. This section also discusses the procedure for 
computing the probabilities that the severity of convection in the observation data will be higher or lower in the 
neighborhood of grid locations compared to that indicated at the grid locations in the forecast data. The probability 
of coverage of neighborhood grid cells is also described via examples in this section. Section IV discusses the gap 
detection algorithm and presents a numerical example to illustrate the method. The locations of the detected gaps in 
the observation data are used along with the locations of convective weather cells in the forecast data to determine 
the probability of existence of gaps in the neighborhood of these cells. Finally, the paper is concladd in Sec~en  V. 
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