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Optimal scheduling of airport runway operations can play an important role in improving 
the safety and efficiency of the National Airspace System (NAS). Methods that compute 
the optimal landing sequence and landing times of aircraft must accommodate practical 
issues that affect the implementation of the schedule. One such practical consideration, 
known as Constrained Position Shifting (CPS), is the restriction that each aircraft must 
land within a pre-specified number of positions of its place in the First-Come-First-Served 
(FCFS) sequence. 

We consider the problem of scheduling landings of aircraft in a CPS environment in 
order to maximize runway throughput (minimize the completion time of the landing se- 
quence), subject to operational constraints such as FAA-specified minimum inter-arrival 
spacing restrictions, precedence relationships amang aircraft that arise either from a i r h e  
preferences or air traffic control procedures that prevent overtaking, and time windows 
(representing possible control actions) during which each aircraft landing can occur. We 
present a Dynamic Programming-based approach that scales linearly in the number of 
aircraft, and describe our computational experience with a prototype implementation on 
realistic data for Denver International Airport. 
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I. Introduction 

The Air Traffic Control (ATC) system has the responsibility of maintaining a safe and orderly flow of 
aircraft in the National Airspace System (NAS) of the United States. An important part of this responsibility 
is the planning of airport operations, such as the arrival and departure of aircraft. In this paper, we present a 
procedure for computing safe and efficient arrival schedules while taking into account several key operational 
constraints. 

Recent work on the statistical analysis of aircraft arrivals at several major airports in the United States has 
shown that the distribution of times between estimated arrival times of successive aircraft (estimated when 
the aircraft are 100 miles from their final destinations) is nearly-exponential in character.' This observation is 
of interest to researchers in air traffic management, because an arrival process with exponentially distributed 
inter-arrival 'times is purely random, in the sense that the probability distribution of the time until the next 
arrival is independent of the time at which the last arrival occurred. This suggests that the combination 
of various en route air traffic control actions, delays in the NAS, and the different airline schedules result 
in an arrival stream that is very close to random. it also implies that significant work needs i o  be done to 
convert this random arrival stream into an orderly arrivai flow into the axport; a iarge part of this burden 
lies with the TFL4CON and en route traffic management controllers who plan the flow of aircraft into the 
airport. These air traffic controllers typically have a short time horizon (of about 45 minutes) in which to 
first assign, and then perform the necessary control actions to deliver, an aircraft to a particular position in 
the landing sequence.2 

A chief focus of the many efforts to alleviate air traffic controller workload has been the development of 
automated decision-support tools for ~ontrollers.~ The Federal Aviation Administration (FAA) has certified 
and deployed several software systems, such as the Traffic Management advisor (TMA), the Descent Advisor 
(DA) and the Final Approach Spacing Tool (FAST), as part of the the Center TRACOW Automation System 
(CTAS)4 to help air traffic controllers sequence and space arriving aircraft. 

The primary constraint that air traffic controllers need to ensure in an arrival sequence is that the inter- 
arrival spacings are more than the FAA-specified minimums. For reasons of safety, i t  is necessary that an 
arriving aircraft does not face interference from the wake-vortex of the aircraft landing in front of it. The 
intensity and risk of the wake vortex depends on the sizes of both the leading and trailing aircraft. Therefore, 
the'required time interval between two landings also depends on the sizes of the two aircraft. For example, 
a small aircraft following a large aircraft needs greater separation than that required by a large aircraft 
following another large aircraft. 

The most common approach to sequencing aircraft has been to maintain the First-Come-First-Served 
(FCFS) order (Odoni et al.5). In an FCFS schedule, aircraft land in order of their scheduled arrival times at 
the runway, and air t r a c  controllers only enforce the minimum separaiion requirements. There are two key 
advantages to the FCFS sequence and landing times: (i) the FCFS schedule is relatively easy to implement 
and promotes safety by reducing controller workload, and (ii) the FCFS order maintains a sense of fairness, 
since aircraft simply land in the order in which they arrive at the runway; the FCFS order also minimizes 
the standard deviation of delays of the aircraft.:! 

However, a drawback of the FCFS sequence of landings is that it may lead to reduced runway throughput 
due to large spacing req~irements .~ For example, a sequence of 10 alternating large and small aircraft will 
require greater spacings (and will therefore take more time to land overall) than one where 5 small aircraft 
are followed by 5 large aircraft. Air traffic controllers would like to complete landing a sequence of aircraft 
as quickly as possible, since the continued presence of the aircraft in the sky contributes to congestion and 
controller workload, and increases the associated risks. Low runway throughput leads to congestion around 
an airport and subsequent delays, compromising both safety and efficiency. This provides an incentive to 
deviate from the FCFS sequence to achieve sequences that lead to maximum runway throughput. However, 
the terminal area is an extremely dynamic environment, and resequencing aircraft increases the workload 
of controllers.6 Due to limited flexibility, it  might not be possible for air traffic controllers to implement an 
optimal sequence that deviates significantly from the FCFS order. However, the air traffic controllers do 
have a certain degee of flexibility, and carr quite ezsily shift ar aircraf in the sequence by a small number 
of positions. This is the basic motivation for Constrained Position Shifting (CPS) methods. 

CPS, first proposed by Dear,7 stipulates that an aircraft may be moved up to a specified maximum 
number of positions from its FCFS order. We denote the maximum number of position shifts allowed (also 
referred to as MPS) by k ,  and the resulting environment as a k-CPS scenario. For example, in 2-CPS, an 
aircraft that is in the sth position in the FCFS order can be placed at the 6", 7", sth;gth: or loth position 
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in the new order. An additional advantage of using CPS is that it maintains some sense of equity among 
the aircraft by not deviating too much from the FCFS order. This restricted deviation from the FCFS order 
therefore heIps maintain a sense of fairness in the perception of the airlines that operate the aircraft. 

Most previous work on optimizing runway schedules deal with the “static” case, i.e., the set of aircraft for 
which the optimal sequence is desired is fixed (as opposed to the dynamic case where the set of aircraft and 
optimal sequences change over time as the situation evolves). The static case is applicable when arrivals to 
an airport are batched over time, and the optimal sequence for each batch is computed separately. Since the 
set of aircraft is known a-priori in the static case, maximizing runway throughput is equivalent to minimizing 
the makespan (landing time of the last aircraft in the sequence). In most practical implementations, aircraft 
are scheduled in batches,2 and it is hence useful to be able to solve the static problem. 

Beginning with the early work of Dear,7 there have been several attempts to develop efficient algorithms 
and implementations that deliver optimal k-CPS sequences. Dear7 solved the problem by enumerating all 
possible sequences to find an optimal sequences, which is impractical for even a modest number of aircraft. 
Dear and Sherif8 proposed a heuristic based on CPS for scheduling a single runway. Neumann and Erzberger2 
conducted an extensive investigation into various techniques for sequencing and spacing arrivals. Their study 
included an enumerative technique for computing the sequence which minimized the makespan, subject to a 
single position shift (1-CPS) constraint. They proposed a heuristic method based on their I-CPS algorithm 
for taking into account operational constraints such as the earliest possible arrival times of the aircraft, and 
restrictions on overtaking. 

Psaraftis’ proposed a dynamic programming algorithm for single runway scheduling of which CPS was 
a special case. The complexity of his algorithm is O(n(n + l)m), where n is the number of aircraft and m is 
the number of aircraft types. However, his approach assumes that there are no restrictions on the possible 
landing times of aircraft, i.e., that an aircraft can land at any time. Venkatakrishnan et aL6 proposed a 
heuristic that incorporated possible arrival windows into Psaraftis’ formulation. 

Trivizasl0 proposed a dynamic programming algorithm requiring a sophisticated implementation, which 
computes an optimal k-CPS landing sequence with complexity 0 ( 7 ~ 2 ~ ) ,  where n is the number of aircraft. 
However, this approach cannot handle precedence relations between aircraft, for example, constraints of the 
form “If aircraft i lands before aircraft j in the FCFS order, then i must land before j in the final sequence”. 
Such constraints are important for two reasons: 

1. In almost all current ATC automation systems (for example, COMPAS in Frankfurt,” MAESTRO in 

2. Airlines themselves may have preferences in precedence relations, arising from their banking strategies. 
The automation systems mentioned above use versions of CPS, but resort zo heuristics to handle operationaf 
constraints like time windows and precedence relations. Our approach is designed to solve these problems. 

More recently, there have been several attempts at using optimization techniques such as integer pro- 
gramming to the problem of arrival sequencing. The problem of finding the optimal landing sequence when 
the spacing between arrivals depends on the aircraft type is AP-hard, making it Unli‘lely that efiicient algo- 
rithms exist for solving this pr0b1em.l~ Beasley et d.I4 attempt to tackle this problem by using optimization 
tools for solving mixed-integer linear programs (MILPs). Integer programming methods are flexible enough 
to account for most operational constraints such as time windows, precedence and CPS, but the solution 
times of integer programs for such problems can be large and can vary significantly from one instance to 
another, making it unattractive for deployment as a real-time decision support too-1. 

Several authors, such as Bayen et al.,I5 have approached the problem by assuming that the required 
spacing between landings is the same between any two aircraft, ivdependent of their types. TVe do not make 
this assumption because we would like to take advantage of the differences in spacing requirements to reduce 
the makespan of the sequence. Also, if we were to assume a single spacing for a mix of aircraft, safety would 
mandate that we choose the largest among the possible spacings for all types of aircraft - this could be overly 
coraertztive, z,aci qiike iiieScieiit. 

In this paper, we develop a new procedure for computing an optimal k-CPS sequence to minimize the 
makespan in the static case. The key contributions of this paper are: 

1. We bridge the gap between the mostiy heuristic or enumeration-based CPS methods and the optimization- 
based methods to come up with optimal solutions that take advantage of the struczure of CPS se- 
quences. 

2 Our procedure can simultaneously handle the operational constraints of CPS, precedewe relationships, 
and restrictions on landing times of aircraft, which have not been addressed in past work. 

3. The procedure is easy to implement and requires no special-purpose optimization software. The running 

P a r d 2  and CTAS in Dallas Fort Worth4), very limited overtaking is allowed. 
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time of our algorithm is fast and predictable (it scales linearly in the number of aircraft) and can hence 
be embedded within a real-time decision support tool such as CTAS. 

We present our algorithmic framework in Section 111, and in Section TV, we describe an implementation 
of our approach to realistic scenarios drawn from data of the arrival traffic flow into Denver. Using these 
scenarios, we demonstrate that  the procedure we develop is flexible, can compute optimal solutions very 
quickly, and scales slowly and reliably with increase in number of aircraft. Finally, in Section V, we discuss 
the extensions of our methodology to more general airport operation scheduling problems, such as, multiple 
parallel runway scheduling, the simultaneous scheduling of arrival and departure sequences, incorporating 
airline preferences into scheduling, and the scheduling of surface operations at an airport. 

11. Problem definition 

Given a set of aircraft, we wish to determine the sequence that minimizes makespan (landing time of the 
last aircraft) subject to the operational constraints of CPS, precedence, minimum separation requirement, 
and possible arrival time windows for aircraft. 

The FCFS order and MPS parameter  
Given times of arrival of the aircraft at the boundary of the ARTCC, Trajectory Synthesizers’ can 

compute the average time an aircraft would take to reach the runway, if there was no interference from other 
aircraft. This is known as the Estimated Time of Arrival (ETA) of the aircraft. The order of the ETAS gives 
us the FCFS sequence of landings. The MPS parameter, denoted by k ,  is typically small (1, 2, or 3).17 

Arrival time windows 
Given the time at which the aircraft crosses the Center boundary, there is an earliest time at which the 

aircraft can possibly land (here, we can account for any possible speed-ups by the aircraft), as well as a 
latest possible time of landing (determined by possible fuel constraints or the maximum delays that may be 
acceptable for an aircraft). The earliest and latest arrival times of aircraft i are denoted by E(i )  and L(i)  
respectively. In general, however, it  is not necessary that the possible landing times for an aircraft belong to 
a connected set; our approach is capable of handling situations in which an aircraft’s landing time could lie 
in any one of a number of time intervals. We consider the single-interval case only to simplify the technical 
discussion of the algorithm. 

Minimum aircraft separation 
The FAA establishes minimiim spacing requirements betvjeen lmding aircraft to prevent the danger of 

wake turbulence. An aircraft faces the risk of instability if it interacts with the wake-vortex of the aircraft 
landing in front of it. To prevent this, there must be a minimum spacing between the aircraft, which depends 
on the size of the leading and trailing aircraft. We define the minimum time-separation matrix by S, where 
the element Sab  is the minimum required time between arriva,ls, if the first aircraft to land (leading aircraft) 
belongs to class a, and the second aircraft to land (trailing aircraft) belongs to class b. 

The FAA16 divides aircraft into three weight classes, based on the maximum take-off weight capacity. 
These classes are 

1. Heavy: Aircraft capable of takeoff weights of more than 255,000 lbs. 
2. Large: Aircraft of more than 41,000 lbs, maximum takeoff weight, up to 255,000 lbs. 
3. Small: Aircraft of 41,000 lbs or less maximum takeoff weight. 

Heavy aircraft include the B747, B767, A300, DClO and DC8; large aircraft include the B757, DC9, ATR42; 
and small aircraft include single piston-engine aircraft and small turboprops like the Beach 99. 

Using this classification of aircraft, the FAA specifies separation requirements during IFR approaches. 
These separation requirements can be used to determine the minimum separation required between iandings, 
assuming a 5 nmi final approach path (de Neufville and Odoni17). The matrix of minimum time separations 
is given in Table 1. 

An important assumption that we make in this paper is that the separation requirements satisfy the 
triungie inequaiitgr, that is 

sik 5 sz3 + s 3 k ,  for all aircraft types i, j ,  k (1) 
The triangle inequality ensures that enforcing the minimum spacing between only successive aircraft in a 
sequence ensures that the minimum spacing requirement is met for all pairs of aircraft. It is easy to see that 
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Leading Aircraft 
Heavy 
Large 
Small 

the FAA-specified minimum separation standards for inter-arrival times, as shown in Table 1, satisfy the 
triangle inequality. It is possible to extend the techniques presented in this paper to situations in which the 
triangle inequality is not satisfied, but these cases are beyond the scope of this paper. 

Trailing Aircraft 

Heavy Large Small 
96 157 196 
60 69 131 
60 69 82 

P receclence colzstr&zts 
flinaiiy, we consider precedence constraints on the landing sequence. One source of these constraints is 

the different jet routes in which the aircraft arrive at the airport. Air traffic controllers cannot typically 
allow aircraft within a jet route to overtake each other (Neuman and Erzberger’). This restriction results 
in precedence constraints between the aircraft along the same jet route. Another source of such constraints 
would be from the airlines themselves, as we will briefly discuss in Section V-C. We represent precedence 
relations by an n x n matrix ( p t j } ,  such that element pz j  = 1 if aircraft i must land before aircraft j ,  and 
pz3 = 0 otherwise. 

Problem statement 

-. 

Consolidating our objective and constraints, we can pose the following problem: 
Given n aircraft indexed 1,. . . , n, earliest and latest arrival times E(i )  and L(i)  for each aircraft i, separation 
matrix S, precedence matrix { p z 7 } ,  and the maximum number of position shifts k ,  compute the k-CPS 
sequence and corresponding landing times that minimize the makespan of the sequence. 

For simplicity, we usume that the aircraft are labeled (1’2,. ’ .  , n), according to their position in the 
FCFS sequence. 

III. Algorithm 

Our solution approach is to pose the prDblem 2s a modified. shortest 2ath problem r,n a network, whi& 
is then solved by dynamic programming. The procedure for generating the network is described in the 
following section. 

A. Network generation 

The network consists of n stages (1, , n}, where each stage corresponds to an aircraft position in the find 
sequence. A node in stage p of the network represents a subsequence of aircraft of Ieigth min(Zk+l, a-p+l}, 
where k is the maximum position shift. For example, for a = 6 and k = 1, the nodes in stages 1,. . . , 4  
represent ail possible sequences of length 2k -t 1 = 3 starting at that stage. Stage 5 contains a node for every 
possible aircraft sequence of length 2 starting at position 5 ,  while stage 6 contains a node for every possible 
sequence of length 1 starting at position 6. This network, shown in Fig. 2, is obtained by finding all sequence 
combinations of possible aircraft assignments to each position in the sequence given in Fig. 1. One property 
of the nodes that we will use is that each aircraft in a node’s subsequence is unique. For convenience, we 
refer to the firsf zircrzft in 2 nt?rle’c seqdexe as the izaial airs& cf th& ~ c d a .  

Position ] 1 2 3 4 1 5 6 

5 

3 4 5  assignments 

Figure 1. Possible aircraft assignments for n = 6, k = 1 .  
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Figure 2. Network for n = 6, k = 1. 

We then introduce two nodes, a source node s and a terminal node t that represent the beginning and 
end of the sequencing process respectively. We add arcs from s to each node in stage 1, and from each node 
in stage n to t. Finally, for each node in stage p ,  we draw directed arcs to all the nodes in stage p + 1 that 
can follow it. For example, a sequence (1-2-3) starting in stage 1 can be followed by the sequences (2-3-4) 
or (2-3-5) starting in stage 2. This results in a network where every directed path from s to t represents a 
possible sequence. For example, the path s -+ (2-1-3) -i (1-3-4) -+ (3-4-6) t (4-6-5) t (6-5) -i (5 )  t t 
represents the sequence 2-1-3-4-6-5. 

Lemma 1 Every possible k -CPS  subsequence of length 2k + 1 or less is  contain.ed in some node of the 
network. 

Proof: By construction, every subsequence of length 2k + 1 or less starting in position p is explicitly 
enumerated in stage p .  E 

Corollary 1 Every k - C P S  sequence can be represented by  an s-t path in the network. 

Lemma 2 Every s-t path in the network represents a feasible k - C P S  sequence. 

Proof: First, we observe that every s-t path will consist of exactly n nodes (other than s and t )  since 
each arc in the path moves forward by one stage. Given a path in the network, the corresponding aircraft 
sequence is obtained taking the initial aircraft of a node belonging to stage p and assigning it to position . . .. p 
in the sequence. Thus, position 1 in the sequence is the initial aircraft of the first node the path, position 
2 in the sequence is the initial aircraft of the second node in the path, and so on. Since there are n aircraft 
and the path is of length n, this procedure wiIl yield a feasible sequence as long as we assign a unique aircraft 
to each position, Le., as long as the initial aircraft of each node in the path is different. 

We now prove this result by contradiction. Suppose there exists an s-t path in the network containing 
two nodes such that the initial aircraft of the two nodes is the same. Let one of these nodes be in stage p1 

and the other be in stage p2 where pl < p2. We have already established that p1 # p2 since each node in 
the path belongs to a different stage. Therefore, the aircraft appears in position p1 and p2 in the sequence 
represented by the path. The network is constructed using the fact that  any aircraft can appear in at most 
2k + 1 positions, so p2 is at most 2k + 1 positions from pl. But every subsequence of length 2k + 1 or less 
is captured in some node along the path, so there exists a node in the path in whose subsequence the s m e  
aircraft appears in more than one position, which is not allowed to occur while generating the network. This 
contradiction implies that there cannot exist an s-t path containing two nodes with the same initial aircraft 

Therefore, any s-t path represents a sequence of n distinct aircraft, where each aircraft appears in a 
position t h a t  belongs t,o one of at most 2k + 1 possible position assignments for that aircraft. E 
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We now observe that there are some nodes in the network that cannot be part of any path from s to t. 
For example, node (1-2-4) belonging to stage 2 in Fig. 2 has no arcs leading into it, and so cannot belong to  
any path. Such nodes can be eliminated to simplify the network and reduce its size. For a node to belong 
to some s-t path, there should be a path from s to that node, and a path from that node to t. Finding all 
nodes in the network that can be reached from s can be done by a simple graph search algorithm (starting 
at s, traverse the network from left to right along the arcs and mark all nodes that are visited). Similarly, 
finding all nodes in the network from which t is reachable can be done by another application of a reverse 
gaph  search (starting at t ,  traverse the network from right to left along the reversed arc direction and mark 
all nodes that are visited). The set of nodes that are visited in both directions are retained in the network, 
whiIe all other nodes (and the arcs leading into or out of them) are discarded. We refer to this process as 
pruning the network. The pruned network for the n = 6, IC = 1 scenario is shown in Fig. 3. Note that the 
pruned network is significantly smaller than the original network. 

-1 -1 rEG3-1 riGZ-1 1-1 -1 

Figure 3. Pruned network for n = 6, k = 1. 

3. Dynamic programming recursion 

The main idea behind the approach is that we wish to find an s-t path of shortest “length” in the network, 
which will translate to a sequence with the smallest makespan. We now show that this can be done using 
dynamic prograiiming. 

Given two nodes i and j ,  the arc connecting them (if it exists) is denoted by { i , j ) .  The set of predecessor 
nodes of j is denoted by P( j ) .  In other words, P ( j )  is the set of all nodes i such that arc ( i , j )  exists. Let 
e( i )  denote the earliest time that the sequence of node i can begin, which is the earliest arrival time E(.) 
of the initial aircraft of node i. Similarly, let l(i) denote the latest arrival time L(.) of the initial aircraft of 
node i. Each arc ( i , j )  in the network is associated with a “distance” di, which is the minimum separation 
between the initial aircraft of node i and that of node j ,  if they were to land in that order. This separation 
is determined by the weight classes of the two initial aircraft. Arcs that lead into the sink and out of the 
source have zero distance associated with them. 

Let T( i )  be the earliest time that the sequence corresponding to node i can possibly begin, in a sequence 
starting at node s and ending in node i. We wish to find T(t) ,  the earliest time that the entire sequence 
can be completed, which is equal to the makespan. The values of T( . )  can be computed by the following 
dynamic programming recursion. 

Note that if the set i E P ( j )  : T(i)  5 [(i) is empty, T ( j )  is defined to be 00. 

Lemma 3 The recursion in Equation 2 correctly computes the ualues of T ( j )  fo r  all nodes j 

Proof: T ( j )  3 e(j) since a sequence cannot start before the earliest arrival time of the initial aircraft in the 
sequence. 

If T( i )  > l(i) for some predecessor node i, it implies that the sequence of node i cannot possibly start 
within the allowable time window [e(i), C ( i ) ] ;  therefore if this node is used, the initial aircraft of node i cannot 
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Figure 4. Algorithm for computing t h e  minimum makespan. 

be landed between its earliest and latest arrival times, and hence this node cannot be part of any feasible 
s-t path sequence. Therefore; all predecessors with T( i )  > [(i) can be ignored while finding the predecessor 
of node i. 

It is not possible for T ( j )  to be strictly less than T ( i )  + dij for all predecessors i since that would violate 
the separation requirement between the initial aircraft of i and j. Therefore, T( j )  2 T(h) + dh, for at least 
one of the predecessors h E P ( j )  such that P ( j )  5 [ ( j ) .  Since T ( j )  2 T(h)  + dh, for at ieast one feasible 
predecessor h, it is certainly greater than the minimum of T( i )  + di, over all feasible predecessors i. 

We have shown so far that T ( j )  2 e ( j )  and T ( j )  2 min,,p(3), T ( ~ ) ~ ~ ( ~ )  (T(i)  + di,). To complete the 
proof, we have to show that at least one of the above inequalities holds as an equality so that T ( j )  = 
max {e(j),miniGp(j): ~ ( i ) l t ( i )  (T(i )  + d i 3 ) } .  We now prove the rest by contradiction. Suppose T ( j )  > e( j )  
and T ( j )  > min,,p(j), ~ ( i ) l t ( i )  (T(i)  + do).  Then, it is possible to reduce the value of T ( j )  by some suffi- 
ciently small quantity while still maintaining a feasible solution, which contradicts the minimality of T ( j ) .  

Therefore; T ( j )  2 e(j)  and T ( j )  2 minZGp(j). ~ ( f ) < e ( i )  (T( i )  + di,) and at least one of the two inequalities 
holds as an equality. 

Using the boundary condition T(s )  = current time, we can apply the dynamic programming recursion 
to nodes in stages 1,. . . , n and finally to node t to generate the values of T(.). 

Corollary 2 The k-CPS scheduling problem is infeasible if and only if T( t )  = 03. 

The predecessor (i.e., value of i) that minimizes the quantity min,,p(j), T(i)le(i)  (T(i)  + di,) is denoted 
by prev(j), and is used to construct construct the optimal sequence. Starting from node t ,  the recursive 
sequence of pres.(.) nodes recoYers the sequence corresponding to the optimal value T(t) .  The landing time 
of an aircraft in the sequence defined by the path is the value of T(.)  of the node in the path for which that 
aircraft is the initial aircraft. The pseudocode for the algorithm is given in Fig. 4. 

Initialization 
In the case where aircraft are being scheduled in batches (as is done in practice), the landing times of-the 
current batch of aircraft being scheduled must take reflect the required separation between the first aircraft 
of the current batch and the last aircraft of the previous batch. To enforce this constraint, we update the 
earliest arrival times of aircraft in the current batch to take into account the required separation. If the 
last aircraft i of the previous batch landed at time t, the earliest arrival time of aircraft j in the current 
batch is updated to max{E(j), t + di,}, where d,j is the minimum separation between aircraft i and j. The 
procedure then proceeds as before; T(s )  is set to the current time, and the dynamic programming recursion 
is performed with the new values of earliest arrival times. 

C. Incorporating precedence constraints 

Precedence constraints are conditions that specify the relative landing order of two aircraft. There are 
two possibilities, depending on whether or not the precedence constraints require that the FCFS order be 
reversed. 

Case I: a < b and Pab = 1, i.e., aircraft a lands before b in the FCFS sequence and we require a to  land 
before b in the optimal makespan sequence. 
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Let f (b)  be the position of aircraft b in the final (optimal makespan) sequence, and f (a )  be the position 
of aircraft a in the final sequence. Our precedence constraint implies that  we need to preclude paths that 
result in f (a) > f (6) .  

Lemma 4 Suppose there exists a path in the network such that f ( a )  > f ( b ) .  Then, the path contains at 
least one node such that b appears before a in that node’s subsequence. 

Proof: Since each aircraft can shift at most k positions, f(a) 5 a + k and J ( b )  2 b - k .  So f ( a )  - f (b)  _< 
a-b+2k 5 2 k - 1  (because a -  b 5 -1 given that a < b) .  Since f(a) and f ( b )  are within 2 k + l  of each other 
and every sequence of length at most 2k + 1 is contained in some node along the path, the path contains 

Clearly, nodes that contain subsequences that violate the precedence constraints should be removed from 
the network since we do not want these nodes to belong to any s-t path. The above lemma shows that 
removing nodes that violate precedence constraints i s  not only necessary, but also sufficient for eliminating 
all s-t paths that vioiate precedence constraints. This yields the following procedure: in the presence of 
precedence constraints where a < b and we require f ( a )  < f ( b ) ,  remove all nodes where the precedence is 
violated, and solve the problem on the resulting network. 

some node whose sequence has f ( a )  > f ( b )  and violates the precedence constraint. t4 

-1 1-1 -1 1-1 -1 

Figure 5. Network with precedence constraint that aircraft 4 lands before aircraft 5 ,  for n = 6, k = 1. 

We illustrate this procedure on the example network we have seen first in Fig. 2,  and then in Fig. 3. 
Suppose our precedence constraint specifies that aircraft 4 Decessari!y !and after aircrai?, 5. Then, we remove 
all nodes in which aircraft 5 precedes aircraft 4 - this eliminates the nodes (2-5-41, (3-5-4), and (5-4-6), 
and the arcs leading into and out of them. -We then remove ail the nodes that are not reachable from s or t 
in this network. The resultant network with the precedence constraints incorporated is shown in Fig. 5. 

Case Ti: a < b and Pba = I, Le., a lands before b in the FCFS sequence but we require b to land before a 
in the optimal makespan sequence. 

In this case, we need to eliminate paths that result in f ( a )  < f ( b ) .  Since the earliest position that b can 
land is b - k ,  the earliest time that a can land given that it lands after 6 is b - k + I. Similarly, the latest 
position that a can land is a + k ,  meaning that the latest time that b can land is a f k - 1. Any node that 
contains a sequence that violates these two constraints, Le., has a in a position that 5 5 - k or has b in a 
position 2 a + k should be removed from the network since they cannot belong to a feasible path. We refer 
to the network obtained affer removing such nodes as the position-constrained network. 

Lemma 5 Suppose there exists a path in the position-constrained network such that f (a)  < f ( b )  . Then, the 
path contains at least one node such that a appears before b in that node’s szlbsequence. 

Proof In the position-constrained network, b - k + 1 5 f(a) 5 a + k and b - k 5 f ( b )  5 a + k - 1. SO 
f (bf - f (a)  _< a - b + 2k - 2 5 2k - 3 (because a - b 5 -1 given that a < b).  Since f (a) and f (b)  are within 
2k i 1 of each other and every seqJence of length at most 2k + 1 is contained in some node along the path, 
the path contains some node whose sequence has f(a) < f ( b )  and violates the precedence constraint. 

This yields the following procedure: in the presence of precedence constraints where a < b and we 
require f(a) > f ( b ) ,  we first remove all nodes where the position constraint is violated, giving the position- 
constrained network. Then, we remove all nodes that violate the precedence constraints, and solve the 
problem on the resulting network. 
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D. Complexity 

Proposit ion 1 The complexity of the algorithm for finding the minimum makespan for n aircraft and max- 
imum position shift of k is O(n(2k + 1)(2k+2)). 

Proof: The nodes in each stage of the network are generated by a l l  combinations of length 2k + 1, 
where each position in the sequence has at most 2k + 1 possible aircraft. The number of nodes in each 
stage is therefore at most (2k + 1)(2k+1); since there are n stages, the total number of nodes in the network 
is bounded by n(2k + 1)(2kf1). Each node can have at most 2k + 1 predecessors since the sequence of a 
node differs from the sequence of its predecessor only in the first and last position, therefore the number of 
arcs is O(n(2k + 1)(2kf2)). Pruning the network requires looking at each arc at most twice-once during 
the forward pass and once during the backward pass. The dynamic programming recursion examines each 
predecessor of a node at most once, so total complexity is equal to the number of arcs in the network, which 
is O(n(2k + 1)(2k+2)). m 

We note here that the comp!exity expression is a consersative upper bound; in practice, the number of 
zrcj in the pixned netTcjrk is sigiScactly smaller t h m  that predicteil by the xjmpkxity expression. T&!e 
2 shows the upper bound and the actual number of arcs in the pruned network for 50 aircraft. 

Number of Arcs 
50 x (2k + 1)(2k+2) I Pruned network 

33,943 
288,240,050 4,104,950 

k 

4,050 

Table 2. Actual number of arcs in pruned network and upper bound for 50 aircraft. 

In the presence of precedence constraints, pre-processing the network to eliminate nodes that violate 
precedence constraints takes O((k + 1)2) work per node since we would need to examine every pair of aircraft 
in the subsequence in the worst case. The complexity for preprocessing all the nodes would therefore be 
O(n(2k + l)(2k+3)) which dominates the running time of pruning the network and performing the dynamic 
programming recursion. 

17 While the is exponential in k ,  it is of little consequence, since k is typically small (at most 3 in practice). 
The linear growth in n is useful since increasing the number of aircraft does not pose much of a computational 
burden. 

E. impleme-itation 

So far, we did not include the work done in generating the network into the complexity analysis. Since the 
basic network remains che same for given values of n and k ,  we generate, prune and store the network offiine, 
and recall the network when required. Therefore, this needs to be done only once. In practice, n is typically 
no more than 50 aircraft (since we are dealing with a short scheduling time horizon of no more than 30 
minutes) and k is no more than 3, the number of networks that need to be generated and stored is small (no 
more than 150) which requires very little disk space. 

Given an instance of the problem for n and k ,  our implementation reads the appropriate network from 
a file, does the appropriate preprocessing to account for precedence constraints, and then runs the dynamic 
programming algorithm on the resulting the network. Our computational experience was that reading the 
file containing the nodes and arcs dominates the computation time. 

N. A real-world scenario: Denver International Airport 

We now present an implementation of our approach on sample data based on arrival traffic at Denver 
International Airport. We chose Denver for several reasons. Denver airport is sufficiently separated from 
other major airports to  discern traffic patterns easily (Fig. 6). The airport is also close to the middle of Denver 
Center airspace (ZDV). Comprehensive statistics on scheduled arrivals at Denver are readily available from 
the Bureau of Transportation Statistics18 (Fig. 7), and the average times taken by zircraft along different 
jet routes in ZDV have also been published by Neuman and Erzberger.:! 

The Denver ARTCC airspace is shown in Fig. 9, with the jet routes that carry a r i d  traffic. The traffic 
at Denver is routed through one of 8 arrival gates: RAMMS. TOMSN (NW arrivals). LATUDR. SAYGE (NE 
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Figure 6. Traffic patterns around Denver International Airport (right).19 

5 
6 
7 
8 
9 

arrivals), DANDD, QUAIL (SE arrivals), LARKS and POWDER (SW arrivals). Once they have passed 
through the arrival gates, aircraft enter the Denver TRACON airspace. The TRACON airspace is defined 
by a 42 nmi. radius around the airport, and is shown in Fig. 8. It is possible to obtain real time data on 
the demand at any of the arrival fixes (Fig. 1020). At the arrival gates, aircraft are handed off to one of the 
arrival control positions in the TRACON. We consider the case in which all arrivals land either on Runway 
25 or Runway 26 (“Land West all”). In such scenarios, tr&c from the SE and SW gates land on Runway 25, 
and traffic from the NE and NW gates land on Runway 26. For simplicity, since we are currently interested 
in the single runway case, we only considered traffic in the Northern half-plane, and assume that all the 
traffic considered lands on Runway 26. It is the arrival control position’s responsibility to  form a desirable 
sequence of aircraft, which are then handed of f  to a final control position in the TRACON. The final control 
positions have the responsibilities of spacing aircraft for final approach, and of merging streams of aircraft, 
from dil’ferent fixes, if necessary. Near the beginning of the final approach, control over an aircraff is handed 
over to the air traffic control tower. 

The Arrival Sequencing Program (Neuman and Erzberger‘) attempts to  find the most efficient landing 
sequence and the optimal landing times, subject to spacing constraints; the input is the times when the 
aircrdt enter the Denver AitTCC. Given these times, one can compute the FCFS order a t  the airport, using 
the average time spent by aircraft on the different jet routes. This data, derived by Neumm and Erzberger,’ 
is shown for the Northern mivals in Table 3. These times were used to compute the FCFS order of arrivals 
at the runway, and the Estimated Times of Arrival (ETAS). 

5136 45.00 RAMMS 
5114 41.43 LANDR 
510 45.00 SAYGE Through 
5157 I 45.00 LANDR NE Gates 
J60 45.00 , SAYGE 

1 Jet Route No. 1 Time within ZDV I Gates I 1 
1 5163 I 42.30 TOMSN 1 

5156 45.45 TOMSN 
5170 1 45.00 RAMMS 

Through 1 I 524 47.78 1 TOMSN 1 NW Gates 1 
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Arrival rates at Denver airport in 15-min intervals 
30 

Figure 7. Histogram of arrival rates at Denver International Airport  on July 6, 2005. 

A. Data 

In order to determine the number of aircraft arriving through each of the gates, we used the statistical 
distribution of flights through the different gates.18 The distribution that we derived from this data is shown 
in Fig. 11. For each of the directions of arrival, we divided the traffic equally among all the corresponding jet 
routes. According to Neuman and ErzbergerI2 it is necessary to maintain FCFS order among aircraft in the 
same jet route. Therefore, we used the jet-routes to determine the landing precedence relations. Neuman 
and Erzberger also investigated the possibility of speeding up aircraft, and the consequent fuel expense, and 
arrived at the conclusion that it is not economically worthwhile to move the landing time forward by more 
than a minute. Therefore, n7e set the earliest arrival time at 1 minute less than the ETA. We set the latest 
possible arrival time at 60 minutes after the ETA, implying that we would not put an aircrak on hold for 
more than an hour. 

It has been noted that reasonable values of k for CPS might be 1, 2, or 3. For these values, it  is possible 
for air traffic controllers tc izplemest the reordering of drcraft to achieve the optimal sequence that is 
desired (de Neufville and Odoni17). Another benefit of such small k is the fairness that is maintained across 
aircraft. It is known that the FCFS order minimizes the standard deviation of delays, and provides a fair 
solution, so a CPS that maintains a restricted deviation from the FCFS order minimizes the makespan while 
s d l  staying close to the a fair solution. 

We assumed a Poisson arrival process in generating the sequence of times at which aircraft enter the 
Denver Center. This is based on the work of Willemain et al.' in which they show, based on studies at 9 
major U.S. airports, that the inter-arrivals times at airports before the final control actions are executed can 
be well-modeled by exponential distributions. 

B. Computing environment 

We conducted all our experiments on a personal computer with 3.2GHz Intel Pentium 4 CPU on a Linux 
platform and 512 M B  RAM. The CPS code was written in C++, while the optimal (no CPS constraint) 
problem was coded in AMPL2' and solved using CPLEX22 (version 9.1). 

C. Results 

First, we present the result of Monte Carlo simulations for varying mixes of aircraft. In particular, we 
consider two mixes of aircraft, one a 40% Heavy, 40% Large, and 20% Small mixx; and the other a 45% 
Heavy, 45% Large, and 10% Small mix of aircraft. These are aircraft mixes that one could expect to see 
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Figure 8. Denver a i rport  approach airspace. 

in practice, since most major airports are likely to have more Heavy and Large aircraft operations than 
Small ones. Intuition would suggest that a homogeneous mix of aircraft (where all aircraft belong to the 
same weight class) would not benefit from CPS, since all the inter-arrival spacings would be the same. We 
measure the improvement gained by performing CPS in terms of the difference between the FCFS makespan 
and the CPS makespan. Fig. 12 shows the gains made by CPS relative to the FCFS makespan for up to 
50 aircraft. Each data point in the figure is the average over results from 100 different randomly generated 
arrival scenarios. The results support our intuition that the gains from CPS are greater when the mix is less 
homogeneous. 

We also present an instance generated &om the time-varying histogram of arrival rates at Denver Inter- 
national Airport (Fig. 7). The time-period we consider is between 9:OO AM and 10:30 AM, with a scheduling 
horizon of 30 min. This implies that we schedule aircraft in batches, half an hour of arrivals at a tiiie. We 
chose this horizon because aircraft reach the arrival fixes after about 30 mins of flight within the center, 
and normally the sequencing decisions have to be made prior to the aircraft reaching the arrival fix. In 
order to deinonstrate the behavior of the algoritm for a variety of congestion Ievels, we artificially reduce 
the arrival rate in the first half hour by 50%. Therefore, the assumed arrival rates for the three aircraft 
batches are 22 aircra.ft/hr between 9:00 AM and 9:30 AM, 34 aircraft/hr between 9:30 AM and 1O:OO AM, 
and 36 a.ircraft/hr between 1O:OO AM and 10:30 AM. A random instance of arrival times was generated 
using a Poisson process with the appropriate rates, and the jet routes were assigned to them as described 
in Section A. The resultant random scenario generated 11 aircraft in the first half-hour, 19 aircraft in the 
second, and 23 aircraft in the third. 

The minimum makespan for each of these time periods, for k = 1,2 ,  3; as well as the optimal solution 
are shown in Table 4. 

Time period 
Number of aircraft scheduled 

9:OO-9:30 A M  [ 9:30-1O:OO A M  [ 1O:OO-10:30 A M  

1-CPS 74.16 101.51 139.92 
2-CPS 73.84 101.34 139.06 
3-CPS 73.84 101.22 139.06 

Optimal (using CPLEX) 73.84 101.22 139.06 

Table 4. Makespan for t h e  different time periods, as well as different values of k, for t h e  scenario showc in 
Figs. 13-15, 
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Figure 9. Denver airspace, showing jet routes and arrival gates. 

The resultant sequences of this scenario are presented in Figs. 13, 14, and 15 as follows: The horizontal 
lines at the top of the figures correspond to the different jet routes. The first set of lines represents the jet 
routes leading to the N E  gates (5114, J10, 5157 and J60), and the second set represents jet routes leading 
to the N W  gates (5163, Jl56, 5170, 524 and 5136). The 'x's on these lines represent the arrival time of an 
aircraft on that jet route at the boundary of the Denver Center. The sequence along a jet route also depicts 
our precedence constraints, since we do not allow overtaking along a jet route. 

We project the arrivals on all the jet routes down onto a single horizontal line to show the sequence of 
arrivals at the Center boundary. Using these arrival times, and the travel time along a jet route (shown in 
Table 3), we can compute the order and times of arrival of aircraft at the runway. This time is shown in 
the figures with a shift of 40 min. In other words, the times shown below the horizontal dotted line are on 
a different scale from those above the line, one that is shifted forward by 40 min. While this arrival order 
gives us the FCFS order of landings, the time between arrivals does not necessarily satisfy the minimum 
spacigg requirements. Therefore , we enforce the minimum spacing requirements, and compute the FCFS 
sequence of arrivals shown in the figures. The solid black lines correspond to Heavy aircraft, the dashed 
red lines to Large aircraft., and the dot-dashed green lines to Small aircraft. All the figures are identical in 
the characteristics we have described so far. Finally, we use the arrivals to compute the 1-CPS, 2-CPS, and 
3-CPS solutions, which are shown in Figs. 13, 14, and 15, respectively. This shows the resultant deviations 
from the FCFS order, depending on the maximum position shift allowed. 

The average delays for the given scenario, and the completion time (landing time of the last aircraft) 
are shown in Table 5. As expected, since we are minimizing the makespan, we can complete landing all the 
aircraft in less time, if more position shifts a r e  allowed. Even though the makespan does not change between 
2-CPS and 3-CPS, the average delay does decrease, and only three aircraft are involved in the sequence 
change that results in this decrease. When compared to the FCFS sequence, 1-CPS decreases the makespan 
by 1 min 15.6 sec, 2-CPS and 3-CPS decrease the makespan by 5 min 7.5 sec; I-CPS decreases average delay 
by 59.36 sec per aircraft, 2-CPS decreases it by 63.32 see per aircraft, and 3-CPS improves the average delay 
by 71.59 sec per aircraft. Therefore, although we explicitly only minimize the makespan, we also achieve 
substantial benefits in terms of the average delay incurred per aircraft, during congested times. We also 
point out that in this case, the minimum makespan [without CPS constraints, as computed using CPLEX) 
is the same as the makespan achieved using 2-CPS or 3-CPS. The optimal sequence of iandings without CPS 
is shown in Fig. 16. 

The algorithm we have proposed also runs fast enough in practice for a real-time implementation. The 
computational times for the scenario we have described above are shown in Table 6. 
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Figure 10. Real time data of demand at the different arrival fixes. 

V. Extensions 

The techniques we have proposed can be applied to  solve several other problems. We briefly outline some 
of the extensions that we can solve, the details of which are beyond the scope of this paper. 

A. Multiple rullVr'iys 

We consider the problem of scheduling and sequencing landings on multiple parallel runways. Even when 
there are multiple parallel runways being used simultaneously for landings at  an airport, operations on the 
runways are not independent of each other, when the separation between their centerlines is less than 4300 
ft. If the separation between the runway centerlines is less than 2500 ft, the separation requirements are 
the same as the inter-arrival separaxion for the single runway case (Table i). One such example is Boston 
Logan airport, where runway 4R and runway 4L are 1600 ft apart.6 If the separation between the runway 
centerlines is between 2.500 ft and 4300 ft, the a r r i d s  must be at least 1.5 nmi apart during the final 
approach. The multiple runway sequencing problem scenarios in which the runway separation is more than 

Division offlights through arrivai gates at Denver 

Figure 11. Percentage of flights through the different gates. 
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FCFSMakespan- CPS Makespan; [0.45,0.45,0.10] Mix 

10 20 30 50 

Procedure Average delay (in min) 

FCFS 2.9908 
1-CPS 2.0015 
2-CPS 1.9355 
3-CPS 1.7977 

Optimal (using CPLEX) 

Number of aircraft 

Landing t ime  of last aircraft 
(in mins, past 9:00 AM) 

144.18 
139.92 
139.06 
139.06 
139.06 

FCFSMakespan ~ CPS Makespan; [0.40.0.40,0.20] Mix 

Time period 

Number of aircraft 

T ime (sec) Arrival R a t e  # aircraft, n IC-CPS 
Xead & I Dynamic I Total 

Figure 12. The  difference between t h e  FCFS makespan and t h e  C P S  makespan for two different aircraft mixes. 

9:00 - 9:30 

9~30 - 10:OO 

1O:OO - 10:30 

Preprocessing Programming 

1-CPS < 0.01 < 0 01 < 0.01 
22 ac/hr 11 2-CPS < 0.01 ‘ < 0.01 < 0.01 

3-CPS 0.29 0.01 0.30 
1-CPS < 0.01 < 0.01 < 0.01 

34 ac/hr 19 2-CPS < 0.01 < 0.01 0.01 
3-CPS 1.98 0.02 2.00 
1-CPS < 0.01 < 0.01 < 0.01 

3-CPS 2.79 0.03 2.81 
36 ac/hr 23 2-CPS 0.03 1 < 0.01 0.03 

Table 5 .  Average delay and makespan for scenarios shown in Figs. 13-15. 

2500 ft, involve spacing requirements that do not satisfy the triangle inequality (Equation 1). As we ha~7e 
mentioned earlier, while our approach exd,ends to these scenarios, a detailed description of these extensions 
is beyond the scope of this paper. 

There are two possibilities to  the multiple runway sequencing problem, depending on whether or not we 
wish to schedule the runways, along with computing the optimal landing sequence and landing times. 

1. Pre-assigned runways 

Aircraft are sometimes assigned to runways based on the direction of arrival. For example, in Denver 
International airport, when all aircraft land while flying West (“Land West all”), Runway 25 and Runway 
26 are in use. In times of congestion, Northern arrivals land on Runway 26, and Southern arrivals land on 
Runway 25. In such cases; the algorithm needs to compute only the landing sequence and times, and not 
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Figure 13. Simulated arrivai traffic between 9:OO AM and 10:30 AM, with the I-CPS solution. 

the runway assignments. 

2. 

As we have seen, the inter-arrival spacing could be constrained, even in the case of parallel runways. In such 
cases, we need to schedule not only the landing times and the landing sequence, but also assign runways to 
aircraft optimally. 

Runway asszgnments and arrival sequencing 

B. 

Similar to the requirements for minimum spacing between arrivals, the FAA specifies minimum separations 
between departures, between a departure and an arrival preceding it, and between an arrival and a departure 
preceding it, both for single-runway operations and parallel runway operations (de Neufville and Odoni17). 
Our approach extends to combined sequencing of arrival-departure operations. 

Scheduling and sequencing arrivals and departures 

C. Incorporat ing airline preferences 

As we have seen in Section 11, we can incorporate precedence relations in the landing sequence, while executing 
CPS. Airlines themselves could be the source of such precedence relations, arising from the banking strategies 
of the airlines. Airlines often schedule their flights at an airport such that passengers from banks of arriving 
flights connect to one or more departing flights. In such cases, not only are the airlines interested in reducing 
delays, they would like their aircraft to arrive before the connecting flight departs. Such precedence $SO 

arise when an airline schedules a flight to arrive at an airport, and shortly after that, the same airurcraft is 
used on a Bight to a different airport. While scheduling operations, especially arrid-departure combined 
sequences as in Section B, we can find a L-CPS sequence such that airline precedence relations are satisfied, 
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Figure 14. Simulated arrival traffic between 9:00 AM and 10:30 AM, with the 2-CPS solution. 

if such a sequence is feasible. We can also quite easily determine if an airline‘s precedence pwferences are 
not feasible. 

D. Surface management 

Another application of the techniques we have proposed in this paper is in the queuing for departure of 
aircraft at an airport. Aircraft depart from their gates (“push back”) and form a queue at the edge of the 
departure runway. This queue is typically processed FCFS. An important question is how to establish an 
efficient departure sequence at the runway. Airlines request push back times, and pilots have even been 
known to push back early in order to achieve a higher position in the queue. In most airports, because of 
the taxiway geometry, ground controllers have very limited ability to reorder a i r~raf t . ’~ This is a limitation 
that can be resolved using the CPS algorithm that we have proposed in this paper. The maximum number 
of position shifts that can be achieved in the surface management problem appears to be k = 1 or 2, at most 
airports (Idris et al.24). 

We presented an approach for minimizing makespan in the presence of CPS for a single runway, and 
demonstrated its effectiveness in a real-world setting at Denver hternational Airport. D-uring congested 
periods of time, air traffic controllers would l i e  to maximize the throughput of the runway system, making 
makespan minimization a desirable objective. Our most important contribution is that the approach we 
present can handle precedence constraints that could arise from operational constraints or airline preferences, 
and take into account restrictions on possible arrival times of aircraft. Our procedure delivers prolrably 
optimal solutions in a short time frame, making it ideal for deployment in a real-time scenario. The algorithm 
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Figure 15. Simulated arrival traffic between 9:OO AM and 10:30 AM, with the 3-CPS solution. 

is easy to hplement and requires no specid-purpose software packages for optimization. 
Our initial experience indicates that for reasonable arrival rates, 3-CPS achieves solutions that are quite 

close to the optimal schedule. A usefui property of the optimal CPS sequence seems to be that it also de- 
creases average delay, although it is possible to construct specific instances in which decreasing the makespan 
increases the average de!ay. 

We envision that our procedure could replace existing heuristic techniques for computing CPS sequences 
in decision support tools such as CTAS. It is also possible to extend the techniques discussed in this paper 
to other interesting air traffic management problems such as surface management at an airport. 
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