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A High-Order, Linear Time-Invariant Model for
Application to Higher Harmonic Control and Flight

Control System Interaction

Rendy P. Cheng1, Mark B. Tischler1, and Roberto Celi2

Ames Research Center

SUMMARY

Helicopters can experience high vibration levels, which reduce passenger comfort and
cause progressive damage to the aircraft structure and on-board equipment. Because the
primary source of excitation is typically the main rotor, special rotor control systems
have been proposed to reduce vibrations at the source. This study addresses one such
system, generally known as “Higher Harmonic Control” (HHC), because it consists of
superimposing high frequency rotor inputs to the conventional low frequency ones used to
control and maneuver the helicopter. Because both the primary flight control system and
the HHC system act on the main rotor, the risk of adverse interactions between the two
systems exists. This research focuses on these interactions, which have never been studied
before due to the lack of suitable mathematical models.

The key ingredient is an accurate linearized model of the helicopter, which includes the
higher harmonic rotor response, and both the Automatic Flight Control System (AFCS)
and the HHC system. Traditional linearization techniques lead to a system with periodic
coefficients. Although Floquet theory can be used to study such periodic systems, there
are far more control system design theories and software tools available for linear time-
invariant systems than for periodic systems. Additionally, the theoretical evaluation of the
helicopter handling qualities requires linear time-invariant systems.

This research describes a new methodology for the extraction of a high-order, linear time
invariant model, which allows the periodicity of the helicopter response to be accurately
captured. This model provides the needed level of dynamic fidelity to permit an analysis
and optimization of the AFCS and HHC algorithms. The key results of this study indicate
that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling
qualities, which indicates that the AFCS does not need modification to work with the HHC
system. On the other hand, the results show that the vibration response to maneuvers must
be considered during the HHC design process, and this leads to much higher required HHC
loop crossover frequencies. This research also demonstrates that the transient vibration

1Aeroflightdynamics Directorate (AMRDEC), Aviation & Missile Research, Development, and
Engineering Center, U.S. Army Research, Development, and Engineering Command, Ames Research Center,
Moffett Field, California

2Alfred Gessow Rotorcraft Center, Department of Aerospace Engineering, University of Maryland,
College Park, Maryland
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responses during maneuvers can be reduced by optimizing theclosed-loop higher harmonic
control algorithm using conventional control system analyses.
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1 Introduction

1.1 Motivation

Excessive vibration levels can reduce mission effectiveness on military aircraft and
decrease passenger comfort and acceptance on commercial aircraft. Even moderate
fuselage vibrations reduce the reliability of on board equipment, such as avionics (ref. 1).
Maintenance costs can be significantly reduced if airframe vibrations are reduced. It
has been estimated (ref. 2) that by reducing the fuselage vibrations in the Sikorsky
UH-60 helicopter from 0.2g to 0.1g, $80,000 per aircraft peryear can be saved in
direct maintenance costs. This is a savings of $160 million/year for a fleet of 2,000
aircraft! These savings are achieved primarily from reduced component failures due to
vibration. Consequently, vibration reduction is a high priority for helicopter designers and
manufacturers.

The major source of vibration is the unsteady aerodynamic environment experienced by
the rotor blades including blade/vortex interaction, retreating blade stall, and blade/fuselage
aerodynamics interaction. These blade loads are then transmitted through the hub, resulting
in vibration of the elastic fuselage. The traditional approaches for reducing helicopter
vibration are generally passive methods. They attack the vibration problem by increasing
the number of blades, isolating the transmission system, applying hub absorbers, installing
bifilars, or adding dynamic absorbers. These systems are heavy and have narrow frequency
effectiveness ranges. Over the past two decades, the helicopter industry, government
and academia have demonstrated that Higher Harmonic Control (HHC) is an effective
method for vibration reduction. HHC technology may be able to achieve greater vibration
reduction with less weight than traditional approaches by suppressing vibration at the
source. Typically, the HHC input frequency has beenn/rev, wheren is the number of rotor
blades, but other frequencies have also been utilized. A detailed survey of the extensive
work in the area has been presented by Friedmann (ref. 3) and Teves et al. (ref. 4).

The active rotor control system for vibration suppression is shown in figure 1.1. The
helicopter control system generally consists of two control systems: Automatic Flight
Control System (AFCS) and HHC system. In figure 1.1, the AFCS manages the helicopter
stability and controls, and the HHC system suppresses the helicopter vibration. The HHC
loop consists of three basic components. First, the data acquisition system (A/D, analog-
to-digital converter) receives the helicopter hub loadsZ(t) and converts them to the digital
signalZ(k). Next, the harmonic analyzer extracts then/rev harmonic components of the
hub loads and forwards them to the HHC controller. Last, the HHC controller computes
the ideal HHC inputsθ(k) for vibration suppression.

The rotor control system does not receive the new HHC input from HHC controller
at every time step. The HHC input update rate (number of HHC input update per rotor
revolution) depends on the time required to complete the data acquisition and post data
processing, and has a strong influence on the HHC loop stability margin. HHC update
rates from 0.5 to 16 times per rotor revolution have been implemented on several wind
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Figure 1.1. Typical active rotor control system for vibration suppression.

tunnel and flight tests (refs. 5–10); however, the once-per-revolution (or 1/rev) HHC update
is most commonly implemented. To date, very little information is available on potential
interactions between the HHC and AFCS. Published literature describes results from flight
tests, wind tunnel tests, and numerical simulations with either closed-loop HHC or closed-
loop AFCS, but not with both types of loops closed simultaneously. Because of the periodic
nature of the helicopter, HHC is a control system application that has developed without
the benefit of standard control system analysis techniques.Wereley and Hall (ref. 11) have
studied the stability of the closed-loop HHC system, but theplant model was assumed
to be quasi-static, and did include periodic behavior of therotor system. Therefore, the
achievable bandwidth of HHC algorithms was limited by the quasi-static assumption on the
plant model. The HHC performance improvement could only be achieved by including the
periodic behavior of the rotor system in the plant model and developing a control algorithm
for the periodic time-varying plant model. Although Floquet theory can be used to study
the periodic time-varying system, there are far more control system design methods and
software tools available for linear time invariant systemsthan for periodic systems.

Furthermore, the effects of the HHC system on vehicle handling-qualities and
maneuverability remained unknown. There are several analyses that are important for
evaluating the handling-qualities of the helicopter system that currently cannot be carried
out. These include calculations of gain and phase margins with the closed-loop HHC and/or
AFCS, crossover frequency of the HHC loops, and closed-loopstability of helicopter
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dynamics with closed-loop HHC. These quantities can be easily obtained from a linear
time-invariant system. Therefore, there is a need for linear time-invariant approximations
that can accurately model the coupled rotor-fuselage dynamics, including the higher
harmonic response of the rotor. Such time-invariant linearized approximation methods
are not currently available.

1.2 Literature review

1.2.1 Higher harmonic control technology

In 1952, Stewart (ref. 12) showed the potential effectiveness of HHC in alleviating
retreating blade stall. The use of a second harmonic control(2/rev) was shown to
redistribute rotor disk loads and suppress retreating blade stall. By delaying the retreating
blade stall to a higher forward speed, the speed limitation of a helicopter could be
raised. Based on his analysis, the advance ratio could be increased by 0.1. However,
the analysis was based on a rigid flapping blade and airloads were calculated with quasi-
static aerodynamics and uniform inflow distribution. The transonic effects, separated flow
conditions, unsteady aerodynamics, blade flexibility, andnon-uniform inflow distribution
were all neglected.

In 1961, Arcidiacono (ref. 13) extended Stewart’s researchby including both 2/rev and
higher harmonic blade pitch control. The analyses showed that a combination of 2 and
3/rev HHC inputs could be used to delay retreating blade stall to an even higher advance
ratio than that reported by Stewart. Neither Stewart nor Arcidiacono considered the effects
of HHC input on vibratory hub loads.

In 1961, the first HHC flight test was carried out to investigate the feasibility of using
HHC for vibration suppression on UH-1A 2-bladed helicopter(ref. 14). A series of flight
tests was conducted by Bell Helicopter Company to determinethe effects of HHC on rotor
performance, blade airloads, blade loads, control loads, hub loads, and airframe vibration.
The investigators noted that no reduction in shaft torque was observed. The investigation
also showed that drag reduction in the retreating side of therotor was accompanied by an
increase in profile drag in the fore and aft portion of the rotor disk. These results confirmed
Stewart’s finding, and indicated that 2/rev HHC input could be used to change the rotor
disk loading.

In 1972, McCloud (refs. 15,16) reported the first full-scalewind tunnel investigation on
HHC. The rotor model was a two-bladed teetering rotor with propulsive jet flaps. A large jet
flow was expelled from the blade trailing edge to propel the rotor and the HHC was applied
through the angular deflection of the jet flow. The experiments showed that the vibratory
hub load reduction was accompanied by an increase in the blade bending moments. The
HHC inputs required for the vibration suppression were found to vary with rotor forward
speed.

In 1975, McHugh and Shaw (refs. 17,18) conducted a series of wind tunnel experiments
on a four-bladed soft-inplane hingeless rotor model. The HHC was implemented in the
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non-rotating frame, and HHC inputs were applied by oscillating the swashplate with servo-
actuators. Results from the experiments indicated that thevibratory hub moments could
be suppressed effectively without a significant increase inblade stresses. The experiments
also indicated that all five components of the 4/rev hub loads(lateral, longitudinal, and
vertical forces; pitching and rolling moments) could be reduced simultaneously with three
HHC inputs.

In 1979, a wind tunnel investigation of HHC on a four-bladed hingeless rotor model was
conducted by Shaw and Albion (refs. 19, 20) in the Boeing V/STOL Wind Tunnel. The
rotor model was Mach scaled and operated at full-scale tip speed. The HHC inputs were
applied through swashplate excitation. The closed-loop HHC controller simultaneously
reduced the 4/rev vertical hub shear, hub pitching and rolling moments by up to 90%.
The closed-loop transient behaviors were studied by introducing a step disturbance in the
swashplate command. The results showed that the disturbance was suppressed within two
rotor revolutions, which confirmed the quasi-static assumption made on the HHC model.

In 1980, Shaw (ref. 21) presented the results of a comprehensive analytical investigation
of HHC. He compared the potential benefits of servo-flap versus conventional blade root
feathering and studied the automatic in-flight adaptive algorithm. The investigation was
based on a coupled modal analysis and included a vortex wake induced flow calculation.
An approximation to the Theodorsen lift deficiency functionwas used to include the effect
of the shed wake. A transfer matrix (T -matrix) approach was implemented to relate
the higher harmonic hub loads to the HHC inputs. The analytical results showed that
nonlinearities in the HHC input-output model were small. The results also indicated that the
vibration suppression was caused by mutual cancellation between aerodynamic and inertial
components of the transmitted vibratory loads at the blade roots. With the HHC inputs the
control loads were increased by roughly 30%, and the change in rotor performance was
negligible. For changing flight conditions, the closed-loop HHC controller with fixed gain
performed satisfactorily over an advance ratio range of 0.2. An adaptive gain controller
was used in cases where the fixed gain controller performed poorly. For the adaptive gain
controller, the model parameters were estimated using a Kalman filter. Simulation results
showed that the adaptive controller performed well for varying flight conditions.

In 1981, Molusis, Hammond and Cline (ref. 22) studied several HHC algorithms
for vibration suppression, and the algorithm performance was evaluated in wind tunnel
testing. The rotor model was a Mach-scaled four-bladed articulated rotor. The HHC
controllers were configured to suppress the 4/rev vertical,longitudinal, and lateral signals
from a triaxial accelerometer mounted beneath the rotor in the non-rotating frame. The
advance ratio was varied between 0.2 to 0.4. The HHC system was modeled using a
T -matrix approach. The HHC algorithms studied were separated into two groups: the
adaptive controllers and the gain-scheduled controllers.Each type of controller was
further classified. The adaptive controllers were classified into deterministic controllers
and cautious controllers. The gain-scheduled controllerswere classified into perturbation
controllers and proportional controllers. The wind tunnelresults showed that the gain-
scheduled controllers performed poorly, possibly due to the nonlinear behavior of the
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HHC model. The deterministic (adaptive) controller was shown to significantly reduce
the steady-state vibration levels, but there were large transient responses that occurred
before the vibration converged to the steady-state value. The authors noted that the cautious
controller offered the best performance among the four controllers.

In 1981, the performance of four different feedback controllers or regulators were
investigated by Chopra and McCloud (ref. 8) for the multicyclic control of helicopter
vibration. These controllers were open-loop and closed-loop with off-line and on-line
identification. The off-line identification of model characteristics was made using the least-
squared-error method and used a succession of input and output measurements. The on-line
identification of model characteristics was computed usinga Kalman-filter solution. The
optimal controls were calculated by minimizing the quadratic performance function based
on response and control inputs. Both global (linear) and local (piecewise linear) models
were simulated. The results showed that the closed-loop controller with a local model
using on-line identification techniques performed the best. For the cases with large initial
errors in the transfer matrix, large overshoots were found in the transient response using
this controller.

In 1982, Wood et al. (refs. 23, 24) conducted a HHC flight test on a modified Hughes
OH-6A helicopter with a gross weight of about 3,000 lb. The HHC input was achieved by
blade root feathering through the 4/rev swashplate oscillations. A triaxial accelerometer
was mounted beneath the pilot seat to sense and feed back the 4/rev vibrations to the
HHC controller. The aircraft was flown from hover to 100 knotswith the HHC system
operated in open-loop (manually) and closed-loop (computer controlled). For the closed-
loop controller, the cautious controller presented in reference 22 was used. The test results
indicated that up to 90% reduction in vibration could be obtained with HHC amplitude less
than 1◦.

During the 1980s, extensive research on the use of HHC implemented in the form of
Individual Blade Control (IBC) was carried out by Ham and hiscoworkers (refs. 25, 26).
The potential applications of IBC that were proposed included reducing the severe effects
of atmospheric turbulence, retreating blade stall, blade-vortex interaction, blade-fuselage
interference, and blade instabilities, while providing improved flighting qualities and
automatic blade tracking. The theoretical analysis showedthat the rotor blade flapping,
inplane, and torsional motion could be reduced by feedback control of the effective inertia,
damping, and stiffness of the appropriate modes.

In 1985, Shaw et al. (ref. 6) described wind tunnel tests on a dynamically scaled three-
bladed CH-47D Chinook rotor in the Boeing V/STOL Wind Tunnel. The 2, 3, and 4/rev
HHC inputs were applied to suppress the 3/rev vertical hub force and the 2 and 4/rev
rotating inplane hub shears throughout a wide test envelopewhich included trimmed flight
up to 188 knots. The open-loop tests were conducted to obtaintransfer matrices under
several flight conditions. These transfer matrices were used with fixed- or gain-scheduled
controllers. The wind tunnel results showed that a fixed-gain controller with a local model
can suppress more than 90% in all three vibratory hub shear components. The wind tunnel
results indicated that the gain-scheduled controller performed as well as the fixed-gain
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controller. The adaptive controllers, similar to those in reference 22, were either unstable
or ineffective in suppressing the vibratory loads.

In 1986, Polychroniadis and Achache (refs. 27,28) discussed the application of HHC on
an Aerospatiale SA-349 Gazelle helicopter (4,500 lb) for vibration reduction and noise
reduction, and included a performance analysis based on both theoretical studies and
wind tunnel testing. The HHC input was achieved by blade rootfeathering through the
4/rev swashplate oscillations. The HHC controller was a self-adaptive controller that used
vibration sensors placed at pre-selected locations in the aircraft. The test results showed a
70 to 90% reduction in vibration was achieved at forward speeds up to 135 knots.

In 1994 and 1995, Jacklin et al. (refs. 29, 30) described two wind tunnel tests that
evaluated the effects of IBC at various frequencies on rotorperformance, vibrations, and
acoustics using a full-scaled BO-105 helicopter rotor. TheIBC system, developed by ZF
Luftfahrttechnik, was tested on the NASA/Army Rotor Test Apparatus in the NASA Ames
40- by 80-Foot Wind Tunnel. Test results indicated that a single-frequency IBC input of
2-4/rev could simultaneously reduce all 4/rev rotor balance forces and moments by up to
70% at 43 knots.

In 2002, U. T. P. Arnold (ref. 10) described the certification, ground and flight testing of
an experimental IBC system for a Sikorsky CH-53G helicopterwith a gross weight of about
68,000 lbs. The primary goal of the IBC system was to extend the service life of the CH-
53 by reducing the component fatigue and failure induced by high vibratory stresses. The
IBC system was designed, built, installed, and certified by ZF Luftfahrttechnik, GmbH. The
IBC system, weighing less than 1% of the helicopter maximum take-off weight, completely
integrated all mechanical and hydraulic components into the rotating frame. The IBC
controller was based on a second orderT -matrix model. Initial test results showed a high
effectiveness of IBC in reducing vibration with a relatively small single harmonic input of
±0.15◦.

Most of the active vibration control algorithms discussed above were implemented in
frequency domain. In 1980, Du Val and Gupta (ref. 31) proposed a time domain approach
for the active control of helicopter vibration. The controller was designed by optimizing a
cost function, which placed a large penalty on fuselage vibration atn/rev frequency. The
fuselage accelerations were passed through an undamped second-order system tuned to the
n/rev frequency. At the resonant frequency, the regulator locked onto the magnitude and
phase of the fuselage accelerations without the need for harmonic analysis. By placing
an infinite weighting on then/rev response, a controller is guaranteed to drive then/rev
response to zero. Because the dynamics of the rotor and fuselage were included in the
plant model, the quasi-static assumption was no longer necessary. Also, because the state
feedback was used, on-line identification of the model parameters was not necessary. This
method assumed the system was linear time-invariant (LTI),not linear time-periodic (LTP).
The standard linear analysis techniques and software toolscould therefore be applied.

In 1989, Wereley and Hall (refs. 11,32) presented a framework to provide the evaluation
of active vibration control algorithms performance in terms of classical control theory.
They showed that HHC was fundamentally similar to the sinusoidal disturbance rejection
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techniques of classical control. By treating the periodic disturbance as a stochastic rather
than a deterministic phenomenon, the methods of Shaw et al. (ref. 6) and Du Val and
Gupta (ref. 31) could be compared quantitatively. The authors indicated that the achievable
bandwidth of HHC algorithms was limited by the quasi-staticand linear time-invariant
assumptions on the plant model. The HHC performance improvement could only be
achieved by including the periodic behavior of the rotor system in the plant model and
developing a control algorithm for the periodic time-varying plant model.

In 2000, Spencer (ref. 33) presented the open and closed-loop wind tunnel testing of a
Mach-scaled active rotor system with piezoelectric benderactuated trailing-edge flaps for
active vibration control. The closed-loop vibration suppression tests were conducted at
several advance ratios and collective settings. The controller design is based on a radial
basis neural network which is used to approximate the command input to the active rotor.
The controller is implemented in discrete time by sampling the hub loads and control input
at 1/rev frequency. The optimum set of network weights is determined by minimizing
the cost function which is based on the vibration response and command input. One of
the advantages of the neural network controller is that it simultaneously learns while it
commands the on-blade actuator, thus adaptively suppressing the blade or hub vibrations.
No off-line training of the network is required. These testssuccessfully reduced the
4/rev oscillatory fixed frame thrust, pitching moment, and rolling moment levels up to
90%. A transient vibration control test was also conducted by varying the rotor speed,
wind speed, and the collective pitch angle to simulate maneuvering flight. For all three
individual perturbations, the neural-controller was unable to compensate vibration response
fluctuation. The authors indicated the controller was not able to react fast enough to the
perturbations because of hardware limitations.

1.2.2 Linear models

In 1981, Howlett (ref. 34) presented a nonlinear mathematical model known as GenHel,
based on the Sikorsky UH-60A Black Hawk helicopter, for performance and handling-
qualities evaluations. The rotor was modeled with a rigid blade flap and rigid blade lag
degree of freedom. The torsional dynamics were modeled using a simple dynamic twist
model. The aerodynamic forces on the rotor were computed using blade element theory
and quasi-static aerodynamics. Aerodynamics coefficientsof the blade were provided by
the look-up tables as a function of the angle of attack and Mach number. The fuselage
was modeled as a rigid body with aerodynamic coefficients of the fuselage and empennage
provided by the look-up tables as a function of angle of attack.

The GenHel simulation model could provide a linear model, but it was limited to six
fuselage degrees of freedom. The linearization was performed numerically by perturbing
each of the states and controls, and using finite difference approximations. Because of
the unusual flight dynamic model implementation in GenHel, the perturbation scheme was
not straightforward. For instance, the fuselage states andcontrol inputs were perturbed
one at a time about the trim condition to produce a 9-state rigid body linear model from
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the nonlinear GenHel mathematical model. The rotor equations of motion continued to
be integrated while all rigid body acceleration integrations were suppressed. The change
in the state derivatives was calculated when the rotor response had reached a steady-state
condition. This method produced a six-fuselage-degree-of-freedom linear model with a
quasi-static rotor; i.e., the dynamics of the rotor system were not modeled.

In 1982, Zhao and Curtiss (ref. 35) developed the first linearmodel of a helicopter that
included blade dynamics for forward flight. This linear model had 24 or 27 states depending
on whether dynamic inflow was included. Flap and lag degrees of freedom were modeled
by transforming the rotor equations of motion into the non-rotating frame using multi-blade
coordinate transformation. Only the collective and first two cyclic modes for each rotor
degree of freedom were retained. Unsteady aerodynamic effects were introduced through
the dynamic inflow model. A flat vortex wake model was used to approximate the effects
of the main rotor wake interference on the tail surfaces and tail rotor. The linear model
was derived using a symbolic mathematic manipulation program to obtain an analytical
solution. The linearization process consisted of expressing the time dependent variables in
the equations of motion as the sum of the trim value and time dependent perturbation about
the trim value. A linear model could be obtained by applying order reduction and setting
the remaining perturbation quantities to zero.

In 1986, Chen and Tischler (ref. 36) discussed the method of developing the simplified
analytical linearized model from the flight test data by using modern system or parameter
identification techniques. The simplified analytical modelcould be used for handling-
qualities evaluation, design of stability and control augmentation systems, and ground
simulator validation. Authors stated that the importance of recognizing that each lower-
order model used for rotorcraft parameter identification had a limited range of applicability.
They also discussed the benefits and limitations of using frequency sweeps as flight test
input signals for identification of frequency response for rotorcraft and for the subsequent
fitting of parametric transfer function models. The authorsconcluded that analytical
modeling and understanding the limitation of lower-order models could be more important
than merely relying on the identification algorithms.

In 1987, Miller and White (ref. 37) presented an algorithm called Exponential Basis
Function (EBF) which allowed computer generation of a comprehensive coupled rotor-
fuselage nonlinear model. EBF represented the position vector of a generic mass element
of the helicopter exponentially, and was used to simplify the differentiation of the position
vector. EBF was used to write the time dependent coordinate transformation as the product
of constant matrices and matrix exponentials. Since the multiplication of exponentials
is equivalent to addition of exponential arguments, multiplication of the transformation
matrices could be accomplished by adding matrix exponentials. The transformation
matrices written in EBF could also be differentiated easily. The equations of motion were
formulated using Lagrange’s equation. The rotor degrees offreedom were transformed to
a non-rotating frame using the multi-blade coordinate transformation. The rotor dynamics
included rigid body flap and lag degrees of freedom. Engine rotor speed, fuselage rigid
body degrees of freedom, and the inflow dynamics were also modeled. Authors stated
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that the linear model obtained through EBF could be used to analyze handling-qualities
phenomena for highly augmented helicopters when realistictrim conditions and high-order
dynamics were considered.

In 1990, Kim, Celi, and Tischler (ref. 38) developed a high-order linearized model
of helicopter flight dynamics extracted from a nonlinear time domain simulation. The
model had 29 states that described the fuselage rigid body degrees of freedom, the flap
and lag dynamics in a non-rotating frame, the inflow dynamics, and the delayed entry of
the horizontal tail into the main rotor wake. The blade torsional degree of freedom was
approximated using a pseudo-modal approach. In GenHel, thecalculation of forces and
moments acting on the helicopter at a given instant in time was solved sequentially; the
rotor equations of motion were solved first, and the fuselageequations of motion were
solved next. Because of this separation, the equations of motion were not perturbed
simultaneously, which could cause inaccuracies in the solution at higher frequencies. The
perturbation process was also complicated by this splitting solution process. Therefore,
GenHel could only produce a six-fuselage-degree-of-freedom linear model with a quasi-
static rotor.

To carry out a theoretically rigorous linearization and retain the rotor dynamics within
the linear model, the mathematical model of the helicopter as implemented in GenHel
was extensively modified to a first-order, state variable form. This required several
modifications including solving both the rotor and the fuselage equations of motion
simultaneously. The linear model was validated against thenonlinear model, and the results
showed a good agreement between these two models for small amplitude control inputs. In
case of large amplitude inputs, which violated the small perturbation assumption inherently
contained in the linear model, the agreement deteriorated greatly.

1.3 Objectives of study

The objectives of this study are as follows:

• Develop a methodology for the derivation of linearized, time-invariant, state-
space models of coupled rotor-fuselage dynamics that include the effects of higher
harmonic response of rotor and fuselage to both higher harmonic pitch control and
pilot inputs.

• Apply the new linear state-space models for a study of the potential interactions
between a higher harmonic control system and an automatic flight control system,
including any impact on handling-qualities.

It should be pointed out that this research does not focus on the method to improve
the helicopter vibratory hub load predictions. A comprehensive analysis on this topic
is beyond the scope of the present study. The helicopter simulation model used in this
study is adequate to capture the first-order effects, but it may not be sufficient for accurate
quantitative predictions of vibratory hub loads.

11



1.4 Principal contributions

• Implemented a HHC in a flight dynamics model for a free flight condition to
investigate the interaction between HHC and AFCS.

• Developed a linear time-invariant state-space approximation that accurately models
the coupled rotor-fuselage dynamics including the higher harmonic response of the
rotor. This coupled high-order linear model provides the needed level of dynamic
fidelity to permit study of AFCS and HHC interaction.

• Provided detailed analyses on the HHC/AFCS interaction, and developed an
improved HHC controller to reduce the vibration transientsduring the maneuvering
flight.

1.5 Organization of the document

Chapter 2 describes the mathematical model of the helicopter and provides the solution
method for the trim calculation, linearization, time integration, and vibratory hub
load calculation.

Chapter 3 is devoted to the HHC system for the vibration suppression. The inner working
of the harmonic analyzer, HHC controller, and the HHC updatescheme are discussed
in detail. The methods of obtaining the continuous-time domain equivalent for each
component are also presented.

Chapter 4 presents a new linearization method that converts a nonlinear system to a linear
time-invariant system while capturing then/rev characteristic of the helicopter. The
new linear model was validated by comparing vibratory hub loads and rotor states
for both higher harmonic inputs and piloted input at severalforward speeds.

Chapter 5 presents the results of the HHC/AFCS interaction study. Theeffect of HHC
input on handling-qualities was tested for both open-loop and closed-loop HHC
systems. This chapter also discusses the effect of the HHC onthe vibration transients
during maneuvers, and develops a new HHC algorithm to overcome the problem.

Chapter 6 presents conclusions of the study and recommendations for future work.
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2 Mathematical Model

This chapter contains a brief history of the helicopter mathematical model used in this
study, followed by the definition and implementation methodof the HHC system, the
methods used to calculate the helicopter trim states, a linearized model, and the time
history. Next, the definition and the computation method of the vibratory hub load are
discussed. Finally, the last section presents the method ofextractingn/rev vibration using
Fourier series approximation.

2.1 History of helicopter simulation model

The flight dynamic simulation model used in this study is originally from the helicopter
simulation model GenHel (ref. 34) specialized for the Sikorsky UH-60 Black Hawk. The
rotor was modeled with a rigid blade flap and rigid blade lag degrees of freedom. The
torsional dynamics were modeled using a pseudo-modal approach. The fuselage was
modeled as a rigid body with aerodynamic coefficients of the fuselage and empennage
provided by the look-up table. The fidelity of GenHel model was improved by
Ballin (ref. 39) who also implemented the engine model. Kim (refs. 40, 41) included
the main rotor inflow model using the Pitt-Peters dynamic inflow model (ref. 42). A
new trim procedure was also developed with the equations of motion presented in first-
order state-space form. This allows a linear time-invariant model to be extracted using a
perturbation-averaging method. The model developed by Kimwas named UM-GenHel.
UM-GenHel was continued in a series of calibrations based onthe flight test data at NASA
Ames Research Center. This version of UM-GenHel was renamedFORECAST, and is
widely used in flight dynamics analysis at NASA Ames ResearchCenter.

At the same time, the UM-GenHel remained at the University ofMaryland as a research
helicopter model. Turnour (ref. 43) extended the rotor blade modeling in UH-GenHel
by including the aeroelastic rotor, which was originally developed by Celi (ref. 44) and
extended by Spence (ref. 45) to include the coupled rotor/fuselage formulation. Turnour
also added the finite state wake (ref. 46) and the Leishman-Nguyen (ref. 47) state-space
unsteady aerodynamics model. This version of the research model was renamed by Turnour
as FlexUM. Theodore (ref. 48) extended the inflow flow model toinclude the maneuvering
Free Wake model (ref. 49), which improves the off-axis response predictions. A full BO-
105 helicopter configuration is also added to the FlexUM. Theresearch model was renamed
to HeliUM by Theodore.

2.2 Helicopter model

The basic formulation and solution of the equations are unchanged with respect to the
previous works. The helicopter model used in this study is similar to the Sikorsky UH-
60 Black Hawk with the following simplifying assumption. The helicopter equations of
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motion are based on a set of coupled nonlinear rotor-fuselage equations in first-order, state-
space form. The rigid body dynamics of the helicopter is modeled using non-linear Euler
equations. The aerodynamic coefficients of fuselage and tail surfaces are provided in the
form of look-up tables. The blade is assumed to be straight, i.e., with zero tip sweep. The
blade dynamics consists of two rigid blade degrees of freedom plus first torsional degree
of freedom. The aerodynamic coefficients of the blade are also provided in the form of
look-up tables as a function of angle of attack and Mach number. Unless stated otherwise,
the main rotor inflow is calculated using a three-state dynamic inflow model, which yields
linear inflow distributions over the rotor disk. Tip losses are taken into account by assuming
that the outboard 3% of the blade does not generate lift. A one-state dynamic inflow model
is used for the tail rotor. Stall and compressibility effects are incorporated in a quasi-static
form, and unsteady aerodynamic effects have been neglected. Two additional assumptions
are that the rotor speed is constant and that there is no limitation on the power supplied
by the engine. All the results presented in this study are obtained from a coupled rotor-
fuselage trim procedure simulating free flight conditions.All trim calculations include the
HHC input, if one is present. In all the parametric studies, the helicopter is retrimmed every
time the magnitude or phase of then/rev input changes.

2.3 HHC implementation

The higher harmonic control inputs are implemented by varying the blade pitch at blade
root. Unlike the real active pitch links system, stiffness of the pitch link is assumed to be
infinitely stiff and dynamics of the active pitch links is ignored. The geometric pitch angle
θG of the blade is given by:

θG(ψ) = θ0 + θ1c cos(ψ + ∆SP ) + θ1s sin(ψ + ∆SP ) + θn(ψ) (2.1)

whereθ0, θ1c, andθ1s are respectively the collective, lateral cyclic, and longitudinal cyclic
pitch, ∆SP is the swashplate phasing angle,∆SP = −9.7◦, andθn(ψ) is then/rev input,
defined as:

θn(ψ) = An cos(nψ + φn) (2.2)

whereAn andφn are the magnitude and phase of then/rev input.

2.4 Solution methods: trim

This section presents methods to calculate the helicopter trim states. The flight condition is
assumed to be a steady coordinated helical turn. Straight level flight then becomes a special
case where both flight path angle and turn rate equal zero. Thehelicopter trim equations
were originally developed by Chen (ref. 50), and later extended by Celi (ref. 51) to include
the steady state response of the rotor. They are modified further by Kim (ref. 40) to consider
the periodicity of both rotor and fuselage motion. The trim states are generally obtained
from an algebraic trim procedure.
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2.4.1 Algebraic trim

The typical trim solution is based on algebraic trim. The solution of the steady state
condition is determined by converting a set of coupled ordinary differential equations to
a set of coupled nonlinear algebraic equations. The periodicity of the helicopter response
must be satisfied in a steady state condition. This set of algebraic equations is then solved
using the Powell Hybrid algorithm. The trim solution is reached when the sum of the forces
and moments at the vehicle center of gravity are zero in one rotor revolution.

Although this method can obtain a trim solution quickly, it does not guarantee that the
rotor blades return to the same position after one revolution of time integration. In other
words, time integration starting from an algebraic trim solution without control perturbation
may not respond precisely ton-multiple/rev. This does not appear to be crucial for flight
dynamics analyses, but has a large effect on vibration related computations. The periodic
trim procedures can fulfill this task.

2.4.2 Periodic trim

There are two methods to achieve a periodic trim solution: the shooting method, and the
time marching method.

2.4.2.1 The shooting method

After algebraic trim is achieved, the state vector and control vector are adjusted such that
the state vector remains the same after integration of one rotor revolution. This is a two-
point nonlinear boundary value problem, and is based on a shooting method (ref. 52). The
basic idea behind the shooting method is to convert a boundary value problem (BVP) into
an initial value problem (IVP). Given an initial guess for the parameters, an iterative solver
is used to find values of the parameters that produce solutions that satisfy the boundary
conditions. The method will guarantee an/rev periodic trim, but its convergence proved
erratic, and at least one order of magnitude more expensive computationally, compared
with the algebraic trim procedure.

2.4.2.2 The time marching method

The second method is the time marching solution which is alsothe one used in this research.
As stated earlier, the free flight response from the time integration starting from the
algebraic trim solution may not have precisen-multiple/rev response. Because of unstable
Phugoid mode, the helicopter will slowly drift away from trim. The low gain stabilization
loop was added to ensure the helicopter does not become unstable as integration time
increases. As the time integration continues, then-multiple/rev response will emerge.
Generally, the periodic trim solution can be reached withinfour rotor revolutions starting
from an algebraic trim solution. At the end of time integration, the trimmed state vectors
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around the rotor azimuth are available. Additional information about the time integration
is presented in section 2.6.

2.5 Solution methods: linearization of the equation of motion

This technique consists of perturbing each state and control about an equilibrium position.
Using this approach, the individual blade pitch is introduced in terms of the harmonics
in the rotating frame. This method leads to systems of rotor equations containing
periodic coefficients, which are represented in the rotating frame. The transformation
from the rotating frame to the fixed frame is accomplished using a Multi-blade Coordinate
Transformation (MCT, Appendix C). To remove the time dependency, the linearized
models are computed over one rotor revolution and then averaged to obtain a LTI system in
the fixed frame. As a consequence, this averaging eliminatesthe periodicity of the system
and all the higher harmonics in both the controls and rotor response. Additional information
about this technique is discussed in chapter 4.

2.6 Solution methods: time integration

The free flight response of the helicopter is computed by integrating the equations of motion
based on a given set of initial condition and control inputs.The equations of motion are
represented by a system of coupled nonlinear ordinary differential equations expressed
symbolically in the first-order ODE form

ẏ = f (y,u; t) (2.3)

where y is the state vector andu is the control vector. Equation 2.3 can be solved
numerically using Adams-Bashforth method, which is a variable-step, variable-order,
predictor-corrector, numerical method for solving linearfirst-order ordinary differential
equations. It estimates the behavior of the solution curve by evaluating the derivative
function at the old solution values along with the current solution and derivative function
and uses the interpolation method to estimate the new solution. In other words, Adams-
Bashforth methods try to squeeze information out of old solution points. For problems
where the solution is smooth, these methods can be highly accurate and efficient.

In this study, the simulation is started from the trim condition, and the equations of
motion are integrated with respect to time. This produces time histories of all state variables
for prescribed control inputs. Generally, control inputs include the time history of pilot
inputs or the swashplate controls. For the HHC system, the control inputs are extended to
the blade root pitch angle which can be prescribed as single or multiple harmonics in terms
of then/rev amplitudeAn and phase angleφn as stated in equation 2.2.
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2.7 Vibration calculation

2.7.1 Hub loads calculation

The helicopter equations of motion can be expressed as equation 2.3. Because the coupled
rotor-fuselage-inflow equations of motion have the state derivatives appearing on the right
hand side of the equations, these equations are expressed as:

ẏc = fc (ẏ,y,u; t) (2.4)

whereẏc is a vector which contains all the state derivatives appearing on the right hand
side of equation 2.4. For instance, the flap equation for ith blade of a simple rotor model
(rigid flap and lag modes only) is:

β̈i =
Sb
Ib

〈

cosβi
{

ẇ + e [2Ω (p cosψi − q sinψi) + ṗ sinψi + q̇ cosψi]
}

+ sin βi cos ζi
[

v̇ sinψi − u̇ cosψi − e (r − Ω)2
] 〉

+ cos2 βi
{

cos ζi
[

ṗ sinψi + q̇ cosψi − 2(ζ̇ + Ω) (q̇ sinψi − ṗ cosψi)
]

− 2Ω sinψi (p sinψi + q cosψi)
}

+ cos βi sin βi
{

2ζ̇i (r − Ω) − (r − Ω)2 − ζ̇2
i

}

−
[

(r − Ω) − ζ̇
]2

+
(MLDβi + MAeroβi)

Ib
(2.5)

whereSb andIb are the first and second blade moments of inertia about its hinge,MAeroβ is
the flap aerodynamic moment, andMLDβ is the flap moments due to the lag damper. Since
the state derivativeṡu, v̇, ẇ, ṗ, andq̇ on the right hand side of equation 2.5 do not couple
with other state derivatives, it can be rewritten as:

β̈1 = [e] ẏc + Fβ1
(y,u; t) (2.6)

where

e =














−Sb
Ib

sin β cos ζ cosψ
Sb
Ib

sin β cos ζ sinψ
Sb
Ib

cosβ
Sb
Ib
e cosβ sinψ + cos2 β cos ζ sinψ

Sb
Ib
e cos β cosψ + cos2 β cos ζ cosψ

010×1














T

(2.7)

ẏc = [u̇, v̇, ẇ, ṗ, q̇, ṙ, Ω̇, β̈1, β̈2, β̈3, β̈4, ζ̈1, ζ̈2, ζ̈3, ζ̈4]
T (2.8)

Similar expression can also be rewritten for the remaining equations (̇u, v̇, ẇ, ṗ, q̇, ṙ, . . .).
The resultant row vectorse are assembled into a coupling matrixE, and equation 2.4 can
be rewritten as follow:

ẏc = [E] ẏc + Fk (y,u; t) (2.9)
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By re-arranging equation 2.9 into first-order form,ẏc can be solved as

ẏc = [I − E]−1 Fk (y,u; t) (2.10)

Re-write equation 2.9 again and parse it as follow:

[

ẏfus
ẏmr

]

c
︸ ︷︷ ︸

ẏc

=

[

E11 E12

E21 E22

] [

ẏfus
ẏmr

]

c
︸ ︷︷ ︸

[E] ẏc

+Fmr + Ftr + Ffus
︸ ︷︷ ︸

Fk(y,u;t)

(2.11)

ẏfus = [u̇, v̇, ẇ, ṗ, q̇, ṙ]T (2.12)

ẏmr =
[

Ω̇, β̈1, β̈2, β̈3, β̈4, ζ̈1, ζ̈2, ζ̈3, ζ̈4
]T

(2.13)

where[E11ẏfus] is the inertial acceleration due to the fuselage acceleration, [E12ẏmr] is the
inertial acceleration due to the main rotor acceleration,Fmr is acceleration contributed by
the main rotor excluding the inertial coupling term,Ftr is the acceleration contributed by
the tail rotor, andFfus is the acceleration contributed by the fuselage, the horizontal, and
the vertical surfaces. Therefore, the vibratory hub loads are the sum of all the loads that are
transmitted from the main rotor to the hub in the fixed system;i.e.,Fmr + [E12ẏmr].

2.7.2 Cockpit vibration calculation with the rigid fuselage

In flight test, the helicopter vibration level is measured bymounting accelerometers at
several key areas inside the helicopter. One of the key vibration areas is the pilot station.
The flight dynamics model (HeliUM) used in this study needed to produce the same pilot
station acceleration in order to compare the results with the flight test data. However,
this information is not directly available. Although HeliUM is based on a coupled
rotor/fuselage formulation, the fuselage is actually modeled as a rigid body and does not
contain any dynamics. All results from free flight trim procedure are only available at
the center of gravity (CG) of helicopter. Nevertheless, thepilot station acceleration can
be obtained by a simple transformation. Velocity at the pilot station can be expressed as
follows:

vpilot = vcg + ω × R (2.14)

vcg = [u, v, w]T (2.15)

ω = [p, q, r]T (2.16)

R = [x, y, z]T (2.17)

wherevcg is the velocity vector at CG,ω is the rotational vector of the helicopter at the
CG, andR is the position vector from CG to the pilot station. The pilotstation acceleration
can then be calculated by differentiating equation 2.14 with respect to time,

v̇pilot = v̇cg + ω̇ × R + ω × Ṙ (2.18)
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As the fuselage is a rigid body, the distance between the CG and the pilot station is constant;
i.e.,Ṙ = 0. Expanding the cross product term, equation 2.18 becomes

v̇pilot = v̇cg + ω̇ × R =






u̇− ṙy + q̇z
v̇ + ṙy − ṗz
ẇ − q̇x+ ṗy




 (2.19)

The 4/rev vibration can then be determined by collectingv̇pilot over one rotor revolution,
and extracting its 4/rev components using the Fourier approximation.

Figures 2.1a and 2.1b compare pilot and copilot station vibrations with flight test from
hover to 140 kts. The flight test data represents several setsof baseline data collected over
the span of the flight test program. The scatter in the data could be caused by changes in
the aircraft configuration and non-ideal flight conditions during the test.

The main rotor inflow used in HeliUM is based on a linear inflow model. The blade
dynamics consist of a rigid blade flap, a rigid blade lag, and first blade torsion mode. The
figures also show Yang’s (ref. 53) results from UMARC1, which uses 8 blade modes, a
free wake model, and a flexible fuselage model. These two figures indicate that the cockpit
acceleration computed from HeliUM is underestimated throughout the entire speed range.
This study has also included additional blade flexibility (result not shown here), but the
vibration level is very similar with the rigid blade model.

It was believed that this under prediction could be caused bya lack of aerodynamic
interaction. Because the linear inflow model only contains 1/rev harmonics, the higher
harmonic airload was not excited. The linear inflow model wasreplaced with a free wake
model, and the results are shown in figures 2.2a and 2.2b. As expected, the cockpit vibration
level was greatly improved. However, the vibration level inthe higher speed range is on
the low side; especially at 120 kts, which is the baseline configuration of this research. In
addition, the helicopter simulation with the free wake model is computationally expensive.
The computation time required is generally over one order ofmagnitude higher than the
one with a linear inflow model.

2.7.3 Cockpit vibration calculation with the flexible fuselage

To determine the importance of the fuselage flexibility on cockpit vibration calculations,
the effect of the flexible fuselage is added to HeliUM. This isachieved by feeding the
hub loads from a trim condition into a separate fully elastic3-D fuselage model. This
fuselage model is built using NASTRAN (ref. 54) based on a Sikorsky SH-60B (a variant
of UH-60) helicopter fuselage. It consists of structural elements such as scalar springs,
rods, bars, shear panels, and triangular and quadrilateralmembranes for more than 8,400
elements. NASTRAN is used to calculate fuselage mode shapes, modal mass, and stiffness.
The resulting data are used to build a transformation matrixN which maps the 4/rev hub
shears and moments to the cockpit accelerations at the 4/revfrequency. For example,

1Both the flight test data and the UMARC results are the courtesy of M. Yang and I. Chopra.
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the first column vector Nx is obtained by applying a unit 4/rev longitudinal forceFx4P

at the NASTRAN model’s hub node and measuring all six 4/rev accelerations at the
cockpit station. Note that this “open-loop” method is only an approximation. The flexible
fuselage dynamics are not part of the coupled rotor-fuselage free flight trim procedure. The
calculated hub load does not include the flexible fuselage motions.


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
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
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az
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(2.20)

Figures 2.4a and 2.4b show the 4/rev acceleration magnitudes at the pilot and copilot
stations. Note that the result from HeliUM closely follows the UMARC result up to 90
kts. Beyond 90 kts, the HeliUM result continues to rise as theforward speed increases.
Overall the predictions qualitatively follow the trends ofthe flight test data except in a
higher speed range. This over-prediction could be caused byseveral factors. First, the
hub load calculation from HeliUM does not include the effectof the flexible fuselage
dynamics. The effect of aerodynamic damping on the hub load calculation is also not
considered. Second, HeliUM does not have any passive vibration damping device such as
the hub absorbers, the bifilars, and the spring-mass fuselage absorbers. Third, equation 2.20
assumes that the 4/rev cockpit station acceleration is a linear combination of the 4/rev hub
shears and moments. Because vibration is not a linear phenomenon, this assumption may
not hold true in the high-speed flight condition. The cockpitstation accelerations provided
here are only intended to serve as a qualitative measure.

2.8 Optimization formulation

In the first attempt to formulate the optimization problem, the trim equations were included
directly in the form of equality constraintsh(X) (recall that the trim problem is formulated
as a set of nonlinear algebraic equations as stated in section 2.4.1, and the trim unknowns
X were included as design variables. Therefore, the optimization problem was formulated
as follows: minimize the norm of 4/rev in-plane hub shears,F4P

F (X) = ‖F4P‖2 → min

Subject to

Equality Constraints,hj(X) ≤ ε

Of the 29 equality constraints, 11 represented trim conditions for the entire aircraft, 4 for
the inflow trim equations, and 14 for the main rotor equations. The vectorX of design
variables was composed of 31 elements, namely, 29 trim variables, and the sine and cosine
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magnitudes of the HHC input. The initial solution was obtained from an algebraic trim
procedure without a HHC input, and therefore it was always feasible. The optimization was
carried out using a modified method of feasible directions (ref. 55), as implemented in the
code DOT (ref. 56). The numerical properties of this formulation proved to be extremely
poor. Convergence was very slow, and the software often terminated the optimization for
lack of progress. Several variations of the baseline process were tried unsuccessfully and
this formulation was abandoned.

A different approach to the optimization process proved more successful. The problem
was formulated as anunconstrainedminimization:

F (X) = ‖F4P‖2 → min

Subject to

Unconstrained optimization

with a vectorX of design variables consisting of just 2 elements, namely the sine and
cosine magnitudes of the HHC input. This way, the trim procedure is decoupled from the
optimization, and it is simply executed separately for every value ofX proposed by the
optimizer. The optimization was carried out using a Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm (ref. 55), as implemented in the code DOT.
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Figure 2.1. Cockpit vibration comparison; 18,000 lb, linear inflow model, rigid fuselage.
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Figure 2.2. Cockpit vibration comparison; 18,000 lb, free wake model, rigid fuselage.
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Figure 2.3. SH-60 fuselage NASTRAN model; courtesy of M. Yang and I. Chopra.
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Figure 2.4. Cockpit vibration comparison; 18,000 lb, linear model, flexible fuselage.
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3 Active Rotor Control System for Vibration Suppression

The active rotor control system is implemented in the nonlinear helicopter simulation as
shown in figure 3.1. This loop consists of three main parts: the harmonic analyzer, the HHC
controller, and the discrete HHC update. Because the final higher harmonic control (HHC)
and automatic flight control systems (AFCS) interaction study (chapter 5) is performed
in the continuous linear time-invariant system, each component in the feedback path is
converted to an equivalent linear model.

This chapter is divided into three main parts. The first describes the function of the
harmonic analyzer and its linear time-invariant equivalent model. The second describes
the algorithm of an HHC controller for the steady-state vibration suppression. The third
section describes the discrete HHC update and its linear time-invariant equivalent system.

3.1 Harmonic analyzer

In several research studies, the method of extractingn/rev vibration components is to use
a harmonic analyzer. The harmonic analyzer can be formulated by using either an analog
bandpass filter (refs. 6,9,32) or a Fourier analyzer (refs. 7,10,29,30,57).

3.1.1 Analog bandpass filter method

This type of harmonic analyzer consists of three components: a bandpass filter,
demodulator, and a lowpass filter (fig. 3.2a). An analog filteroperates on continuous-time
signals, and provides a continuous sensor output without the effect of the sampling window
(Sec. 3.1.3) that is typically associated with Fourier analysis.

First, the analog bandpass filter extracts the spectral bandof interest from the source
signal. This spectral band is centered on 4/rev frequency and has a width ofωBW . The
pre-filtered signal is demodulated by multiplying the exact4/rev harmonic frequencies.
The resultant signal contains all the sum and difference frequencies created by the
multiplication. Finally, the lowpass filter removes frequency aboveωBW/2 with an
assumptionω < ωBW/2. The following example illustrates this process. LetZ4P (t) be
one of the spectrum band of some general non-periodic hub load signalZ(t).

Z4P (t) = A4 cos(4Ωt+ ωt) (3.1)

whereA4 is the 4/rev amplitude,Ω is the rotor speed in radian per second, andωt is the
4/rev phase angle in radian. Although the hub loads in a trim condition are restricted to
periodic waveforms, there is no such restriction during gusts and maneuvers in which the
hub loads may contain significant non-periodic transients.Therefore, the source signal
Z(t) is first screened through the bandpass filter to extract its components near the 4/rev
frequency, i.e., more precisely, in the range of4Ω − ωBW/2 and4Ω + ωBW/2. This pre-
filtered signal is calledZ4P (t) and can be written in the form of equation 3.1. Next, the
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pre-filtered signal is demodulated, i.e., multiplied bycos 4Ωt andsin 4Ωt as follows:

Â4c = Z4P (t) cos 4Ωt

=
1

2
A4 [cos(ωt) + cos(8Ωt+ ωt)] (3.2)

Â4s = Z4P (t) sin 4Ωt

=
1

2
A4 [− sin(ωt) + sin(8Ωt+ ωt)] (3.3)

The demodulated signalŝA4c andÂ4s are passed through the lowpass filter to remove all
frequencies aboveωBW/2 and doubled with an assumptionω < ωBW/2. The resultant
signal is given by equations 3.4 and 3.5.

A4c = A4 cos(ωt) (3.4)

A4s = −A4 sin(ωt) (3.5)

Equation 3.1 can be rewritten, using equations 3.4 and 3.5, as

Z4P (t) = A4 cos(4Ωt+ ωt)

= A4 cos(ωt) cos(4Ωt) − A4 sin(ωt) sin(4Ωt)

= A4c cos(4Ωt) + A4s sin(4Ωt) (3.6)

Using analog bandpass filter to extract the 4/rev signal addsa large time delay to the
system because the method requires a high order bandpass filter with narrow passband
width (small ωBW ) to extract the steady-state vibration value. The analog harmonic
analyzer does not present a problem for steady-state vibration extraction, however the large
time delay will mask all the transient responses.

3.1.2 Fourier analyzer method

Another method of extracting the harmonic components from the source signal is to use a
Fourier analyzer, which was applied in this study. This typeof harmonic analyzer consists
of three components: a sample window, the Fourier analyzer,and a lowpass filter (fig. 3.2b).
The sample window serves as the data buffer which stores incoming data streams. The
Fourier analyzer then identifies the harmonic contents of the source signal within the
sample window. This Fourier analyzer can be either a Fourierseries approximation or a
Fourier transform in either the continuous-time or discrete-time domain. The lowpass filter
then removes the undesired frequency contents aboven/rev frequency. The Fourier series
approximation method was chosen as the Fourier analyzer within the harmonic analyzer
because the HHC/AFCS interaction study is performed in continuous-time domain system.
Nevertheless, one can use the Fourier transform (such as FFT, Appendix B) as the Fourier
analyzer for the digital version of the harmonic analyzer.
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The theory of Fourier series approximation lies in the idea that most signals, and all
engineering signals, can be represented as a sum of sine waves:

f(t) =
1

2
a0 +

∞∑

n=1

[an cos(2πnft) + bn sin(2πnft)]

with

an =
2

T

∫ T

0
f(t) cos(2πnft) dt, n = 0, 1, 2, . . .

bn =
2

T

∫ T

0
f(t) sin(2πnft) dt, n = 1, 2, 3, . . . (3.7)

whereT is the fundamental period andf = 1/T is the fundamental frequency in Hz. For
example, the vertical vibratory hub loadFZ can be approximated using the finite version of
equation 3.7 that will pass through N data values in one fundamental period:

FZ(k∆t) = FZ +
N/2
∑

n=1

FZnc cos

(

2πnk

N

)

+
(N/2)−1
∑

n=1

FZns sin

(

2πnk

N

)

(3.8)

with

t = k∆t, k = 1, 2, . . . , N, where ∆t = T/N (3.9)

FZ =
1

N

N∑

k=1

FZ(k∆t) (3.10)

FZnc =
2

N

N∑

k=1

FZ(k∆t) cos

(

2πnk

N

)

, n = 1, 2, . . . ,
N

2
− 1 (3.11)

FZns =
2

N

N∑

k=1

FZ(k∆t) sin

(

2πnk

N

)

, n = 1, 2, . . . ,
N

2
− 1 (3.12)

The fundamental frequencyf is the rotor speedΩ in rad/sec orΩ/2π in Hz, and the
fundamental periodT is 2π/Ω second. To extractn/rev components ofFZ, the sampling
frequency must be at least twice as fast asn/rev frequency to avoid aliasing problems. In
this study, a factor of 6 is chosen which leads to a sampling frequency of(6nΩ/2π) Hz.

For a rotor with four identical blades and zero tracking error1, the only frequencies
transmitted to the fixed system are the four multiples per revolution (4/rev, 8/rev,
12/rev . . . ). Therefore, the sampling frequency required toextractFZ4c andFZ4s of the
Sikorsky UH-60 helicopter with a nominal rotor speedΩ=27 rad/sec isfs = 6nΩ/2π =
(6 × 4 × 27)/2π = 103 Hz orN = 24 sample data per rotor revolution. Although the

1The main rotor blades are all flying in the same tip-path-plane and maintain equidistant angular spacings
during flight.
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major vibratory hub loads interested in this study have a 4/rev frequency, the study also
monitored 8 and 12/rev frequency, which are the second and third harmonics transmitted to
the fixed system for a four-bladed helicopter. In this case, the sampling frequency required
is fs = 6nΩ/2π = (6×12×27)/2π = 310 Hz orN = 72 sample data per rotor revolution.

The calculation of the Fourier coefficients is very time consuming since it requiresN2

number of function evaluations. To reduce the computation time, the most frequently used
algorithm for real-time applications is the fast Fourier transform (FFT, Appendix B). It is a
discrete Fourier transform that reduces the number function evaluation fromN2 toN logN .
Since the helicopter simulation program used in this study is in the continuous-time domain
and it is not a real-time simulation, the simulation time does not advance to the time frame
until the Fourier series calculations is finished. Therefore, the additional computation time
required for the Fourier series calculations has no impact on 4/rev vibration extraction.

The lowpass filter implemented in this harmonic analyzer is a4th order Bessel lowpass
filter with the break frequencyωo at 6.5/rev. The 6.5/rev break frequency is chosen to
produce a -12 dB magnitude drop between 4/rev and 8/rev signals. Additional information
about Bessel filter will be discussed in section 3.1.4.

Use of the Fourier analyzer (either Fourier series approximation or FFT method) to
extract the 4/rev signals causes additional delay to the system. The source of delay is
from the sample window, which is discussed next.

3.1.3 Effect of windowing

When performing a digital harmonic analysis with a physicalsystem, a sample window
must be used, as it is necessary to truncate long data streamsto a finite size. The size of the
window has a significant effect on the accuracy of the extraction of the desired frequency
components. A large window; i.e., a window that extends overa long time, increases the
accuracy of the low-frequency components identification but degrades the high-frequency
identification. On the other hand, a small window improves high-frequency components
identification but degrades the low-frequency. Generally,the minimum window size is one
cycle of the source signal. For the 4/rev hub load study, the minimum sample window is
equal to quarter revolution. However, a sample window of onerevolution (4 cycles of the
source signal) was used in this study. As the rotor rotates beyond its first revolution, the
sample window advances with it continuously.

Figure 3.3 illustrates the time delay introduced by the sample window. The vertical
hub loadFZ , shown in the second figure, starts from a trim condition without HHC input
for the first two revolutions. At the end of the second revolution, a 4/rev HHC input is
added (this is an arbitrary input, which will not necessarily reduce vibrations), and the
helicopter reaches the new steady state condition. In the third revolution,FZ has reached
the steady state almost instantaneously. Although there isa low frequency drift, mainly
1/rev response, the third revolution is dominated by the 4/rev response, but is near to the
new steady state condition. The spectral analysis performed on the third revolution also
confirms this finding and the result is shown in the third figure. However, according to
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on-line Fourier analysis with a moving sample window (fourth figure),FZ4C
andFZ4S

take
approximately one rotor revolution to reach the new steady state condition. This does not
agree with the result stated earlier. The cause of this difference is the sample window. In
other words, the sample window behaves as a lowpass filter, which adds large time delay
and masks all transient responses.

3.1.4 Equivalent lowpass filter

A window essentially behaves as a lowpass filter. The sample window used in the study is
based on a rectangular or ”box car” window. Figure 3.4a is therectangular window,h(t),
in time domain which has a window size of2T0. Its expression is given by:

h (t) =
{
A |t| < T0

0 |t| ≥ T0
(3.13)

and its Fourier transform is given by:

H (f) =
∫ T0

−T0

h (t) e−2jπftdt

= A
∫ T0

−T0

cos(2πft)dt− jA
∫ T0

−T0

sin(2πft)dt

= 2AT0
sin(2πT0f)

2πT0f
(3.14)

wheref is the frequency in Hz. Figure 3.4b shows that the Fourier transformation of a
rectangular waveform consists of a central lobe which contains most of the energy of the
window and the side lobes which generally decay rapidly. Themagnitude difference of the
first two lobes is 13.4 dB (79% reduction) with a break frequency of 1/2T0 Hz.

Equation 3.14 is a closed form solution, and is a function of frequency. The LTI system
analysis, equation 3.14 can be approximated by an equivalent lowpass filter. The equivalent
lowpass filter chosen is the Bessel filter because it has the following characteristics:

• k poles and no zeros

• DC gain = 1

• Break frequency =ωo

• Maximally flat group delay about 0 Hz, and the phase response is approximately
linear in the passband

• The linearity degrades at the higher frequencies, and the group delay drops to zero

• No overshoot around break frequency
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For the Sikorsky UH-60 helicopter, the Bessel filter chosen is a 4th order function with the
break frequencyωo at1/2T0. 2T0 is the length of the sample window, which is equal to the
time to complete one rotor revolution.

The frequency response comparisonH(f) of the rectangular window and that of the
Bessel filter are compared in figure 3.4 (c). The Bessel filter low-passes the signal at a
break frequencyωo of 4.3 Hz and produces a frequency drop off similar to the rectangular
sample window. Note that the Bessel filter designed in this section is only implemented in
an LTI system analysis to mimic the dynamics and the time delay of the actual rectangular
sample window.

3.2 Higher harmonic control algorithm

3.2.1 T -matrix method

The closed-loop HHC algorithm implemented is based on the fixed-gainT -matrix feedback
controller:

Z4P (k) = Z4P (k − 1) + T [θhhc (k) − θhhc (k − 1)] (3.15)

Equation 3.15 is a difference equation for discrete-time domain system. The variablek is
the discrete-time index, whileZ4P is the vibration response vector consisting of cosine and
sine components of 4/rev vibratory hub loads excluding the 4/rev yawing moments:

Z4P = [FX4C
, FX4S

, FY4C
, FY4S

, FZ4C
, FZ4S

,MX4C
,MX4S

,MY4C
,MY4S

]T (3.16)

and is a function of the state vectorx, the pilot inputsθpilot, and the HHC inputsθhhc

Z4P = f(x, θpilot, θhhc) (3.17)

θpilot = [δlat, δlon, δcol, δped]
T (3.18)

θhhc = [θ3C , θ3S, θ4C , θ4S, θ5C , θ5S]
T (3.19)

TheT -matrix is the Jacobian of functionf computed about a reference input vector,θhhco:

T =
∂f

∂θ

∣
∣
∣
∣
∣
θhhco

(3.20)

In other words,T is a linear approximation of the 4/rev vibration responseZ4P to the HHC
inputsθhhc at a steady-state condition. That is, equation 3.20 assumesthat changes in the
vibration response∆Z4P with respect to the changes in the HHC input∆θhhc are linear
over the entire range ofθhhc. This relationship can be written as

∆Z4P = T ∆θhhc (3.21)

In this study, the helicopter is trimmed without the HHC input; therefore, the reference
input vectorθhhco is a zero vector, and the∆θhhc in equation 3.21 is the same asθhhc.
Total 4/rev vibration approximated usingT -matrix method is given by

Z4P = Z4P 0
+ T θhhc (3.22)
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whereZ4P 0
is the 4/rev vibrations of the nonlinear baseline (HHC-off)case.

For vibration suppression, optimal control is obtained by minimizing the cost function
J :

J =
1

2
ZT

4P (k) Q Z4P (k) +
1

2
θThhc(k) R θhhc(k) (3.23)

whereQ andR are the weighting matrices on the responses and controls:

Q = diag{1, 1, 1, 1, 1, 1, q7, . . . , q10} (3.24)

R = diag{1, 1, 1, 1, 1, 1} (3.25)

andq7, . . . , q10 = 1/∆z2
cg where∆zcg is the vertical displacement of the rotor hub to the

center of gravity of the helicopter. The choice of the weighting 1/∆z2
cg transforms the

moments to the equivalent forces. The optimal control is computed by setting the first
derivative of the cost function of equation 3.23 to zero and solving for the optimal HHC
input:

∂J

∂θ
= 0 (3.26)

With this scheme, the HHC input is computed based on the current response vector:

θ(k) = T † T T θ(k − 1) − T † Z4P (k − 1) (3.27)

where the fixed-gain regulator is

T † = (T T Q T + R)
−1
T T Q (3.28)

If R = 0 or T TQT ≫ R, T † is a pseudo-inverse ofT , and equation 3.27 becomes

θ(k) = θ(k − 1) − T † Z4P (k − 1) (3.29)

3.2.2 T -matrix validation

As stated before,T -matrix is a linear approximation of the 4/rev vibration responseZ4P to
the HHC inputsθhhc at a steady-state condition. The total 4/rev vibration responseZ4P of
the nonlinear model and that of theT -matrix approximation are compared in figures 3.5–
3.7 for 3, 4, and 5/rev inputs to determine the accuracy of theT -matrix approximation.
The total 4/rev vibration responseZ4P of the nonlinear model at the steady-state condition
was computed for HHC input, and the 4/rev vibration responsewas extracted from the
helicopter hub loads using Fourier series approximation. The total 4/rev vibration response
Z4P of the T -matrix approximation is computed using equation 3.22 where Z4P 0

is the
4/rev vibrations of the baseline (HHC-off) case from the nonlinear simulation. The HHC
input for both methods have an amplitude of 1◦ with a phase angle varying from 0◦ to 360◦

with increment of 30◦.
The diamond symbol represents the baseline (HHC-off) 4/revvibration responsesZ4P 0

from the nonlinear model, with values tabulated in table 3.1. The open circles represent the
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vibration responses from the nonlinear model with the HHC inputs engaged; solid circles
represent the vibration responses fromT -matrix approximation based on equation 3.22
with θhhc determined from equation 3.29. The number next to the symbolis then/rev input
phase angle.

These figures illustrate the 4/rev vibration prediction error resulting from theT -matrix
approximation. In the 3/rev case (fig. 3.5), 4/rev vibrationresponses from theT -matrix
approximation match well with that from the nonlinear model. For the 4/rev and 5/rev
cases, there are differences between the two methods. Thosedifference are from an earlier
assumption that the vibration response to the HHC input is linear over the entire range of
θhhc. Since the vibration responses to the HHC inputs are not necessarily linear, the small
differences between linear and nonlinear models are expected.

3.3 Discrete HHC update

The ideal HHC inputs computed by theT -matrix controller for vibration suppression are
not returned to the rotor system at every time step. The HHC input has a discrete update rate
which typically varies from 0.5 to 16 times per rotor revolution (refs. 5–10). A typical HHC
input update rate is once-per-revolution. In the discrete-time domain, the discrete HHC
update is performed by the sample-and-hold operation. To implement this in a continuous-
time domain system, the effect of the sample-and-hold operation must be approximated in
the continuous-time domain.

Figure 3.8 illustrates the effect of a sample-and-hold operation on a continuous signal.
The sampler transforms the continuous signal to an amplitude-modulated pulse signal at a
sample rateωs. At the output of the digital controller, the digital signalmust be converted
to analog by the process called digital-to-analog conversion. The simplest device that
transforms digital input to analog output is a zero-order-hold. The bottom of figure 3.8
shows the relationship between digital input and analog output. The zero-order-hold holds
the value of the sampled signal overTs second to produce a reconstructed signal with
staircasewaveform. Notice that an approximation to the reconstructed signal is identical
to the original signal with a delay ofTs/2 second. Therefore, a zero-order-hold operating
at a sample rateωs is equivalent to a time delay ofπ/ωs second. Similarly, the discrete
HHC input operating atωs2 frequency also can be approximated by a Padé function with a
time delay ofπ/ωs2 second.
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Table 3.1. Baseline (HHC-off) vibration level.

4P Cos-Comp. 4P Sin-Comp. Amplitude

FX (lb) 151.6 87.8 175.2
FY (lb) 73.5 -61.3 95.7
FZ (lb) 39.5 8.9 40.5
MX (ft-lb) 40.1 62.6 74.3
MY (ft-lb) 80.0 30.2 85.5
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4 Extraction of the Constant-Coefficient Linearized
Model

A key ingredient for the study of potential interactions between HHC and flight control
system is a linearized time-invariant model of the helicopter dynamics, including higher
harmonic inputs and controls. This chapter contains the derivation of such a model, and is
composed of three sections.

Section 1 summarizes the main steps of the extraction of a conventional linearized model,
i.e., one without higher harmonic inputs and controls. Section 2 extends the derivation
to include such higher harmonics to show that: (i) one portion of the output equation
is the equivalent of the traditionalT -matrix, and (ii) through an appropriate formulation
of the output equation, the need for online identification and adaptation of theT -matrix
in maneuvering flight is substantially reduced. Section 3 describes the application of
the methodology to simple linear rotor equations, for whichanalytic expressions for the
coefficients of the model can be derived.

4.1 Extraction of a linearized model without higher harmonics

Consider the equations of motion of the helicopter written in symbolic form as:

f(ẋ,x,u;ψ) = 0 (4.1)

and take first order differentials

df(ẋ,x,u;ψ) = 0 (4.2)

which can be expanded into

∂f

∂ẋ

∣
∣
∣
∣
∣
ẋ = ẋ0

dẋ +
∂f

∂ẋ

∣
∣
∣
∣
∣
x = x0

dx +
∂f

∂u

∣
∣
∣
∣
∣
u = u0

du = 0 (4.3)

where the subscript(. . .)0 denotes the trim values of the respective vectors. Replace now
d(. . .) with ∆(. . .) and introduce the notation

[E(ψ)]
def
=

∂f

∂ẋ

∣
∣
∣
∣
∣
ẋ = ẋ0

(4.4)

[A1(ψ)]
def
=

∂f

∂ẋ

∣
∣
∣
∣
∣
x = x0

(4.5)

[B1(ψ)]
def
=

∂f

∂u

∣
∣
∣
∣
∣
u = u0

(4.6)

Then equation 4.3 can be rewritten as:

∆ẋ = − [E(ψ)]−1 [A1(ψ)] ∆x − [E(ψ)]−1 [B1(ψ)]∆u

= [A(ψ)]∆x + [B(ψ)] ∆u (4.7)
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with [A(ψ)]
def
= − [E(ψ)]−1 [A1(ψ)] and [B(ψ)]

def
= − [E(ψ)]−1 [B1(ψ)]. The

linearized matrices[E(ψ)], [A1(ψ)], and[B1(ψ)] can be calculate using finite difference
approximations. For example, using central finite differences, thej-th columns of the
matrices[A1(ψ)], [B1(ψ)], and[E(ψ)] at the azimuthψi are given by, respectively:

{A1(ψi)}j =
∂f

∂xj

∣
∣
∣
∣
∣
x = x0

≈
f(x0 + hej ;ψi) − f(x0 − hej ;ψi)

2h
(4.8)

{B1(ψi)}j =
∂f

∂uj

∣
∣
∣
∣
∣
u = u0

≈
f(u0 + hej ;ψi) − f(u0 − hej ;ψi)

2h
(4.9)

{E(ψi)}j =
∂f

∂ẋj

∣
∣
∣
∣
∣
ẋ = ẋ0

≈
f(ẋ0 + hej ;ψi) − f(ẋ0 − hej ;ψi)

2h
(4.10)

whereej is a vector with all its elements equal to zero except for thej-th, which is equal
to one, andh is the finite difference step size. All the matrices above areperiodic, with
common period equal to one rotor revolution. Therefore, thestate matrix[A(ψ)] and the
control matrix[B(ψ)] are also periodic, and can be expanded in Fourier Series:

[A(ψ)] = [A0] +
K∑

k=1

([Akc] cos kψ + [Aks] sin kψ) (4.11)

[B(ψ)] = [B0] +
K∑

k=1

([Bkc] cos kψ + [Bks] sin kψ) (4.12)

If the state vectorx is defined entirely in a fixed coordinate system, then a time invariant
linearized model can be obtained by retaining only the constant matrices[A0] and[B0]. If,
additionally, the blades are assumed to be identical, then the summations in equations 4.11
and 4.12 only contain harmonics that are multiples of the number of blades. Therefore, for
anN-bladed rotor,k = N, 2N, 3N, . . .

4.2 Extraction of a linearized model with higher harmonics

This section presents the extension of the linearization procedure to the case in which
both the state vectorx and the control vectoru contain higher harmonics. The precise
definitions ofx andu will be introduced first, together with general expressionsfor the
linearized system. The derivation of the control matrix[B(ψ)] will be presented next,
as it requires only minor modifications of the baseline procedure of the previous section.
Finally, the derivation of the state matrix[A(ψ)], which requires some special treatment,
will be presented.
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4.2.1 Definitions

The control vectoru(ψ) used in the present study is defined as:

u(ψ) =

[

upilot(ψ)
uHHC(ψ)

]

(4.13)

whereupilot(ψ) is the vector of conventional pilot controls

upilot(ψ) = [δlat δlon δcol δped]
T (4.14)

anduHHC is the vector of higher harmonic controls

uHHC(ψ) = [θ3c θ3s θ4c θ4s θ5c θ5s]
T (4.15)

The HHC is applied to the blade in the rotating system. In the 4-bladed helicopter
configurations used in this research, 3/, 4/, and 5/rev control inputs in the rotating system
are required to generate the desired 4/rev inputs in the fixedsystem. The vectoru(ψ) should
be interpreted as “perturbations from the trim values of thecontrols”. The state vectorx(ψ),
also representing perturbations from trim values, can be written in the symbolic form:

x(ψ) =

[

xB
xMR

]

(4.16)

wherexB is the vector of states not associated with the main rotor, defined as:

xB = [u v w p q r φ θ ψ λ0 λc λs λtr νx νy]
T (4.17)

andxMR is the vector of rotor states, defined in a fixed coordinate system. The elements of
the rotor state vector are based on the assumption that each state is composed of an average
and a 4/rev portion, both azimuth dependent. For example, with the longitudinal rigid body
flappingβ1c(ψ) written as:

β1c(ψ) = β1cave(ψ) + β1c4c(ψ) cos 4ψ + β1c4s(ψ) sin 4ψ (4.18)

the quantitiesβ1cave(ψ), β1c4c(ψ), andβ1c4s(ψ) will be considered as states and included
in the rotor portionxMR of the state vector. The stateβ1cave(ψ) is equivalent to the
longitudinal flap state that would appear in a traditional rotor state vector. The additional
higher harmonic statesβ1c4c(ψ) andβ1c4s(ψ) represent a new way of modeling the effects
of higher harmonic control, introduced for the first time in the present research. Although
the formulation of equation 4.18 appears intuitively reasonable, it will not be justified on a
rigorous theoretical basis. However, its validity will be established through simulation, by
comparing linearized and nonlinear responses to pilot inputs.

The assumption that each rotor state is composed of an average and a 4/rev portion leads
to an expanded state vector defined as follows:

x =

[

xave
x4P

]

(4.19)
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wherexave contains the vectorxB defined in equation 4.17 and the average rotor states,
that is:

xave =
[

xTB β̇0ave β̇1cave β̇1save β̇2ave β0ave β1cave β1save β2ave . . .

. . . ζ̇0ave ζ̇1cave ζ̇1save ζ̇2ave ζ0ave ζ1cave ζ1save ζ2ave . . .

. . . φ̇0ave φ̇1cave φ̇1save φ̇2ave φ0ave φ1cave φ1save φ2ave

]T
(4.20)

andx4P contains the 4/rev components, sine and cosine, of the rotorstates:

x4P =
[

β̇04c
β̇04s

β̇1c4c β̇1c4s β̇1s4c β̇1s4s β̇24c
β̇24s

. . .

. . . β04c
β04s

β1c4c β1c4s β1s4c β1s4s β24c
β24s

. . .

. . . ζ̇04c
ζ̇04s

ζ̇1c4c ζ̇1c4s ζ̇1s4c ζ̇1s4s ζ̇24c
ζ̇24s

. . .

. . . ζ04c
ζ04s

ζ1c4c ζ1c4s ζ1s4c ζ1s4s ζ24c
ζ24s

. . .

. . . φ̇04c
φ̇04s

φ̇1c4c φ̇1c4s φ̇1s4c φ̇1s4s φ̇24c
φ̇24s

. . .

. . . φ04c
φ04s

φ1c4c φ1c4s φ1s4c φ1s4s φ24c
φ24s

]T (4.21)

The notation in equations 4.20 and 4.21 reflects the fact thatin the present study the rotor
blades are modeled using one rigid flap modeβ, one rigid lag modeζ , and one flexible
torsion modeφ, but both equations can be rewritten for a generic number of rigid and
flexible modes. Also note that both vectorsxave andxHHC are in general time dependent.

With these definitions of the state and the control vector thelinearized system [Eq. 4.7]
becomes

{

ẋave
ẋ4P

}

=

[

Aave A12

A21 AHHC

]{

xave
x4P

}

+

[

Bave B12

B21 BHHC

]{

upilot
uHHC

}

(4.22)

where now all the partitions ofA andB are time-invariant. In other words, by decomposing
the state vector into an average and a 4/rev component, the original linearized system with
periodic coefficients has been converted into a larger linearized system, but with constant
coefficients.

The linearized model also includes an output equation, which has the form:






yave
y4P

Fave

F4P







︸ ︷︷ ︸

def
= y

=








I 0
0 C22

C31 C32

C41 C42








︸ ︷︷ ︸

def
= C

{

xave
x4P

}

+








0 0
0 0
D31 D32

D41 D42








︸ ︷︷ ︸

def
= D

{

upilot
uHHC

}

(4.23)

where theC andD matrices have constant coefficients. The vectorsFave andF4P contain
average and 4/rev hub loads at the hub, and are defined as:

Fave = [Fxave Fxave Fyave Mxave Myave Mzave ]T (4.24)

F4P = [Fx4c
Fx4s

Fy4c Fy4s Fz4c Fz4s Mx4c
Mx4s

My4c My4s Mz4c Mz4s ]T

(4.25)
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whereFx, Fy, Fz, andMx,My,Mz denote the rotor force and moment components along
and about the body axes. The remaining two partitions of the output vectory in
equation 4.23 areyave andy4P . The output subvectoryave is identical to the average state
vectorxave. The output subsectory4P is the global 4/rev rotor state vector:

y4P =
[

β ′
04c

β ′
04s

β ′
1c4c β

′
1c4s β

′
1s4c β

′
1s4s β

′
24c

β ′
24s

. . .

. . . ζ ′04c
ζ ′04s

ζ ′1c4c ζ
′
1c4s ζ

′
1s4c ζ

′
1s4s ζ

′
24c

ζ ′24s
. . .

. . . φ′
04c

φ′
04s

φ′
1c4c

φ′
1c4s

φ′
1s4c

φ′
1s4s

φ′
24c

φ′
24s

]T
(4.26)

The portion of the output equation corresponding toyave andy4P is simply a mathematical
means to indicate that the outputs are the average and global4/rev rotor states; no physics
are involved.

The submatricesC31 andC32 express a linearized relationship of the average hub loads
Fave with the average rotor statexave and the 4/rev rotor statesx4P . Similarly, the
submatricesC41 andC42 express a linearized relationship of the vibratory loadsF4P with
the average rotor states and the 4/rev rotor statesx4P .

As for the feedforward matrix, the submatricesD31 andD32 link the average vibratory
loads to pilot and HHC inputs, respectively. The submatricesD41 andD42 link the 4/rev
harmonics of the vibratory loads to pilot and HHC inputs, respectively. Therefore, theD42

submatrix is the equivalent of theT -matrix in typical HHC studies. The submatrixD41

represents the effects of pilot maneuvers on the vibratory loads: these effects are not taken
into account explicitly in typical HHC studies, instead, the maneuver effects are captured
by online identification of theT -matrix and adaptation. By including the maneuver effects
in the output model, the need for adaptation is substantially reduced.

4.2.2 Extraction of the control matrix B

The extraction of the control matrixB is presented first, because the procedure is more
similar to that for the traditional linearization without higher harmonic components of the
states. In fact, the control perturbation vectoru is already defined in the rotating system.
The control matrixB is extracted through numerical perturbation of the full nonlinear
equations of motion about a trimmed equilibrium position. Each element of the matrix
is obtained using central difference approximations. The calculation proceeds as follows:

For every azimuth angleψi:

1. Perturb thek-th elementuk(ψi) of the control vectoru (pilot and HHC controls are
treated in exactly the same way) by∆uk, i.e., let the perturbed control vectoru+(ψi)
be
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u+(ψi) =







u1

u2
...

uk + ∆uk
...
um







(4.27)

where the subscript “+” denotes the positive perturbation in the central difference
calculation.

2. Substitute the perturbed control vectoru+(ψi) into the system of equations of motion
of the helicopter, to obtain the perturbed acceleration vector ẋR+

ẋR+ = f(xR,u+, ψi) (4.28)

where a subscriptR has been added to the state vector to indicate that the rotor
portions are formulated in the rotating system (note that the state vector in the
linearized model is entirely expressed in the fixed system).The state vector
xR corresponds to the desired trim condition, and is held constant during the
perturbation.

3. Repeat the two previous steps with a negative perturbation of thek-th control,uk −
∆uk, to obtain the perturbed acceleration vectorẋR−.

4. Build the derivative using central difference approximations. This derivative is the
k-th column of theBR matrix (i.e., with the rotor portions still in the rotating system)
at the azimuth angleψi:

{BR(ψi)}k ≈
1

2∆uk
(ẋR+ − ẋR−) (4.29)

5. Repeat the four previous steps for each of them elements of the control vector, i.e.,
for uk, k = 1, . . . , m, to obtain the complete control matrixBR(ψi)

BR(ψi) = [{BR(ψi)}1 {BR(ψi)}2 · · · {BR(ψi)}m] (4.30)

The next step of the linearization procedure typically consists of performing a multiblade
coordinate transformation, to convert the rotor states from the rotating to the fixed system,
and therefore to obtain a control matrixB(ψi) entirely in the fixed system. After steps
1–5 are made for a sufficient number of azimuth anglesψi, the resulting control matrices
B(ψi) are typically averaged to obtain the final constant control matrix B. This is the
traditional linearization procedure used in the present study for the calculation of the rows
of theB matrix corresponding to the “average” states, i.e., for thesubmatricesBave and
B12 in equation 4.22.
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Some additional manipulations are required for the rows corresponding to the 4/rev
states, i.e., for the submatricesB21 andBHHC . These manipulations consist of Fourier
analysis ofB(ψi) to extract the 4/rev cosine and sine harmonics. Define:

B4c =
2

Nψ

Nψ∑

i=1

B(ψi) cos 4ψi (4.31)

B4s =
2

Nψ

Nψ∑

i=1

B(ψi) sin 4ψi (4.32)

whereNψ is number of azimuth angleψi in one rotor revolution. Then it is essentially

[B21 BHHC ] =

[

B4c

B4s

]

(4.33)

except that the rows ofB4c andB4s must be appropriately permutated because the state
subvectorx4P [Eq. 4.21] is arranged with the 4/rev cosine and sine components interlaced
rather than grouped together.

4.2.3 Extraction of the state matrixA

The general procedure to extract the state matrixA is similar to that of the control matrix
B, except that the state vector is defined in the fixed system, both for the average and the
4/rev components.

4.2.3.1 Rows corresponding to the average statesxave

The rows of theAmatrix corresponding to the average statesxave, i.e., the submatricesAave
andA21 in equation 4.22 can be obtained with the same procedure as previously shown for
theB matrix, i.e., through the following steps.

For every azimuth angleψi:

1. Perturb thek-th elementxavek(ψi) of the partitionxave of the state vectorx by ∆xk,
i.e., let the perturbed state vectorx+(ψi) be

x+(ψi) =







xave1
xave2

...
xavek + ∆xk

...
xaveN
x4p







(4.34)

where the subscript “+” denotes the positive perturbation in the central difference
calculation.
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2. Substitute the perturbed state vectorx+(ψi) into the system of equations of motion
of the helicopter to obtain the perturbed acceleration vector ẋ+. Because the rotor
equations are formulated and implemented in the rotating system,x+(ψi) must first
be converted to the rotating system, using a multiblade coordinate transformation
that yields the corresponding rotating state vectorxR+(ψi)

ẋR+ = f(xR+,u, ψi) (4.35)

where the subscriptR again indicates that the rotor portions are in the rotating
system. The control vectoru corresponds to the desired trim condition, and is held
constant during the perturbation.

3. Repeat the two previous steps with a negative perturbation of thek-th average state,
xavek − ∆xk, to obtain the perturbed acceleration vectorẋR−.

4. Build the derivative using central difference approximations. This derivative is the
k-th column of a matrixAR(ψi) at the azimuth angleψi , that is:

{AR(ψi)}k ≈
1

2∆xk
(ẋR+ − ẋR−) (4.36)

Position in the state matrix and dimensions ofAR(ψi) are the same as the submatrix
Aave in equation 4.22, butAave is constant and in the fixed system, whereasAR(ψi)
is periodic and in the rotating system.

5. Repeat the four previous steps for each of theN elements of the state vector partition
xave, i.e., forxavek , k = 1, . . . , N , to obtain the complete matrixAR(ψi)

AR(ψi) = [{AR(ψi)}1 {AR(ψi)}2 · · · {AR(ψi)}N ] (4.37)

The next step of the linearization procedure typically consists of performing a multiblade
coordinate transformation, to convert the rotor states from the rotating to the fixed system,
and therefore to obtain a state matrixA(ψi) entirely in the fixed system. Then, after
steps 1–5 are carried out for a sufficient number of azimuth anglesψi, the resulting state
matricesA(ψi) are typically averaged to obtain the final constant state matrix A. This is
the traditional linearization procedure, and it is also what is done in the present study for
the calculation of the portion of theA matrix corresponding to the “average” states, i.e., for
the submatrixAave in equation 4.22.

Some additional manipulations are required for the rows corresponding to the 4/rev
derivativesẋ4P , i.e., for the submatrixA21. As for theB matrix case, first perform a
multiblade coordinate transformation onAR(ψi), resulting inAF (ψi) , and then extract the
4/rev cosine and sine harmonics through a Fourier analysis.Define:

AF4c
=

2

Nψ

Nψ∑

i=1

AF (ψi) cos 4ψi (4.38)

AF4s
=

2

Nψ

Nψ∑

i=1

AF (ψi) sin 4ψi (4.39)
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Then it is essentially

A21 =

[

AF4c

AF4s

]

(4.40)

except that the rowsAF4c
andAF4s

must be appropriately permutated because the state
derivative subvectoṙx4P [Eq. 4.21] is arranged with the 4/rev cosine and sine components
interlaced rather than grouped together.

4.2.3.2 Rows corresponding to the 4/rev statesx4P

The rows of theA matrix corresponding to the 4/rev state vectorx4P , i.e., the submatrices
A12 andAHHC in equation 4.22 can be obtained with the same procedure as previously
shown for theAave andA21 matrices with two special treatments: 4/rev perturbation and
kinematic relationship.

Unlike the conventional linearization method which has a constant perturbation, the
submatricesA12 andAHHC are obtained by perturbingx4P in 4/rev frequency in both sine
and cosine direction. The 4/rev frequency is chosen to excite the 4/rev response. Because
the equations of motion of the helicopter are not expressed in terms of 4/rev states, they
cannot be perturbed directly. The alternative solution is to perturb each main rotor states
xMR of the partitionxave by ±∆xMR cos 4ψi and±∆xMR sin 4ψi. This is the same as
perturbingxMR4c

andxMR4s
by±∆xMR, respectively.

Another important aspect regarding the 4/rev perturbationis the kinematic relationship
between the rotor states. There are several types of kinematic relationships, and one of
them is the integral relationship such as

d

dt
(β1c) = β̇1c (4.41)

d

dt
(β̇1c) = β̈1c (4.42)

Because the periodic nature of the 4/rev states, the kinematic relationships are maintained
in a different way. Continuing with the previous example, the first and second derivatives
of equation 4.18 with respect to time are given by:

β1c(ψ) = β1cave(ψ) + β1c4c(ψ) cosψ + β1c4s(ψ) sinψ (4.18) repeated

β̇1c(ψ) = β̇1cave + (β̇1c4c + 4Ωβ1c4s)
︸ ︷︷ ︸

β′

1c4c

cos 4ψ + (β̇1c4s − 4Ωβ1c4c)
︸ ︷︷ ︸

β′

1c4s

sin 4ψ

(4.43)

β̈1c(ψ) = β̈1cave + (β̈1c4c + 8Ωβ̇1c4s − 16Ω2β1c4c)
︸ ︷︷ ︸

β′′

1c4c

cos 4ψ

+ (β̈1c4s − 8Ωβ̇1c4c − 16Ω2β1c4s)
︸ ︷︷ ︸

β′′

1c4s

sin 4ψ (4.44)
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Although β1c, β̇1c, and β̈1c on the left-hand side of equations 4.18, 4.43, and 4.44
correspond to the integral relationships, the primed and dotted variables on right-hand side
of equations 4.18, 4.43, and 4.44 do not maintain the same integral relationships. For
example,

d

dt
(β1c4c) 6= β ′

c4c
(4.45)

d

dt
(β1c4s) 6= β ′

c4s
(4.46)

d

dt
(β ′

1c4c
) 6= β ′′

1c4c
(4.47)

d

dt
(β ′

1c4s) 6= β ′′
1c4s (4.48)

(4.49)

Define all the dotted and non-dotted variables such asβ1c4c , β1c4s , β̇1c4c , andβ̇1c4c on the
right-hand side of equations 4.18 and 4.43 to be the4/rev rotor states, and the primed
variables such asβ ′

1c4c
andβ ′

1c4s
to be theglobal 4/rev rotor states(for this simple example).

Then, the kinematic relationships between the 4/rev rotor states and global 4/rev rotor states
are as follows:

β ′
1c4c

= β̇1c4c + 4Ωβ1c4s (4.50)

β ′
1c4s

= β̇1c4s − 4Ωβ1c4c (4.51)

β ′′
1c4c

= β̈1c4c + 8Ωβ̇1c4s − 16Ω2β1c4c (4.52)

β ′′
1c4s = β̈1c4s − 8Ωβ̇1c4c − 16Ω2β1c4s (4.53)

For this research, the 4/rev rotor state vector and the global 4/rev rotor state vector are
shown in equations 4.21 and 4.26, respectively.

The kinematic relationship must always be maintained throughout the linearization
process. For instance, if theβ1c was perturbed by a constant∆β1c, the β̇1c must also
be perturbed byd

dt
(∆β1c) at the same time to maintain kinematic consistency. Becausethe

time derivative of a constant perturbation is zero, the traditional linearization method only
perturbs one state at a time while the rest of the states remain fixed.

For a 4/rev perturbation, ifβ1c is perturbed by∆β1c cos 4ψ , β̇1c must also be perturbed
by d

dt
(∆β1c cos 4ψ) at the same time. Conversely, ifβ1c is perturbed by∆β1c sin 4ψ, β̇1c

must also be perturbed byd
dt

(∆β1c sin 4ψ). It is important to remember that the equations
of motion of the helicopter are not expressed in terms of 4/rev rotor state,x4P cannot be
perturbed directly. The procedure described below perturbs each main rotor state withxMR

in both sine and cosine direction at a 4/rev frequency.
The calculation of submatricesA12 andAHHC proceeds as follow:
For every azimuth angleψi:

1. Perturbation of the 4/rev cosine component
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(a) Perturb thejth main rotor statexMRj (ψi) of partition xMR(ψi) in the state
vectorxave(ψi) by ∆xMRj cos 4ψi, i.e., let the perturbed state vectorx4c+(ψi)
be

x4c+(ψi) =







xB
xMR1

...
xMRj−4

+ [−4Ω∆xMRj sin 4ψi]
...

xMRj + ∆xMRj cos 4ψi
...

xMRL







(4.54)

where the subscript “4c+” denotes the positive 4/rev cosineperturbation in the
central difference calculation.

(b) Substitute the perturbed state vectorx4c+(ψi) into the system of equations
of motion of the helicopter, to obtain the perturbed state vector derivative
ẋ4c+(ψi). Because the rotor equations are formulated and implemented in the
rotating system,x4c+(ψi) must first be converted to the rotating system using
a multi-blade coordinate transformation that yields the corresponding rotating
state vectorxR4c+(ψi)

ẋR4c+(ψi) = f(xR4c+(ψi),u(ψi), ψi) (4.55)

The control vectoru(ψi) corresponds to the desired trim condition, and is held
constant during the perturbation.
If and only if xMRj is one of the displacement states (β0, β1c, β1s, β2, ζ0, ζ1c,
ζ1s, ζ2, φ0, φ1c, φ1s, φ2), its derivative statexMRj−4

(β̇0, β̇1c, β̇1s, β̇2, ζ̇0, ζ̇1c, ζ̇1s,
ζ̇2, φ̇0, φ̇1c, φ̇1s, φ̇2) also needs to be perturbed by−4Ω∆xMRj sin 4ψi at the
same time. This additional perturbation is represented by[. . .] in equation 4.54.

(c) Repeat the two previous steps with a negative perturbation of thejth main rotor
state,xMRj − ∆xMRj cos 4ψi, and build the derivative using central difference
approximations. This derivative is thejth column of an interim matrixPR(ψi)
at the azimuth angleψi , that is:

{PR(ψi)}j ≈
1

2∆xMRj

(ẋR4c+(ψi) − ẋR4c−(ψi)) (4.56)

(d) Repeat the three previous steps for each of theL elements of the main rotor
state vector partitionxMR, i.e., for the main rotor state inxMRj , j = 1, . . . , L,
to obtain the first half of the interim matrixPR(ψi)

PR(ψi) = [{PR(ψi)}1 {PR(ψi)}2 · · · {PR(ψi)}L]n×L (4.57)
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2. Perturbation of the 4/rev sine component

(a) Perturb thejth main rotor statexMRj (ψi) of partition xMR(ψi) in the state
vectorxave(ψi) by ∆xMRj sin 4ψi, i.e., let the perturbed state vectorx4s+(ψi)
be

x4s+(ψi) =







xB
xMR1

...
xMRj−4

+ [4Ω∆xMRj cos 4ψi]
...

xMRj + ∆xMRj sin 4ψi
...

xMRL







(4.58)

where the subscript “4s+” denotes the positive 4/rev sine perturbation in the
central difference calculation.

(b) Substitute the perturbed state vectorx4s+(ψi) into the system of equations of
motion of the helicopter to obtain the perturbed state vector derivativeẋ4s+(ψi).
Because the rotor equations are formulated and implementedin the rotating
system,x4s+(ψi) must first be converted to the rotating system, using a multi-
blade coordinate transformation that yields the corresponding rotating state
vectorxR4s+(ψi)

ẋR4s+(ψi) = f(xR4s+(ψi),u(ψi), ψi) (4.59)

The control vectoru(ψi) corresponds to the desired trim condition, and is held
constant during the perturbation.
If and only if xMRj is one of the displacement states, its derivativexMRj−4

also
needs to be perturbed by+4Ω∆xMRj cos 4ψi at the same time. This additional
perturbation is represented by[. . .] in equation 4.58.

(c) Repeat the two previous steps with a negative perturbation of thejth main rotor
state,xMRj − ∆xMRj sin 4ψi, and build the derivative using central difference
approximations. This derivative is the(L+ j)th column of the interim matrix
PR(ψi) at the azimuth angleψi , that is:

{PR(ψi)}L+j ≈
1

2∆xMRj

(ẋR4s+(ψi) − ẋR4s−(ψi)) (4.60)

(d) Repeat the three previous steps for each of theL elements of the main rotor
state vector partitionxMR, i.e., for the main rotor state inxMRj , j = 1, . . . , L,
to complete the second half of the interim matrixPR(ψi)

PR(ψi) =
[

{PR(ψi)}1 · · · {PR(ψi)}L {PR(ψi)}L+1 · · · {PR(ψi)}2L

]

n×2L
(4.61)
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The next step is to perform a multi-blade coordinate transformation to obtain an interim
matrix PF (ψi) entirely in the fixed system. Then, after steps 1–2 are carried out for one
rotor revolution, the resulting interim matricesPF (ψi) are averaged to obtain the state
matrixA12. Next, the columns ofA12 must be appropriately permutated because the state
subvectorx4P [Eq. 4.21] is arranged with the 4/rev cosine and sine components interlaced
rather than grouped together.

The state matrixAHHC can be obtained by extracting the 4/rev cosine and sine harmonics
from PF (ψi) using Fourier analysis. Define:

AF4c
=

2

Nψ

Nψ∑

i=1

PF (ψi) cos 4ψi (4.62)

AF4s
=

2

Nψ

Nψ∑

i=1

PF (ψi) sin 4ψi (4.63)

Then it is essentially

AHHC =

[

AF4c

AF4s

]

(4.64)

except that the rows and columns ofAF4c
andAF4s

must be appropriately permutated
because the state subvectorx4P [Eq. 4.21] is arranged with the 4/rev cosine and sine
components interlaced rather than grouped together.

There is one last special treatment related to state matrixAHHC . Both submatricesAF4c

andAF4s
do not contain the 4/rev state derivativesẋ4P . Recall that the interim matrix

PF (ψi) contains the perturbed state vector derivative which has elements such as̈β1c. The
Fourier analysis only extracts the global 4/rev rotor states (β ′′

1c4c
andβ ′′

1c4s
) not the 4/rev

rotor states (̈β1c4c or β̈1c4s). To conform with standard state-space representationẋ = Ax+
Bu, the global 4/rev rotor states inAF4c

andAF4s
are converted to the 4/rev rotor states

using the kinematic relationship as shown in equations 4.50–4.53.

4.2.4 Extraction of the feedforward matrixD

Consider that the hub loads at hub in body axes can be written in symbolic form as:

F = g(ẋ,x,u;ψ) (4.65)

The extraction procedure for the feedforward matrixD is the same as the one for the control
matrixB except the subject of the interest is the hub loadsF instead of the state vector
derivativesẋ.

The calculation proceeds as follows. For every azimuth angleψi:

1. Perturb thek-th elementuk(ψi) of the control vectoru (pilot and HHC controls are
treated in exactly the same way) by∆uk, i.e., let the perturbed control vectoru+(ψi)
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be

u+(ψi) =







u1

u2
...

uk + ∆uk
...
um







(4.66)

where the subscript “+” denotes the positive perturbation in the central difference
calculation.

2. Substitute the perturbed control vectoru+(ψi) into the equation 4.65, to obtain the
perturbed hub loadsF+

F+ = g(x,u+, ψi) (4.67)

The state vectorx corresponds to the desired trim condition, and is held constant
during the perturbation.

3. Repeat the two previous steps with a negative perturbation of thek-th control,uk −
∆uk, to obtain the perturbed acceleration vectorF−.

4. Build the derivative using central difference approximations. This derivative is the
k-th column of theD matrix at the azimuth angleψi:

{D(ψi)}k ≈
1

2∆uk
(F+ − F−) (4.68)

5. Repeat the four previous steps for each of them elements of the control vector, i.e.,
for uk, k = 1, . . . , m, to obtain the complete control matrixD(ψi)

D(ψi) = [{D(ψi)}1 {D(ψi)}2 · · · {D(ψi)}m] (4.69)

6. Repeat steps 1–5 forNψ azimuth anglesψi for one rotor revolution.

7. Extract the average, 4/rev cosine, and 4/rev sine harmonics ofD(ψi) using Fourier
analysis.

Define:

Dave =
1

Nψ

Nψ∑

i=1

D(ψi) (4.70)

D4c =
2

Nψ

Nψ∑

i=1

D(ψi) cos 4ψi (4.71)

D4s =
2

Nψ

Nψ∑

i=1

D(ψi) sin 4ψi (4.72)
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Then it is essentially

[D31 D32] = Dave (4.73)

[D41 D42] =

[

D4c

D4s

]

(4.74)

except that the rows ofD4c andD4s must be appropriately permutated because
the output subvectorF4P [Eq. 4.25] is arranged with the 4/rev cosine and sine
components interlaced rather than grouped together.

4.2.5 Extraction of the output matrix C

The general procedure to extract the state matrixC is similar to that of the control matrix
A.

4.2.5.1 SubmatrixC22

The submatrixC22 relates the 4/rev rotor statesx4P to the global 4/rev rotor state vector
y4P ; i.e., C22 is a kinematic matrix. Usingβ ′

1c4c
andβ ′

1c4s
as an example, the kinematic

equations forβ1c are

β ′
1c4c

= β̇1c4c + 4Ωβ1c4s (4.50) repeated

β ′
1c4s = β̇1c4s − 4Ωβ1c4c (4.51) repeated

(4.75)

Re-write the above equations in matrix form:

[

β ′
1c4c

β ′
1c4s

]

=

[

1 0 0 4Ω
0 1 −4Ω 0

]









β̇1c4c

β̇1c4s

β1c4c

β1c4s









(4.76)

Likewise, theC22 can be structured as follows:

y4P =






H 0 0
0 H 0
0 0 H




x4p (4.77)

H =








I 0 0 0 W 0 0 0
0 I 0 0 0 W 0 0
0 0 I 0 0 0 W 0
0 0 0 I 0 0 0 W








W =

[

0 4Ω
−4Ω 0

]

(4.78)
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4.2.5.2 SubmatricesC31 andC41

The rows of theC matrix corresponding to the average statesxave, i.e., the submatricesC31

andC41 in equation 4.23 can be obtained with the same procedure as previously shown for
theAave andA21 matrices, i.e., through the following steps.

For every azimuth angleψi:

1. Perturb thek-th elementxavek(ψi) of the partitionxave of the state vectorx by ∆xk,
i.e., let the perturbed state vectorx+(ψi) be

x+(ψi) =







xave1
xave2

...
xavek + ∆xk

...
xaveN
x4p







(4.79)

where the subscript “+” denotes the positive perturbation in the central difference
calculation.

2. Substitute the perturbed state vectorx+(ψi) into equation 4.65 to obtain the perturbed
hub loadsF+.

F+ = g(x+,u, ψi) (4.80)

The control vectoru corresponds to the desired trim condition, and is held constant
during the perturbation.

3. Repeat the two previous steps with a negative perturbation of thek-th average state,
xavek − ∆xk, to obtain the perturbed hub loadsF−.

4. Build the derivative using central difference approximations. This derivative is the
k-th column of an interim matrixP (ψi) at the azimuth angleψi , that is:

{P (ψi)}k ≈
1

2∆xk
(F+ − F−) (4.81)

5. Repeat the four previous steps for each of theN elements of the state vector partition
xave, i.e., forxavek , k = 1, . . . , N , to obtain the complete matrixP (ψi)

P (ψi) = [{P (ψi)}1 {P (ψi)}2 · · · {P (ψi)}N ] (4.82)

6. Repeat steps 1–5 forNψ azimuth anglesψi for one rotor revolution.
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7. Extract the average, 4/rev cosine, and 4/rev sine harmonics ofP (ψi) using Fourier
analysis.

Define:

Cave =
1

Nψ

Nψ∑

i=1

P (ψi) (4.83)

C4c =
2

Nψ

Nψ∑

i=1

P (ψi) cos 4ψi (4.84)

C4s =
2

Nψ

Nψ∑

i=1

P (ψi) sin 4ψi (4.85)

Then it is essentially

C31 = Cave (4.86)

C41 =

[

C4c

C4s

]

(4.87)

except that the rowsC4c andC4s must be appropriately permutated because the output
subvectorF4P [Eq. 4.25] is arranged with the 4/rev cosine and sine components
interlaced rather than grouped together.

4.2.5.3 SubmatricesC32 andC42

The submatricesC32 andC42 can be obtained with the same procedure as previously shown
for theA12 andAHHC matrices which proceeds as follow:

For every azimuth angleψi:

1. Perturbation of the 4/rev cosine component

(a) Perturb thejth main rotor statexMRj (ψi) of partition xMR(ψi) in the state
vectorxave(ψi) by ∆xMRj cos 4ψi, i.e., let the perturbed state vectorx4c+(ψi)
be

x4c+(ψi) =







xB
xMR1

...
xMRj−4

+ [−4Ω∆xMRj sin 4ψi]
...

xMRj + ∆xMRj cos 4ψi
...

xMRL







(4.88)

where the subscript “4c+” denotes the positive 4/rev cosineperturbation in the
central difference calculation.
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(b) Substitute the perturbed state vectorx4c+(ψi) into equation 4.65 to obtain the
perturbed hub loadsF4c+(ψi).

F4c+(ψi) = g(x4c+(ψi),u(ψi), ψi) (4.89)

The control vectoru(ψi) corresponds to the desired trim condition, and is held
constant during the perturbation.

If and only if xMRj is one of the displacement states (β0, β1c, β1s, β2, ζ0, ζ1c,
ζ1s, ζ2, φ0, φ1c, φ1s, φ2), its derivative statexMRj−4

(β̇0, β̇1c, β̇1s, β̇2, ζ̇0, ζ̇1c, ζ̇1s,
ζ̇2, φ̇0, φ̇1c, φ̇1s, φ̇2) also needs to be perturbed by−4Ω∆xMRj sin 4ψi at the
same time. This additional perturbation is represented by[. . .] in equation 4.88.

(c) Repeat the two previous steps with a negative perturbation of thejth main rotor
state,xMRj − ∆xMRj cos 4ψi, and build the derivative using central difference
approximations. This derivative is thejth column of an interim matrixP (ψi) at
the azimuth angleψi , that is:

{P (ψi)}j ≈
1

2∆xj
(F4c+(ψi) − F4c−(ψi)) (4.90)

(d) Repeat the three previous steps for each of theL elements of the main rotor
state vector partitionxMR, i.e., for the main rotor state inxMRj , j = 1, . . . , L,
to obtain the first half of the interim matrixP (ψi)

P (ψi) = [{P (ψi)}1 {P (ψi)}2 · · · {P (ψi)}L]n×L (4.91)

2. Perturbation of the 4/rev sine component

(a) Perturb thejth main rotor statexMRj (ψi) of partition xMR(ψi) in the state
vectorxave(ψi) by ∆xMRj sin 4ψi, i.e., let the perturbed state vectorx4s+(ψi)
be

x4s+(ψi) =







xB
xMR1

...
xMRj−4

+ [4Ω∆xMRj cos 4ψi]
...

xMRj + ∆xMRj sin 4ψi
...

xMRL







(4.92)

where the subscript “4s+” denotes the positive 4/rev sine perturbation in the
central difference calculation.
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(b) Substitute the perturbed state vectorx4s+(ψi) into equation 4.65 to obtain the
perturbed hub loadsF4s+(ψi).

F4s+(ψi) = g(x4s+(ψi),u(ψi), ψi) (4.93)

The control vectoru(ψi) corresponds to the desired trim condition, and is held
constant during the perturbation.

If and only if xMRj is one of the displacement states, its derivativexMRj−4
also

needs to be perturbed by+4Ω∆xMRj cos 4ψi at the same time. This additional
perturbation is represented by[. . .] in equation 4.92.

(c) Repeat the two previous steps with a negative perturbation of thejth main rotor
state,xMRj − ∆xMRj sin 4ψi, and build the derivative using central difference
approximations. This derivative is the(L+ j)th column of the interim matrix
P (ψi) at the azimuth angleψi , that is:

{P (ψi)}L+j ≈
1

2∆xj
(F4s+(ψi) − F4s−(ψi)) (4.94)

(d) Repeat the three previous steps for each of theL elements of the main rotor
state vector partitionxMR, i.e., for the main rotor state inxMRj , j = 1, . . . , L,
to complete the second half of the interim matrixP (ψi)

P (ψi) =
[

{P (ψi)}1 · · · {P (ψi)}L {P (ψi)}L+1 · · · {P (ψi)}2L

]

n×2L
(4.95)

3. Repeat steps 1–2 forNψ azimuth anglesψi for one rotor revolution.

4. Extract the average, 4/rev cosine, and 4/rev sine harmonics ofP (ψi) using Fourier
analysis.

Define:

Cave =
∆ψ

Nψ

Nψ∑

i=1

P (ψi) (4.96)

C4c =
2

Nψ

Nψ∑

i=1

P (ψi) cos 4ψi (4.97)

C4s =
2

Nψ

Nψ∑

i=1

P (ψi) sin 4ψi (4.98)

Then it is essentially

C32 = Cave (4.99)

C42 =

[

C4c

C4s

]

(4.100)
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except that the rows and columns ofC4c andC4s must be appropriately permutated
because the state subvectorx4P [Eq. 4.21] and the output subvectorF4P [Eq. 4.25]
are arranged with the 4/rev cosine and sine components interlaced rather than
grouped together.

4.3 Application to simple rotor equations

In this section, the perturbation technique described in the previous section is applied to
a simple example, namely the flap equation of motion of a 4-bladed isolated rotor written
in fixed-system coordinates. The blades are assumed to be rigid and hinged at the axis of
rotation. This simplified model represents a useful test case because states and harmonics
appear explicitly in the equations of motion, and thereforecan be manipulated directly,
rather than being hidden in the more complicated numerics ofthe model used in the
remainder of this research.

The flapping equations of motion in the rotating system for a 4-bladed rotor with rigid
blades hinged on the axis of rotation, and flapping degrees offreedom only can be expressed
as

β̈i + ν2βi = γ
[

−µ cosψi

(
1

6
+
µ

4
sinψi

)

βi −
(

1

8
+

1

6
µ sinψi

)

β̇i

+
(

1

8
+

1

3
µ sinψi +

1

4
µ2 sin2 ψi

)

θi

−
(

1

6
+

1

4
µ sinψi

)

λ
]

(4.101)

whereλ, θi are the main rotor inflow and the blade pitch angle, respectively. After
performing the multi-blade coordinate transformation, the equations of motion are:









β̈0

β̈1c

β̈1s

β̈2









+ C









β̇0

β̇1c

β̇1s

β̇2









+K








β0

β1c

β1s

β2








=








F1

F2

F3

F4








(4.102)

where

C =








γ
8

0 γ
12
µ 0

0 γ
8

2 −γ
6
µ sin 2ψ

γ
6
µ −2 γ

8
γ
6
µ cos 2ψ

0 − γ
12
µ sin 2ψ γ

12
µ cos 2ψ γ

8








(4.103)
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K =








ν2 0 0 −γ
8
µ2 sin 2ψ

γ
6
µ −1 + ν2 + γ

16
µ2 sin 4ψ γ

8
− γ

16
µ2 cos 4ψ + γ

16
µ2 −γ

6
µ cos 2ψ

0 −γ
8
− γ

16
µ2 cos 4ψ + γ

16
µ2 −1 + ν2 − γ

16
µ2 sin 4ψ −γ

6
µ sin 2ψ

−γ
8
µ2 sin 2ψ −γ

6
µ cos 2ψ −γ

6
µ sin 2ψ ν2








(4.104)

F1 =
γ

8

(

1 + µ2
)

θ0

+
γ

6
µθ1s −

γ

6
λ+

[
γ

8

(

1 + µ2
)

θ4c +
γ

6
µθ5s −

γ

6
µθ3s

]

cos 4ψ

+
[
γ

8

(

1 + µ2
)

θ4s +
γ

6
µθ3c −

γ

6
µθ5c

]

sin 4ψ (4.105)

F2 =
γ

8

(

1 +
1

2
µ2
)

θ1c −
γ

16
µ2θ3c

+
[

−
γ

16
µ2θ1c +

γ

8
(1 +

1

2
µ2)θ5c +

γ

8

(

1 +
1

2
µ2
)

θ3c

]

cos 4ψ

+
[
γ

8

(

1 +
1

2
µ2
)

θ5s +
γ

8

(

1 +
1

2
µ2
)

θ3s −
γ

16
µ2θ1s

]

sin 4ψ

−
γ

16
µ2θ5s sin 8ψ −

γ

16
µ2θ5c cos 8ψ (4.106)

F3 = −
γ

4
λµ+

γ

8

(

1 +
3

2
µ2
)

θ1s +
γ

3
µθ0 −

γ

16
µ2θ3s

+
[

−
γ

8

(

1 +
3

2
µ2
)

θ3s +
γ

8

(

1 +
3

2
µ2
)

θ5s +
γ

16
µ2θ1s +

γ

3
µθ4c

]

cos 4ψ

+
[
γ

3
µθ4s −

γ

16
µ2θ1c −

γ

8

(

1 +
3

2
µ2)θ5c +

γ

8
(1 +

3

2
µ2
)

θ3c

]

sin 4ψ

−
γ

16
µ2θ5c sin 8ψ +

γ

16
µ2θ5s cos 8ψ (4.107)

F4 =
(

−
γ

6
µθ3s +

γ

6
µθ1s +

γ

8
µ2θ0 +

γ

16
µ2θ4c

)

cos 2ψ

+
(
γ

16
µ2θ4s −

γ

6
µθ1c +

γ

6
µθ3c

)

sin 2ψ

+
(
γ

16
µ2θ4s −

γ

6
µθ5c

)

sin 6ψ +
(
γ

16
µ2θ4c +

γ

6
µθ5s

)

cos 6ψ (4.108)
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To illustrate the technique for the extraction of a linear model that included 4/rev
characteristics, the longitudinal flapping equation of motion in the fixed system is:

β̈1c + 2β̇1s +
(

ν2 − 1
)

β1c =

−
γ

16
µ2 sin 4ψβ1c +

γ

6
µ sin 2ψβ̇2 −

γ

6
µβ0 −

γ

8
β̇1c

+
(
γ

6
µ cos 2ψ

)

β2 −
(
γ

8
−

γ

16
µ2 cos 4ψ +

γ

16
µ2
)

β1s

+
γ

8

(

1 +
1

2
µ2
)

θ1c −
γ

16
µ2θ3c

+
[

−
γ

16
µ2θ1c +

γ

8

(

1 +
1

2
µ2
)

θ5c +
γ

8

(

1 +
1

2
µ2
)

θ3c

]

cos 4ψ

+
[
γ

8

(

1 +
1

2
µ2
)

θ5s +
γ

8

(

1 +
1

2
µ2
)

θ3s −
γ

16
µ2θ1s

]

sin 4ψ

−
γ

16
µ2θ5s sin 8ψ −

γ

16
µ2θ5c cos 8ψ (4.109)

For simplicity, only the− γ
16
µ2 sin 4ψβ1c term from aerodynamics andγ

8
(1+µ2

2
)(θ3c cos 4ψ+

θ3s sin 4ψ) terms from the 3/rev input, and− γ
16
µ2θ1s sin 4ψ term from the longitudinal

cyclic pitch angle are retained. The rest of the variables are represented byMθ andMβ

terms. Equation 4.109 can therefore be rewritten as:

β̈1c = −
γ

8
β̇1c +

(

ν2 −
γµ2

16
sin 4ψ − 1

)

β1c

+
γ

8

(

1 +
1

2
µ2
)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ +Mθ +Mβ

(4.110)

4.3.1 Prescribed solution form

The assumed solution for equation 4.110 has an average plus 4/rev cosine and sine
components as shown in equation 4.18. Substituting equations 4.18 and 4.43 into
equation 4.110, the longitudinal flapping equation of motion becomes:

β̈1c = −
γ

8

[

β̇1cave +
(

β̇1c4c + 4Ωβ1c4s

)

cos 4ψ +
(

β̇1c4s − 4Ωβ1c4c

)

sin 4ψ
]

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)(

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
)

+
γ

8

(

1 +
µ2

2

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ +Mθ +Mβ

(4.111)

Note that equations 4.43 and 4.44 contain an average value and harmonics at only 4/rev,
which results from the original assumed solution defined in equation 4.18. However, the
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equation of motion shown in equation 4.111 also has 8/rev frequency components that
result from the aerodynamic term in equation 4.110.

−
γµ2

16
sin 4ψ β1c = −

γµ2

16
sin 4ψ

(

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
)

= −
γµ2

16

(

β1cave sin 4ψ +
1

2
β1c4s +

1

2
β1c4c sin 8ψ −

1

2
β1c4s cos 8ψ

)

(4.112)

Therefore, equation 4.111 can also be written as follows:

β̈1c = −
γ

8

[

β̇1cave +
(

β̇1c4c + 4Ωβ1c4s

)

cos 4ψ +
(

β̇1c4s − 4Ωβ1c4c

)

sin 4ψ
]

+
(

ν2 − 1
)(

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
)

−
γµ2

16

(

β1cave sin 4ψ +
1

2
β1c4s

)

−
γµ2

16

(1

2
β1c4c sin 8ψ −

1

2
β1c4s cos 8ψ

)

+
γ

8

(

1 +
µ2

2

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ +Mθ +Mβ (4.113)

4.3.2 Perturbation of the equations of motion

To simplify the expression, the perturbations of theMθ andMβ terms in equation 4.111 are
not shown here, but are not eliminated from equation 4.111.

4.3.2.1 Perturbingβ1c by ± ∆β1c at ψi

β̈1c(ψi)

∣
∣
∣
∣

±

β1cave

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[(

β1cave ± ∆β1c

)

+ β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ (4.114)

where the superscript± represents the direction of the perturbation, and the subscript β1cave

represents the perturbed state variable.
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4.3.2.2 Perturbingβ1c by ± ∆β1c cos 4ψ at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

β1c4c

= −
γ

8

{

β̇1cave +
(

β̇1c4c + 4Ωβ1c4s

)

cos 4ψ

+
[

β̇1c4s − 4Ω
(

β1c4c ± ∆β1c

)]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[

β1cave +
(

β1c4c ± ∆β1c

)

cos 4ψ + β1c4s sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ (4.115)

4.3.2.3 Perturbingβ1c by ± ∆β1c sin 4ψ at ψi

β̈1c(ψi)

∣
∣
∣
∣

±

β1c4s

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ω
(

β1c4s ± ∆β1c

)]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[

β1cave + β1c4c cos 4ψ +
(

β1c4s ± ∆β1c

)

sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ (4.116)

4.3.2.4 Perturbingβ̇1c by ± ∆β̇1c at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

β̇1cave

= −
γ

8

{(

β̇1cave ± ∆β̇1c

)

+
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ (4.117)
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4.3.2.5 Perturbingβ̇1c by ± ∆β̇1c cos 4ψ at ψi

β̈1c(ψi)

∣
∣
∣
∣

±

β̇1c4c

= −
γ

8

{

β̇1cave +
[(

β̇1c4c ± ∆β̇1c

)

+ 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ (4.118)

4.3.2.6 Perturbingβ̇1c by ± ∆β̇1c sin 4ψ at ψi

β̈1c(ψi)

∣
∣
∣
∣

±

β̇1c4s

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[(

β̇1c4s ± ∆β̇1c

)

− 4Ωβ1c4c

]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ (4.119)

4.3.2.7 Perturbingθ1s by ± ∆θ1s at ψi

β̈1c(ψi)

∣
∣
∣
∣

±

θ1s

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)[

θ3c cos 4ψ + θ3s sin 4ψ
]

−
γ

16
µ2
(

θ1s ± ∆θ1s
)

sin 4ψ (4.120)
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4.3.2.8 Perturbingθ3c by ± ∆θ3c at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

θ3c

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)[(

θ3c ± ∆θ3c
)

cos 4ψ + θ3s sin 4ψ
]

−
γ

16
µ2θ1s sin 4ψ (4.121)

4.3.2.9 Perturbingθ3s by ± ∆θ3s at ψi

β̈1c(ψi)
∣
∣
∣
∣

±

θ3s

= −
γ

8

{

β̇1cave +
[

β̇1c4c + 4Ωβ1c4s

]

cos 4ψ

+
[

β̇1c4s − 4Ωβ1c4c

]

sin 4ψ
}

+
(

ν2 −
γµ2

16
sin 4ψ − 1

)

×
[

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
]

+
γ

8

(µ2

2
+ 1

)[

θ3c cos 4ψ +
(

θ3s ± ∆θ3s
)

sin 4ψ
]

−
γ

16
µ2θ1s sin 4ψ (4.122)

4.3.3 Extract four/rev harmonic components

The average value and the 4/rev harmonic components of the perturbed equations 4.114–
4.122 can be obtained by applying the Fourier series approximation over one sample
window. The length of the sample window used in this study is one rotor revolution or
ψ = 0–2π.
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4.3.3.1 Extract ∂β̈1cave

∂β1cave
,

∂β′′
1c4c

∂β1cave
,

∂β′′
1c4s

∂β1cave
from β̈1c(ψi)

∣
∣
∣
∣

±

β1cave

β̈+
1cave =

1

2π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

+

β1cave

dψ

=
1

2π

∫ 2π

0

[

−
γ

8
β̇1cave +

(

ν2 − 1
)(

β1cave + ∆β1cave

)

−
γµ2

16
sin2 4ψ

]

dψ

=
1

2π

[

−
γ

8
β̇1caveψ +

(

ν2 − 1
)(

β1cave + ∆β1cave

)

ψ −
γµ2

16
(
ψ

2
)
]2π

0

= −
γ

8
β̇1cave +

(

ν2 − 1
)(

β1cave + ∆β1cave

)

−
γµ2

32

β̈−
1cave =

1

2π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

−

β1cave

dψ

=
1

2π

∫ 2π

0

[

−
γ

8
β̇1cave +

(

ν2 − 1
)(

β1cave − ∆β1cave

)

−
γµ2

16
sin2 4ψ

]

dψ

= −
γ

8
β̇1cave +

(

ν2 − 1
)(

β1cave − ∆β1cave

)

−
γµ2

32

The elements of the state matrix can be calculated using central difference approximation.

∂β̈1cave

∂β1cave

=
β̈+

1cave − β̈−
1cave

2∆β1cave

=
(ν2 − 1)(2∆β1cave)

2∆β1cave

= (ν2 − 1) (4.123)

β ′′
1c4c

+
=

1

π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

+

β1cave

cos 4ψ dψ

=
1

π

∫ 2π

0

{[

−
γ

8

(

β̇1c4c + 4Ωβ1c4s

)

cos2 4ψ +
(

ν2 − 1
)

β1c4c cos2 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos2 4ψ + θ3s sin 4ψ cos 4ψ
)}

dψ

=
1

π

[

−
γ

8

(

β̇1c4c + 4Ωβ1c4s

)

+
(

ν2 − 1
)

β1c4c +
γ

8

(µ2

2
+ 1

)

θ3c

](ψ

2

)
∣
∣
∣
∣

2π

0

−
γ

8

(

β̇1c4c + 4Ωβ1c4s

)

+
(

ν2 − 1
)

β1c4c +
γ

8

(µ2

2
+ 1

)

θ3c
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β ′′
1c4c

−
=

1

π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

−

β1cave

cos 4ψ dψ

=
1

π

∫ 2π

0

{[

−
γ

8

(

β̇1c4c + 4Ωβ1c4s

)

cos2 4ψ +
(

ν2 − 1
)

β1c4c cos2 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos2 4ψ + θ3s sin 4ψ cos 4ψ
)}

dψ

−
γ

8

(

β̇1c4c + 4Ωβ1c4s

)

+
(

ν2 − 1
)

β1c4c +
γ

8

(µ2

2
+ 1

)

θ3c

∂β ′′
1c4c

∂β1cave

=
β ′′

1c4c
+ − β ′′

1c4c
−

2∆β1cave

= 0 (4.124)

β ′′
1c4s

+
=

1

π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

+

β1cave

sin 4ψdψ

=
1

π

∫ 2π

0

{[

−
γ

8
(β̇1c4s − 4Ωβ1c4c) sin2 4ψ +

(

ν2 − 1
)

β1c4s sin2 4ψ

−
γµ2

16

(

β1cave + ∆β1cave

)

sin2 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ sin 4ψ

+ θ3s sin2 4ψ
)

−
γ

16
µ2θ1s sin2 4ψ

}

dψ

=
1

π

[

−
γ

8

(

β̇1c4s − 4Ωβ1c4c

)

+
(

ν2 − 1
)

β1c4s −
γµ2

16

(

β1cave + ∆β1cave

)

+
γ

8
(
µ2

2
+ 1)θ3s −

γ

16
µ2θ1s

](ψ

2

)
∣
∣
∣
∣

2π

0

= −
γ

8

(

β̇1c4s − 4Ωβ1c4c

)

+
(

ν2 − 1
)

β1c4s −
γµ2

16

(

β1cave + ∆β1cave

)

+
γ

8

(µ2

2
+ 1

)

θ3s −
γ

16
µ2θ1s
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β ′′
1c4s

−
=

1

π

∫ 2π

0
β̈1c(ψi)

∣
∣
∣
∣

−

β1cave

sin 4ψdψ

=
1

π

∫ 2π

0

{[

−
γ

8

(

β̇1c4s − 4Ωβ1c4c

)

sin2 4ψ +
(

ν2 − 1
)

β1c4s sin2 4ψ

−
γµ2

16

(

β1cave − ∆β1cave

)

sin2 4ψ
]

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ sin 4ψ

+ θ3s sin2 4ψ
)

−
γ

16
µ2θ1s sin2 4ψ

}

dψ

= −
γ

8

(

β̇1c4s − 4Ωβ1c4c

)

+
(

ν2 − 1
)

β1c4s −
γµ2

16

(

β1cave − ∆β1cave

)

+
γ

8

(µ2

2
+ 1

)

θ3s −
γ

16
µ2θ1s

∂β ′′
1c4s

∂β1cave

=
β ′′

1c4s
+ − β ′′

1c4s
−

2∆β1cave

=
−γµ2

16
(2∆β1cave)

2∆β1cave

= −
γµ2

16
(4.125)

4.3.3.2 Extract ∂β̈1cave

∂β1c4c

,
∂β′′

1c4c

∂β1c4c

,
∂β′′

1c4s

∂β1c4c

from β̈1c(ψi)

∣
∣
∣
∣

±

β1c4c

∂β̈1cave

∂β1c4c

= 0 (4.126)

∂β ′′
1c4c

∂β1c4c

=
(

ν2 − 1
)

(4.127)

∂β ′′
1c4s

∂β1c4c

=
γµ2

16
(4.128)

4.3.3.3 Extract ∂β̈1cave

∂β1c4s

,
∂β′′

1c4c

∂β1c4s

,
∂β′′

1c4s

∂β1c4s

from β̈1c(ψi)

∣
∣
∣
∣

±

β1c4s

∂β̈1cave

∂β1c4s

= −
γµ2

32
(4.129)

∂β ′′
1c4c

∂β1c4s

= −
γΩ

2
(4.130)

∂β ′′
1c4s

∂β1c4s

=
(

ν2 − 1
)

(4.131)
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4.3.3.4 Extract ∂β̈1cave

∂β̇1cave

,
∂β′′

1c4c

∂β̇1cave

,
∂β′′

1c4s

∂β̇1cave

from β̈1c(ψi)

∣
∣
∣
∣

±

β̇1cave

∂β̈1cave

∂β̇1cave

= −
γ

8
(4.132)

∂β ′′
1c4c

∂β̇1cave

= 0 (4.133)

∂β ′′
1c4s

∂β̇1cave

= 0 (4.134)

4.3.3.5 Extract ∂β̈1cave

∂β̇1c4c

,
∂β′′

1c4c

∂β̇1c4c

,
∂β′′

1c4s

∂β̇1c4c

from β̈1c(ψi)
∣
∣
∣
∣

±

β̇1c4c

∂β̈1cave

∂β̇1c4c

= 0 (4.135)

∂β ′′
1c4c

∂β̇1c4c

= −
γ

8
(4.136)

∂β ′′
1c4s

∂β̇1c4c

= 0 (4.137)

4.3.3.6 Extract ∂β̈1cave

∂β̇1c4s

,
∂β′′

1c4c

∂β̇1c4s

,
∂β′′

1c4s

∂β̇1c4s

from β̈1c(ψi)

∣
∣
∣
∣

±

β̇1c4s

∂β̈1cave

∂β̇1c4s

= 0 (4.138)

∂β ′′
1c4c

∂β̇1c4s

= 0 (4.139)

∂β ′′
1c4s

∂β̇1c4s

= −
γ

8
(4.140)

4.3.3.7 Extract ∂β̈1cave

∂θ1s
,

∂β′′
1c4c

∂θ1s
,

∂β′′
1c4s

∂θ1s
from β̈1c(ψi)

∣
∣
∣
∣

±

θ1s

∂β̈1cave

∂θ1s
= 0 (4.141)

∂β ′′
1c4c

∂θ1s
= 0 (4.142)

∂β ′′
1c4s

∂θ1s
= −

γ

16
µ2 (4.143)
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4.3.3.8 Extract ∂β̈1cave

∂θ3c
,

∂β′′
1c4c

∂θ3c
,

∂β′′
1c4s

∂θ3c
from β̈1c(ψi)

∣
∣
∣
∣

±

θ3c

∂β̈1cave

∂θ3c
= 0 (4.144)

∂β ′′
1c4c

∂θ3c
=

γ

8
(
µ2

2
+ 1) (4.145)

∂β ′′
1c4s

∂θ3c
= 0 (4.146)

4.3.3.9 Extract ∂β̈1cave

∂θ3s
,

∂β′′
1c4c

∂θ3s
,

∂β′′
1c4s

∂θ3s
from β̈1c(ψi)

∣
∣
∣
∣

±

θ3s

∂β̈1cave

∂θ3s
= 0 (4.147)

∂β ′′
1c4c

∂θ3s
= 0 (4.148)

∂β ′′
1c4s

∂θ3s
=

γ

8
(
µ2

2
+ 1) (4.149)

4.3.4 Construction of the state equation

Combining equations 4.123–4.149 and equations 4.50–4.51,the state equation of the 4/rev
LTI-HHC model can be constructed as follows:







β̈1cave

β̇1cave

β ′′
1c4c

β ′′
1c4s

β ′
1c4c

β ′
1c4s







=













−γ/8 (ν2 − 1) 0 0 0 −γµ2/32
1 0 0 0 0 0
0 0 −γ/8 0 (ν2 − 1) −γΩ/2
0 −γµ2/16 0 −γ/8 γµ2/16 (ν2 − 1)
0 0 1 0 0 4Ω
0 0 0 1 −4Ω 0



















β̇1cave

β1cave

β̇1c4c

β̇1c4s

β1c4c

β1c4s







+














0 0 0
0 0 0

0 γ
8
(µ

2

2
+ 1) 0

− γ
16
µ2 0 γ

8
(µ

2

2
+ 1)

0 0 0
0 0 0




















θ1s
θ3c
θ3s







+Mθ +Mβ (4.150)

The vector on the left-hand side of equation 4.150 consists of both primed and dotted
variables. To conform with the standard state-space representation, ẋ = Ax + Bu,
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the primed variables are replaced with the dotted variablesusing equations 4.50–4.53 as
follows:







β̈1cave

β̇1cave

β ′′
1c4c

β ′′
1c4s

β ′
1c4c

β ′
1c4s







=






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β̈1c4c

β̈1c4s

β̇1c4c

β̇1c4s







+







0
0

8Ωβ̇1c4s − 16Ω2β1c4c

−8Ωβ̇1c4c − 16Ω2β1c4s

4Ωβ1c4s

−4Ωβ1c4c







(4.151)

Substitute equation 4.151 in equation 4.150, and re-arrange the equation. The 4/rev LTI-
HHC model is given by:







β̈1cave

β̇1cave

β̈1c4c

β̈1c4s

β̇1c4c

β̇1c4s







= A







β̇1cave

β1cave

β̇1c4c

β̇1c4s

β1c4c

β1c4s







+ B







θ1s
θ3c
θ3s







+Mθ +Mβ (4.152)

where

A =













−γ/8 (ν2 − 1) 0 0 0 −γµ2/32
1 0 0 0 0 0
0 0 −γ/8 −8Ω (ν2 − 1 + 16Ω2) −γΩ/2
0 −γµ2/16 8Ω −γ/8 γµ2/16 (ν2 − 1 + 16Ω2)
0 0 1 0 0 0
0 0 0 1 0 0













(4.153)

B =














0 0 0
0 0 0

0 γ
8
(µ

2

2
+ 1) 0

− γ
16
µ2 0 γ

8
(µ

2

2
+ 1)

0 0 0
0 0 0














(4.154)
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4.3.5 Analytical model validation

From equation 4.152,̈β1cave, β̈1c4c, andβ̈1c4s can be expressed as follows:

β̈1cave = −
γ

8
β̇1cave +

(

ν2 − 1
)

β1cave −
γµ2

32
β1c4s (4.155)

β̈1c4c = −
γ

8
β̇1c4c − 8Ωβ̇1c4s +

(

ν2 − 1 + 16Ω2
)

β1c4c −
γΩ

2
β1c4s

+
γ

8

(µ2

2
+ 1

)

θ3c (4.156)

β̈1c4s = −
γ

8
β̇1c4s + 8Ωβ̇1c4c −

γµ2

16
β1cave +

γΩ

2
β1c4c +

(

ν2 − 1 + 16Ω2
)

β1c4s

+
γ

8

(µ2

2
+ 1

)

θ3s −
γ

16
µ2θ1s (4.157)

Substitute equations 4.155–4.157 in equation 4.44,

β̈1c = −
γ

8

[

β̇1cave +
(

β̇1c4c + 4Ωβ1c4s

)

cos 4ψ +
(

β̇1c4s − 4Ωβ1c4c

)

sin 4ψ
]

+
(

ν2 − 1
)(

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
)

−
γµ2

16

(

β1cave sin 4ψ +
1

2
β1c4s

)

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ +Mθ +Mβ (4.158)

Compare equation 4.158 with the equation 4.113 which is shown below:

β̈1c = −
γ

8

[

β̇1cave +
(

β̇1c4c + 4Ωβ1c4s

)

cos 4ψ +
(

β̇1c4s − 4Ωβ1c4c

)

sin 4ψ
]

+
(

ν2 − 1
)(

β1cave + β1c4c cos 4ψ + β1c4s sin 4ψ
)

−
γµ2

16

(

β1cave sin 4ψ +
1

2
β1c4s

)

−
γµ2

16

(1

2
β1c4c sin 8ψ −

1

2
β1c4s cos 8ψ

)

+
γ

8

(µ2

2
+ 1

)(

θ3c cos 4ψ + θ3s sin 4ψ
)

−
γ

16
µ2θ1s sin 4ψ +Mθ +Mβ (4.113) repeated

The differences are the 8/rev frequency contents which weretruncated from the
linearization procedures. These 8/rev frequency contentscan be retained in the linear model
if the prescribed solution of equation 4.18 also contains 8/rev components as well as 4/rev
components.
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4.4 LTI-HHC model validation

In this section, the LTI-HHC model was validated against thefull-blown nonlinear
helicopter model by comparing their 4/rev hub load and the rotor responses over several
flight configurations.

4.4.1 4/rev hub load comparison

Validation was conducted for forward velocity of 40, 80, and120 kts. Each case starts
from the trim condition without HHC input. After two rotor revolutions, the HHC input is
engaged, and results are shown in figures 4.1–4.15. The HHC input is a 3/rev input with an
amplitude of 0.6◦ at 0◦ phase angle.

The 4/rev hub loads calculated from the nonlinear helicopter model are the output of
the harmonic analyzer which contain time delays. On the other hand, the 4/rev hub loads
calculated from LTI-HHC model are obtained instantaneously. There is no time delay
associated with the sample window as with the harmonic analyzer. The effects of the
sample window can be approximated by an equivalent lowpass filter that must be included
in the output of the LTI-HHC model before it is compared to thenonlinear 4/rev results.

As illustrated in the figures 4.1–4.15, the LTI-HHC model produces the levels of 4/rev
vibrations that are very close to the nonlinear 4/rev vibration. A close match is seen not
only in steady state condition but in transients. The small ripples in the nonlinear results
are the 8/rev and higher frequencies that were not modeled inthe LTI-HHC model.

The effect of pilot input on vibrations is illustrated in figures 4.16–4.30. The input is
a lateral cyclic doublet input with an amplitude of one stickinch. From the figures, the
LTI-HHC model shows the capability of predicting the 4/rev hub loads. There are strong
8/rev and higher frequencies in the nonlinear results that are not modeled in the LTI-HHC
model. However, the 8/rev frequency can be captured by the LTI-HHC model if the 8/rev
frequency is prescribed in the assumed solution. The dimension of the LTI-HHC model
matrices will increase to accommodate the additional 8/revrotor states.

4.4.2 Rotor states comparison

Figures 4.31–4.33 compare the rotor states from both the nonlinear and the LTI-HHC model
simulation for the 120 kts case. The HHC input is the same 3/rev input in the previous case.
The rotor states compared in the figures are full values, i.e., they are not 4/rev rotor states.
The rotor state data of the nonlinear helicopter model is obtained directly from the time
integration of the equations of motion. Since this set of data has never passed through the
harmonic analyzer to obtain its 4/rev components, the effect of the sample window is not
included.

To compare with nonlinear results, rotor state data of the LTI-HHC model is constructed
by modulating instantaneous 4/rev rotor state data as shownin equation 4.18 without
including the effect of the sample window. These figures illustrate that the prediction from
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the LTI-HHC model is very similar to the nonlinear helicopter model in both steady-state
and transient condition.

Figures 4.34–4.36 show the effect of lateral pilot input on blade rigid flap, rigid lag,
and torsion modes for both nonlinear and the LTI-HHC models.Input is a lateral cyclic
doublet input with the amplitude of one stick inch. Variation of the 4/rev rigid flap and
4/rev rigid lag modes within the nonlinear helicopter modelare relatively small compared
with variation of their mean value. With the LTI-HHC model, 4/rev characteristic of the
torsion mode of nonlinear helicopter model as shown in figure4.36 is predicted not only in
the steady-state condition but also in the transient.
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Figure 4.1. Longitudinal hub shear comparison; V=40 kts, W=14,000 lb,A3 = 0.6o,
φ3 = 0o.
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Figure 4.2. Lateral hub shear comparison; V=40 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.3. Vertical hub shear comparison; V=40 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.4. Longitudinal hub moment comparison; V=40 kts, W=14,000 lb,A3 = 0.6o,
φ3 = 0o.
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Figure 4.5. Lateral hub moment comparison; V=40 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.6. Longitudinal hub shear comparison; V=80 kts, W=14,000 lb,A3 = 0.6o,
φ3 = 0o.
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Figure 4.7. Lateral hub shear comparison; V=80 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.8. Vertical hub shear comparison; V=80 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.9. Longitudinal hub moment comparison; V=80 kts, W=14,000 lb,A3 = 0.6o,
φ3 = 0o.
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Figure 4.10. Lateral hub moment comparison; V=80 kts, W=14,000 lb,A3 = 0.6o,
φ3 = 0o.
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Figure 4.11. Longitudinal hub shear comparison; V=120 kts,W=14,000 lb,A3 = 0.6o,
φ3 = 0o.
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Figure 4.12. Lateral hub shear comparison; V=120 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.13. Vertical hub shear comparison; V=120 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.14. Longitudinal hub moment comparison; V=120 kts, W=14,000 lb,A3 = 0.6o,
φ3 = 0o.
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Figure 4.15. Lateral hub moment comparison; V=120 kts, W=14,000 lb,A3 = 0.6o,
φ3 = 0o.
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Figure 4.16. Longitudinal hub shear comparison; V=40 kts, W=14,000 lb, 1-inch lateral
cyclic doublet input.
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Figure 4.17. Lateral hub shear comparison; V=40 kts, W=14,000 lb, 1-inch lateral cyclic
doublet input.
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Figure 4.18. Vertical hub shear comparison; V=40 kts, W=14,000 lb, 1-inch lateral cyclic
doublet input.
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Figure 4.19. Longitudinal hub moment comparison; V=40 kts,W=14,000 lb, 1-inch lateral
cyclic doublet input.
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Figure 4.20. Lateral hub moment comparison; V=40 kts, W=14,000 lb, 1-inch lateral cyclic
doublet input.
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Figure 4.21. Longitudinal hub shear comparison; V=80 kts, W=14,000 lb, 1-inch lateral
cyclic doublet input.
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Figure 4.22. Lateral hub shear comparison; V=80 kts, W=14,000 lb, 1-inch lateral cyclic
doublet input.
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Figure 4.23. Vertical hub shear comparison; V=80 kts, W=14,000 lb, 1-inch lateral cyclic
doublet input.
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Figure 4.24. Longitudinal hub moment comparison; V=80 kts,W=14,000 lb, 1-inch lateral
cyclic doublet input.
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Figure 4.25. Lateral hub moment comparison; V=80 kts, W=14,000 lb, 1-inch lateral cyclic
doublet input.
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Figure 4.26. Longitudinal hub shear comparison; V=120 kts,W=14,000 lb, 1-inch lateral
cyclic doublet input.
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Figure 4.27. Lateral hub shear comparison; V=120 kts, W=14,000 lb, 1-inch lateral cyclic
doublet input.
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Figure 4.28. Vertical hub shear comparison; V=120 kts, W=14,000 lb, 1-inch lateral cyclic
doublet input.
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Figure 4.29. Longitudinal hub moment comparison; V=120 kts, W=14,000 lb, 1-inch
lateral cyclic doublet input.
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Figure 4.30. Lateral hub moment comparison; V=120 kts, W=14,000 lb, 1-inch lateral
cyclic doublet input.
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Figure 4.31.β comparison; V=120 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.32.ζ comparison; V=120 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.33.φ comparison; V=120 kts, W=14,000 lb,A3 = 0.6o, φ3 = 0o.
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Figure 4.34.β comparison; V=120 kts, W=14,000 lb, 1-inch lateral cyclic doublet input.
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Figure 4.35.ζ comparison; V=120 kts, W=14,000 lb, 1-inch lateral cyclic doublet input.

114



-0.2

0.0

0.2

3210

Time (sec)

φ1s
(deg)

-1

0

1

3210

δlat
(in)

-0.6

-0.4

-0.2

3210

φ0
(deg)

 Nonlinear Model
 LTI-HHC Model

-0.2

0.0

0.2

3210

φ1c
(deg)

Figure 4.36.φ comparison; V=120 kts, W=14,000 lb, 1-inch lateral cyclic doublet input.

115



116



5 HHC and AFCS Interaction Study

A linear time-invariant state-space approximation that accurately models the coupled rotor-
fuselage dynamics, including the higher harmonic responseof the rotor, has been developed
in chapter 4. This work allows several important questions to be answered regarding
the dynamic interaction between Automatic Flight Control System (AFCS) and High
Harmonic Control (HHC), including the effect on handling-qualities. The key breakthrough
is in the method to extract a linear time-invariant model that includes a harmonic analyzer
and allows the periodicity of the helicopter response to be captured. The coupled high-
order linear model provides the needed level of dynamic fidelity to permit study of AFCS
and HHC interaction.

5.1 Effect of a fixed HHC input on rigid body dynamics

To understand the potential coupling between AFCS and HHC, an analysis was first
performed in the open-loop system to determine whether a fixed HHC input had any direct
effect on the rigid-body dynamics. Any influence from the HHCwill be indicated by the
changes in the frequency response. Before proceeding with any interaction analyses, it is
important to validate the baseline (HHC-off) cases of both LTI-HHC and nonlinear models
by comparing their frequency responses against the flight test data.

5.1.1 Open-loop frequency response validation

In section 4.4, the LTI-HHC model was validated against the nonlinear model by comparing
the hub load responses over several flight configurations. Itis a time domain comparison,
and it is sufficient for checking the aeromechanic quantities. For flight dynamics analysis,
it is more common to perform the comparison in frequency domain. Figure 5.1 shows the
P/δlat frequency response comparison between the LTI model, the nonlinear model, and
the flight test. Unless noted otherwise, all the results presented in this chapter have the
weight of 14,000 lb at a speed of 120 kts. The frequency response of the nonlinear model
was obtained by performing frequency sweeps in pilot lateral stick input and recording the
vehicle roll rate response time history. TheP/δlat frequency response was identified by
extracting the information from the time history data usingCIFERR© (ref. 58).

Since the LTI-HHC model is already in the linear system, its frequency response can
be calculated directly from the LTI-HHC model. Figure 5.1 shows that all three cases
agreed with each other in the frequency range of 2–20 rad/sec. There were some small
disagreements in the frequency range of 1–2 rad/sec betweenthe flight test result and the
analytical results, but the difference is not significant. Comparing the nonlinear and LTI-
HHC frequency responses, there is also a little difference,and most of the difference is in
the phase curve below 2 rad/sec.
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5.1.2 Effect of an optimum three/rev input on rigid body dynamics

Figure 5.2 shows the effect of a fixed HHC input on the rigid body dynamics for the
nonlinear model. The fixed HHC input chosen is an optimum 3/rev input which is
calculated from the optimization procedure that minimizedthe norm of 4/rev in-plane hub
shears. The optimization procedure is similar to the one described in section 2.8. This
figure indicates that the optimum 3/rev input has no effect onthe rigid body dynamics in
the frequency range of interest. Figure 5.3 shows the same conclusion for the LTI-HHC
model.

The frequency response of the nonlinear model with the optimum 3/rev input is extracted
using the same method as the nonlinear baseline (HHC-off) case stated earlier. For the LTI-
HHC model, one cannot simply include an optimum 3/rev input and compute the frequency
response because the linear model will only respond at the same frequency as the input
signal. In this case, the input signal is a 3/rev (81 rad/sec for UH-60) and it is beyond the
frequency range of interest. To see the effect of the optimum3/rev input on rigid body
dynamics, one must engage the HHC loops and let the effects ofthe 3/rev input propagate
through the HHC feedback loops.

Although the results above show that the HHC input has no effect on rigid body dynamics
(or AFCS), it does not necessarily mean the AFCS has no effecton the HHC. There is still
a possibility that the AFCS affects vehicle vibration and indirectly affects the HHC. This
closed-loop analysis is discussed in the next section.

5.2 Interaction of HHC and AFCS

A SIMULINK R© simulation of the combined flight and higher harmonic control system
was developed for analysis and optimization in the Control Designers Unified Interface,
CONDUIT R© (ref. 59). The key elements of the simulation are illustrated in figure 5.4,
and they are:

1. Higher-order linear airframe model that provides the flight mechanics and 4/rev
vibration responses to both pilot and HHC inputs.

2. Automatic Flight Control System loops based on a simple proportional-integral-
derivative (PID) controller in roll, pitch, and yaw.

3. Typical actuator/sensor filter dynamics.

4. Equivalent harmonic analyzer approximates the sample window dynamics and
equivalent time delay.

5. Higher harmonic controller based on fixedT -matrix feedback.

6. Zero-order-hold approximation simulates the discrete HHC update time delay.
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Like the open-loop analysis, it is important to validate theclosed-loop model to ensure
that the linear continuous time domain model implemented inSIMULINK R© is equivalent
to the nonlinear multi-rate model. This can be accomplishedby comparing the broken
control loop response of both models.

5.2.1 Broken control loop response validation

Figure 5.5 illustrates the schematics of both linear and nonlinear simulation models. The
simulation model shown in figure 5.5a is a nonlinear multi-rate system. Because the control
system analysis was performed in the linear continuous-time domain, the entire nonlinear
multi-rate system was converted to an equivalent linear continuous time system as shown
in figure 5.5b. The harmonic analyzer is now embedded within the LTI-HHC model. The
effect of the sample window is modeled by an equivalent lowpass filter. The discrete HHC
controller is transformed to a continuous-time domain HHC controller. The discrete HHC
update (zero-order-hold) is approximated by a Padé function.

The broken control loop response is a method of studying loopstability; it allows one to
determine the gain and phase stability margins. Usingθ3c broken control loop for instance,
it is theθ3c response at point B in figure 5.5 with respect to theθ3c input at point A while
the 3/rev-cosine and 3/rev-sine loops are open. The flight control system is also disabled
during the frequency sweep. For the purpose of the validation, six broken control loop
responses (3/rev-cosine, 3/rev-sine, 4/rev-cosine, 4/rev-sine, 5/rev-cosine, 5/rev-sine) were
extracted from each model, and the direct comparisons are shown in figures 5.6-5.8. In
these figures, the frequency response of the LTI-HHC model matches very well with the
one from the nonlinear model in both the magnitude and phase curves for all six loops
within frequency range of interest. This indicates that thelinear continuous time domain
model in figure 5.5b is equivalent to the nonlinear multi-rate model in figure 5.5a.

Although HHC input operates at 3, 4, 5/rev frequencies (or 81, 108, 135 rad/sec for
UH-60 helicopter), the crossover frequency of each HHC loopis only about 1 rad/sec. The
crossover frequency, gain margin, and phase margin of each HHC loop are tabulated in
table 5.1. Because of the high HHC input frequency, one wouldexpect a large frequency
separation between the flight control and HHC system and assume these two systems do
not interfere with each other. However, research results show that not only do the HHC
loops operate at a much lower frequency, but they are also within the frequency range of
the flight control system. This is another indication of potential HHC/AFCS interaction.

5.2.2 Optimization of AFCS (HHC-off)

One way to see whether the closed-loop HHC system has any effect on the AFCS or
handling-qualities is to optimize the AFCS for the satisfactory (Level 1) handling-qualities
with the HHC loops disengaged (fig. 5.9). Any influence introduced by closing the HHC
loops will be indicated by the change in handling-qualities. The AFCS implemented in
this study is based on a simple PID controller (fig. 5.10) in roll, pitch, and yaw axis. The
PID controller computes individual actuator command with respect to the changes in rigid
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body states and pilot inputs. The actuator is a second order model (fig. 5.11) including
both the position and rate saturation limits. The actuator design parameters are tabulated in
table 5.2.

First, CONDUITR© was used to optimize the PID gains of the AFCS, with the HHC
loops disengaged. The PID gains were tuned to achieve satisfactory handling-qualities,
based on the Aeronautical Design Standard (ADS-33E (ref. 60)), and standard control-
system design specifications list below (Appendix A):

• Eigenvalue real part (EigLcG1)

• Crossover frequency (CrslnG1)

• Stability margins (StbMgG1)

• Bandwidth (BnwRoF3)

• Step response damping ratio (OvsAtH1)

• Crossover frequency (CrsMnG1)

• Eigenvalue damping ratio (EigDgG1)

• Step response rise time (RisTmG1)

CONDUIT rapidly tuned the PID gains to achieve satisfactory(Level 1) requirements
with minimum over-design as shown in figure 5.12. The optimized PID gains are tabulated
in table 5.3. Each symbol in figure 5.12 represents the resultfor a particular loop and
shows that all the responses lie in the light region (Level 1). For example, note that the
roll bandwidth is 3 rad/sec [fig. 5.12d] which meets ADS-33E.The PID gains of the roll
and yaw loops yield bandwidths in excess of the requirement in order to meet some of the
other specifications. It is important to mention that this set of PID gains is not thebestfrom
the handling-qualities point of view. It is simply the lowest gains needed to satisfy all the
design specifications while staying in the level-1 region.

5.2.3 NominalT -matrix controller

Next, theT -matrix HHC loops were engaged with a nominal gain ofk=1 (same in all six
loops) as shown in figure 5.13. This is referred to as the “nominal” case. With both AFCS
and HHC loops closed, the CONDUITR© HQ design specifications were re-evaluated
without changing the PID gains. The results are presented infigure 5.14 which shows
that the closing of the HHC loops had a negligible effect on the AFCS performance and
overall handling-qualities. This indicates the lack of dynamic coupling of HHC into flight
control. Therefore, no re-tuning of the AFCS was needed for the combined AFCS/HHC
system. The lack of interaction from HHC to AFCS is consistent with the earlier system
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identification results obtained in section 5.1.2, which also showed no effect of an HHC
input on the rigid-body dynamic response.

In terms of suppressing the steady state vibration level, the nominalT -matrix controller
can reduce the vibration by a large amount. Figures 5.15-5.18 show the changes in the
lateral and longitudinal 4/rev vibration level with respect to the HHC and pilot stick inputs
for both the baseline case (HHC-off) and nominal (k=1) case. At t=0, the vehicle starts
from a steady state condition, and the 4/rev vibrations are maintained at a steady level. The
baseline 4/rev vibrations are tabulated in the first column of table 5.4. At t=5 seconds, the
HHC loops are engaged and the nominalT -matrix controller begins to reduce the 4/rev
vibrations to a lower level. It takes approximately 2–3 seconds for the 4/rev vibrations
to reach a new steady state condition where 67% of 4/rev in-plane vibrations have been
reduced (Table 5.4). The large time constant of 2–3 seconds consists with the slow HHC
loop dynamics stated in section 5.2.1.

5.2.4 Transient vibration in maneuvering flight

While the impact of HHC on handling-qualities is negligible, there are significant vibration
responses to pilot inputs in both the baseline (HHC-off) case and the nominal (k=1)
case. Figures 5.15 and 5.16 show the large transient responses for a -50◦ roll maneuver
(moderate) starting from t=12 seconds. Once the maneuver iscompleted, the vehicle
reaches a new trim vibration level. Similar results can alsobe observed in figures 5.17
and 5.18, which demonstrate the large transient responses for a 20◦ pitch maneuver starting
from t=12 seconds.

UsingFX4C
as an example, figure 5.19 shows the∆FX4C

response of both the baseline
and nominal case for the same -50◦ roll maneuver. The symbol∆ denotes the steady state
vibration ofFX4C

at t=12 seconds has been removed from the figure. With the baseline case,
figure 5.19 shows that there is a maximum transient peak excitation of 150 lb above the
steady state vibration level in theFX4C

channel. Note that theFX4C
steady state vibration

level for the baseline case is 151 lb (Table 5.4). Therefore,this maximum transient peak
excitation is roughly the same as the baseline steady state vibration level. With the nominal
T -matrix controller engaged, the maximumFX4C

vibration transient increases to 163 lb,
which is 9% higher than the baseline case. In other words, with the nominalT -matrix
controller engaged, the transient vibration response during maneuvering flight reaches
similar levels to the trim condition with HHC-off. Nevertheless, the nominalT -matrix
controller is able to reduce the transient load back to lowerlevels faster than baseline case
after the 15-second point.

The performance of the HHC system in suppressing the vibration response to pilot input
is also reflected in the frequency-responses:FX4C

/δlat,FX4S
/δlat,FY4C

/δlat, etc. The RMS,
determined from the integral under the frequency-responsesquared functions, is a useful
measure of the vibration response to the broadband pilot inputs for different HHC system
designs. The spectral integration to determine the RMS is conducted up to a frequency of
3 rad/sec. The 3 rad/sec cut-off frequency corresponds to the roll command bandwidth,
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and it is a good estimate of the maximum closed-loop pilotingfrequency. Finally, the RMS
levels were normalized using the baseline vibration RMS forthe roll maneuver to show the
relative improvement (or degradation) in vibration suppression by the HHC system.

Figure 5.20 shows the frequency response ofFX4C
with respect to the lateral pilot input.

Looking at the magnitude curve, the nominal case has a small magnification effect at higher
frequency range (1–3 rad/sec) and a large reduction effect below the frequency of 0.9
rad/sec. Both effects are consistent with the result shown in figure 5.19, where there is
a small increase in the transient vibration excitation and alarge reduction in steady state
vibration level. Because the nominalT -matrix controller is capable of suppressing the
FX4C

/δlat vibration response more than it magnifies, there is 4.1% reduction inFX4C
/δlat

channel. The small reduction of 4.1% does not seem to reflect amount of vibration
suppression shown in the figure. This is because the figure is on the logarithm scale,
which biases toward the lower range. When including other seven channels (FX4S

/δlat,
FY4C

/δlat, FY4S
/δlat, FX4C

/δlon, FX4S
/δlon, FY4C

/δlon, FY4S
/δlon), the average vibration in

maneuvering flight for a nominal case is 3.2% above the baseline case (Table 5.5). This
shows that the nominalT -matrix controller is ineffective for vibration suppression during
maneuvers.

5.2.5 Ideal integrator approximation

Many previous studies (refs. 6,18–20,22,23,61–64) represented the helicopter plant model
in figure 5.13 by a fixedT -matrix, which is a linear approximation of the vibration response
to the HHC inputs at a steady-state condition. In other words, T -matrix corresponds to the
linear state-space model at DC gain1 to within the accuracy of the linear model extraction
process. This method eliminates the need for a detailed model of the periodic helicopter
dynamics. The nominal (k=1) T -matrix controller (HHC Controller in fig. 5.13) is simply
a k/s diagonal compensator multiplied by the fixed-gain regulator T †. The broken-loop
response matrix(k/s) T † T will thus be a nearly diagonal matrix ofk/s responses.
This corresponds to single-input/single-output loop and without loop interactions (e.g., no
response of the3s loop to 3c transients). Assuming a nominal gain ofk=1, this ideal
approximation gives loop crossover frequencies ofωc=1 rad/sec, 90◦ phase margin, and
infinite gain margin in every loop as illustrated in figure 5.21.

Next, the helicopter vibration model is replaced with the LTI-HHC model. The actual
broken-loop response for the 3/rev-cosine loop shown in figure 5.21 confirms that thek/s
approximation is accurate for frequencies up to about the 1 rad/sec crossover frequency.
There is a gain offset associated with the deviation betweenthe steady response of the
nonlinear simulation (T -matrix) and the steady-state response of the linearized model. For
frequencies above 1 rad/sec, there is significant deviationfrom the 1/s ideal response,
especially in phase, due to the dynamics of the 4/rev vibration response relative to the
simple steady-state approximation (T -matrix).

1DC Gain is the ratio of theoutput/input signal at the steady-state condition.
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The FX4C
vibration response to a unit pulse input is shown in figure 5.22 to be well

damped. Increasing the HHC feedback gain (k=2) raises the broken-loop crossover
frequency and the closed-loop HHC disturbance rejection bandwidth (fig. 5.23). There
is an associated reduction in the closed-loop transient settling time, as was also concluded
by Shin et al. (ref. 5). But, there is also a magnification of peak disturbance at frequencies
above crossover (fig. 5.23), which is consistent with classical control theory and which
shows up in the time-domain as well (fig. 5.22).

5.2.6 Optimized HHC controller

Analyses with CONDUITR© show that an improvement in the suppression of vibration
transients during the maneuvering flight can only be achieved by increasing the HHC
crossover frequency to a value that is close to the 3 rad/sec piloted bandwidth. At
this increased crossover frequency, the use of theT -matrix (which is a steady-state
approximation) to simulate the helicopter vibration modelis unacceptable for controller
optimization and analysis, and must be replaced with the complete dynamic LTI-HHC
model developed in chapter 4. Furthermore, the simplek/s HHC controller architecture
must be augmented with the addition of a second order lead-lag compensator (fig. 5.24) in
each loop to add robustness and achieve the needed stabilitymargins. The HHC feedback
controller now takes the form:

H(s) =

(

k

s

)(

ω2
den

ω2
num

)(

s2 + 2ζnumωnums+ ω2
num

s2 + 2ζdenωdens+ ω2
den

)

T † (5.1)

Each HHC control loop contains five design parameters, and the same controller is used for
the cosine and sine loops of a particular harmonic. Thus, forthe three harmonics (6 loops),
there are 15 HHC feedback parameters in total.

CONDUIT R© was used for HHC controller analyses and optimization. The key HHC
design specifications included in the analysis were HHC loopstability margins and
vibration suppression performance. Gain and phase stability margins were determined
for each of the six broken HHC loops, and the vibration suppression performance are
determined from the RMS value. The design metrics are list below (Appendix A):

• Eigenvalue real part (EigLcG1)

• Stability margins (StbMgG1)

• Actuator RMS value (RisAcG1)

CONDUIT R© quickly minimized the sum of the normalized vibration RMS values for the
four in-plane shears to both lateral and longitudinal inputwithout sacrificing the required
HHC loop stability margins. The optimum HHC feedback parameters are presented in
table 5.6. The final evaluations of these HHC design specifications are shown in figure 5.25.
Subfigures 5.25e, f, g, and h show the relative improvement/degradation in vibration
suppression by the optimized HHC controller. The RMS>1 represents the vibration level as
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increased with respect to the baseline (HHC-off) case, the RMS<1 indicates the vibration
level as reduced with respect to the baseline case, and the RMS=1 represents the vibration
level as the same as the baseline case. Except for theFY4C

/δlon channel, the vibration levels
of other channels have been reduced.

Following the previous example, figure 5.26 shows the frequency response ofFX4C
with

respect to the lateral piloted input. The magnitude plot (top figure) shows that the optimized
HHC controller has dramatically reduced the vibration response by 64% over broadband
pilot lateral inputs. In terms of overall performance, the average vibration in maneuvering
flight for the optimized HHC controller is 37% below the baseline case (Table 5.5). This
is achieved by increasing the crossover frequencies to their maximum values (e.g.,ωc =
2.5 rad/sec in the 3/rev-cosine loop, Table 5.7) while still maintaining adequate stability
margins (fig. 5.27).

Similar conclusion can also be drawn from the time domain results. Figures 5.28-5.31
are the time history of the vibration responses with the optimized HHC controller. The
vibration responses of the nominal (k=1) and baseline cases (HHC-off) are also presented
in the figures. Looking atFX4C

/δlat in figure 5.28, the vehicle starts from a steady state
condition, and maintains at a steady 4/rev vibration level.At t=5 seconds, the HHC loops
are engaged and the optimized HHC controller begins to reduce the 4/rev vibrations to a
lower level. Although the optimized HHC controller has reached the same new steady-
state condition as the nominalT -matrix controller, the optimized HHC controller has a
much lower raise time which is directly related to the highercrossover frequency. The
peak vibration inFX4C

/δlat channel shown in figure 5.32 is now 73 lb, or 51% below the
baseline result, which again tracks the frequency-domain results of table 5.5 closely. One
can clearly see that the optimized controller has achieved performance superior to that of
the baseline (HHC-off) and nominalT -matrix controller cases.
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Table 5.1. HHC broken-loop stability margins; nominalT -matrix controller.

Broken-Loop ωc Gain Margin Phase Margin
Channel (rad/sec) (dB) (deg)

3/rev COS 0.92 16.0 74.3
3/rev SIN 1.01 14.9 75.4
4/rev COS 1.03 15.9 75.1
4/rev SIN 0.99 16.2 75.9
5/rev COS 1.00 15.8 76.0
5/rev SIN 0.93 16.5 76.7

Table 5.2. Second order actuator model parameters.

Nature Frequency,ω, (rad/sec) 30.0
Damping Ratio,ζ 0.8
Rate Saturation Limit (in/sec) 600.0
Upper Position Limit (in) 60.0
Lower Position Limit (in) -60.0

Table 5.3. Flight control system parameters.

Ku̇ 0.000
Ku 0.000
Kv 0.000
Kp -0.570
Kq -0.766
Kr -0.693
Kφ -2.480
Kθ -3.416
Kψ -2.565
KIφ 1.084
KIθ 0.000
KIψ 0.000
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Table 5.4. Effect of fixedT -matrix on steady state vibration level.

Baseline Nominal (k=1) Percent
(HHC-off) T -matrix Controller Changed

FX4C
(lb) 151.6 51.4 -66.1%

FX4S
(lb) 87.8 21.7 -75.3%

FY4C
(lb) 73.5 -3.4 -95.4%

FY4S
(lb) -61.3 -42.6 -30.5%

Average -66.8%

Table 5.5. Vibration RMS with respect to piloted roll and pitch inputs.

NominalT -matrix Optimized HHC
(k=1) (Lead-Lag)

Roll Maneuvering Flight

FX4C
-4.1% -63.8%

FX4S
1.4% -21.3%

FY4C
20.1% -15.4%

FY4S
13.6% -67.9%

Pitch Maneuvering Flight

FX4C
-1.8% -46.4%

FX4S
-59.9% -51.1%

FY4C
43.5% 9.7%

FY4S
13.0% -40.8%

Average 3.2% -37.1%

Normalized relative to the baseline RMS
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Table 5.6. HHC controller parameters.

NominalT -matrix Optimized Lead-Lag
Controller Controller

K3p 1.000 1.153
K4p 1.000 1.663
K5p 1.000 1.236

ωn3 1.463
ωn4 5.253
ωn5 2.848

ζn3 2.539
ζn4 0.583
ζn5 1.246

ωd3 6.900
ωd4 5.627
ωd5 6.787

ζd3 3.494
ζd4 1.207
ζd5 1.179

Table 5.7. HHC broken-loop stability margins; optimized HHC controller.

Broken-Loop ωc Gain Margin Phase Margin
Channel (rad/sec) (dB) (deg)

3/rev COS 2.46 8.2 74.6
3/rev SIN 2.71 6.0 78.6
4/rev COS 1.52 17.6 52.8
4/rev SIN 1.45 18.0 55.5
5/rev COS 1.80 6.0 99.6
5/rev SIN 1.33 6.6 102.3
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Figure 5.6. HHC 3P broken-loop frequency responses comparison.
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Figure 5.7. HHC 4P broken-loop frequency responses comparison.
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Figure 5.8. HHC 5P broken-loop frequency responses comparison.
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Figure 5.12. CONDUITR© handling-quality design specifications; HHC-loops disengaged.
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Figure 5.30. FX vibration response in pitch maneuvering flight; optimized lead-lag
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6 Summary and Conclusions

The increasing opportunities provided by novel sensing andactuation technologies, and
the advancements in the theory and practice of flight and rotor control systems open
unprecedented possibilities in the constant search for lowvibration levels and favorable
handling qualities in modern helicopters. At the same time,however, greater care than ever
must be taken to ensure that these advanced controls cooperate harmoniously and prevent
adverse dynamic interactions.

The present work makes a contribution toward this goal by developing new mathematical
tools for the analysis and design of active rotor control systems, more specifically, Higher
Harmonic Control (HHC) systems, and by using these tools to carry out the first systematic
study of the interaction of HHC and Automatic Flight ControlSystems (AFCS) available
in the literature.

This chapter provides a summary of the work presented in the research, details
conclusions drawn from its results, and outlines some recommendations for future work.
Chapter 2 describes the key features of the formulation and solution techniques for
the baseline helicopter simulation model used in this study. Chapter 3 provides basic
information on the HHC algorithm. The extraction of a linearized, time-invariant dynamic
model of the helicopter that includes higher harmonic content is a key contribution of this
study, and is described in detail in chapter 4. Other important contribution, namely, the
AFCS-HHC interaction study, is presented in chapter 5. AFCSdesign procedures, and
basic concepts of Fourier analysis and treatment of rotor degrees of freedom, are briefly
reviewed in the Appendices.

6.1 Summary

A realistic analysis of the interaction between AFCS and HHCrequires a mathematical
model of a helicopter of adequate sophistication. This model must be able to provide
sufficiently accurate predictions of vibratory loads in both trimmed and maneuvering
flight. This model was described in chapter 2. An existing, state-of-the-art flight dynamic
simulation model was improved to allow the calculation of vibration levels both at the
center of mass of the helicopter and at specific locations such as pilot and copilot seats.
The results obtained with this model were successfully validated through comparison with
other simulation models and with flight test data.

An HHC system is composed of several elements which must all be modeled in a
rigorous mathematical way. This is the main topic of chapter3. The harmonic analyzer,
which extracts the desired frequency components of the rotor vibrations, was studied first.
A Fourier analysis method was described, and the effects of windows were discussed.
Then, the HHC control algorithm was presented, in the traditional T -matrix form, and
validated through simulation. Finally, issues associatedwith the discrete, rather than
continuous, implementation of HHC were discussed.
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The methodology for the extraction of a high-order, time-invariant linearized model of
the coupled rotor-fuselage system was systematically described in chapter 4. This model
included both the pilot and the HHC inputs, and both the averaged and the high frequency
dynamics of the rotor states. The resulting model contains,as a subset, the more traditional
linear time-invariant representation without high frequency rotor dynamics and higher
harmonic controls. Therefore, the description of the methodology started with this well-
known subset. The methodology to extract the remaining partitions of the state, control,
and output matrices was presented next, with partitions chosen in an order to allow the
progressive introduction of the new key concepts. Chapter 4continued with the application
of a technique to a simplified rotor model, entirely formulated analytically. This model
was not sufficiently sophisticated to be used in the remainder of the research. However, it
was very useful to illustrate and validate the methodology.In fact, the higher harmonics
of the rotor motion and of the control inputs were explicitlyaccessible in the equations in
analytic form. A more complete validation, performed by comparing hub loads and rotor
states predicted by the linearized model and by the full nonlinear simulation, concluded the
chapter.

The newly developed linearized model was then used to carry out a study of the
interaction between HHC and AFCS, described in chapter 5. First, the effect of open-
loop HHC on rigid body dynamics was examined in detail, by observing the changes in the
frequency responses of helicopter to pilot inputs when the HHC controller was turned on.
Then, a full closed-loop interaction study was performed. The study included a validation
through simulation of the response of the helicopter with all control loops closed, an
analysis of the vibratory loads with and without HHC in both trimmed and maneuvering
flight, and a discussion of the tailoring of the HHC controller to improve its performance
in transient maneuvers.

6.2 Conclusions

This section presents the main observations originating from this research, and the key
conclusions of the study. The conclusions related to the newlinearization procedure are
presented first, followed by those concerning the AFCS/HHC interaction study.

6.2.1 Extraction of linearized, time-invariant models

1. The traditional constant coefficient linearized models of coupled rotor-fuselage
dynamics, obtained through multiblade coordinate transformations followed by
averaging over one rotor revolution, are not suitable for studies involving rotor
vibrations, even if the control vector includes the higher harmonics typical of HHC.
In fact, the averaging removes all higher harmonics of the rotor response. Such a
model will capture the effects of HHC on the low frequency rigid body motion of the
helicopter and of the tip path plane, but not on the N/rev vibrations.
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2. The constant coefficient linearized model developed in this research, which explicitly
includes states describing the high frequency rotor dynamics, does capture the
vibratory loads, and the effects that HHC can have on them. The price for modeling
vibrations with a linear time-invariant system, compared with a linear system with
periodic coefficients, is an increase in the size of the system. On the other hand, the
entire arsenal of tools of linear time-invariant system theory can now be used.

3. The validation with the full nonlinear simulation model shows that there is very good
agreement between the hub loads predicted by the new LTI-HHCmodel and the hub
loads of the nonlinear model, both for HHC and pilot inputs. This suggests that
a linearized model that intrinsically includes higher rotor harmonics is sufficiently
accurate for full load predictions, at least for the aircraft configuration and flight
conditions considered in this study. In other words, periodicity plays a far more
important role than nonlinearity.

4. One limitation of the current LTI-HHC model is that it can model only the 4/rev
components of the system and not the higher frequency components that enter the
fuselage, i.e., 8/, 12/rev, etc., for the 4-bladed rotor of this study. However, this
limitation can be easily overcome, by including additionalharmonics in the LTI-
HHC model using the same methodology as for the 4/rev states.

5. Possibly for historical reasons, the starting point for the vast majority of HHC
modeling research and applications has been an update equation that links the
vibration harmonics to the HHC harmonics through theT -matrix. Using instead
an (A,B,C,D) state-space representation as a starting point leads to a much richer
and informative picture. In fact, the traditional update equation is included as a
subset (through a partition of the control matrixB), and the additional effects on
vibrations of pilot inputs and all the states, including aircraft rigid body, rotor, and
inflow states, are now modeled explicitly. These additionaleffects are not included in
the traditional update equations, and are usually taken into account indirectly through
on-line identification and adaptation schemes.

6.2.2 HHC/AFCS interaction study

1. In general, the closed-loop HHC system has little influence on the handling qualities
characteristics of the helicopter, and on the behavior of the flight control system, at
least for the articulated rotor configuration used in this study. This conclusion is
drawn on the basis of the analysis of the effects of HHC on the frequency response
to pilot inputs. The effects of HHC on trim were not addressedexplicitly, but
the simulated free flight responses with HHC suggest that these effects are not
significant.

2. Although the typical 3/, 4/, and 5/rev HHC inputs for a 4-bladed rotor are at high
frequency (81, 108, and 135 rad/sec, respectively, for the helicopter used in this
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study), the crossover frequency of each HHC loop is only about 1 rad/sec. Because
of the high HHC input frequency, one might expect a large frequency separation
between the flight control and the HHC inputs, and assume thatthese two systems
would not interfere with each other. Instead, the results clearly show that this is not
the case, and that the potential for AFCS/HHC interaction does exist.

3. The vibration response tomaneuverinputs, and not just to steady state inputs, must
be considered as part of the HHC system design process. If theHHC algorithm is not
properly designed, the transient vibrations in the early phases of a maneuver could
be higher than if no HHC system was present.

4. An HHC controller that improves the suppression of vibration transients has the
higher loop crossover frequencies. For the cases studied, these frequencies are of
the order of 3 rad/sec. At these frequencies, the use of theT -matrix approach to
simulate the helicopter vibration model is unacceptable for controller analysis and
optimization. This is because theT -matrix is simply ak/s diagonal compensator
multiplied by a fixed-gain regulator, and a comparison with the more sophisticated
LTI-HHC model developed in this study shows that it is inaccurate for crossover
frequencies greater than about 1 rad/sec. Increasing theT -matrix controller
feedback gain (k=2) reduces the closed-loop transient settling time and increases
the magnitude of the peak disturbance at frequencies above crossover frequency.

5. For the maneuvering flight conditions considered in this study, the optimized HHC
system designed using the new linearized model reduces vibratory hub shears by 37%
compared to the baseline case, and 39% compared to nominalT -matrix controller
case. Therefore, the need for on-line identification and adaptation of theT -matrix is
greatly reduced if not completely eliminated. This is important from a practical point
of view, because of the danger that an adaptive system on board a helicopter might
react in unpredictable and unwanted ways, which can clearlycreate safety-of-flight
issues.

6.3 Future work

The research presented in this study has shown the importance of the HHC/AFCS
interaction on the transient vibration suppression. However, there are areas in which the
present analysis was limited. This section suggests some areas for improvement.

1. Improve the flexible blade model, for example by adding additional blade modes
and increasing the number of blade finite elements. While thevibration results can
be considered qualitatively representative, a more sophisticated model is probably
needed for quantitative evaluations (e.g., for a precise quantification of the benefits
of HHC).
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2. For the same reason just mentioned, improve airload calculations, especially by
adding non-uniform inflow and unsteady aerodynamics modeling. For the design
of the HHC system, the improved models must obviously be in state-space form (not
necessarily linear). This characteristic is not required for validation purposes.

3. Further validate the vibratory hub load level predicted by the mathematical model
with wind tunnel data or flight test data. Because of the largescatter, the flight test
data used in this study were only adequate for a qualitative validation. Unfortunately,
no other flight test data was publicly available for a helicopter without some or all of
the normal vibration suppression devices.

4. Repeat the study with a helicopter configuration with lowly damped coupled
rotor/body modes, such as hingeless or bearingless rotor helicopters. The articulated
rotor configuration used in this study had hydraulic lag dampers, and aeromechanic
stability was never an issue.

5. Apply advanced control design theories such as H2, H∞ control design methods in
an attempt to achieve further improvements in vibration reduction that may remove
the need for adaptiveT -matrices.
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APPENDIX A

CONDUIT HQ-WINDOW SPECIFICATIONS

Following are the handling-qualities specifications and control system metrics used in the
AFCS optimization procedure:

(a) Eigenvalues (All) This criterion is used to ensure that all the real parts of the
eigenvalues of the system are zero or negative, ensuring that all the dynamics are stable
or neutrally stable. At any given iteration, the sum of unstable eigenvalues real parts or the
largest stable eigenvalue is returned as the spec metric.

(b) Minimum Crossover Frequency The crossover frequency is defined as the
frequency where the magnitude curve crosses 0 dB. For multiple crossings, the highest
crossover frequency is returned. This specification is intended as a hard constraint to a
greater than zero value of crossover frequency.

(c) Gain/Phase Margins The spec has very sophisticated logic for treating stable,
conditionally stable, and unstable systems. It also has logic for correctly accounting for
right-half plane poles and zeros. A table of margins is builtfor all crossings of the 0 dB and
-180 deg lines and displayed in the supporting plot. The specreturns the minimum gain and
phase margin values from the table. The level 1 boundaries are taken from MIL-F-9490D.

(d) Bandwidth Specification The vehicle response to cockpit control force or position
inputs shall meet the limits specified. It is desirable to meet this criterion for both controller
force and position inputs. If the bandwidth for force inputsfalls outside the specified limits,
flight testing should be conducted to determine that the force feel system is not excessively
sluggish.

(e) Attitude Response Damping Ratio (from peak overshoot) The calculation of the
damping ratio (zeta) is from peak overshoot of the time response to a step input. ADS-33D
required a minimum damping ratio of 0.35. Systems whose eigenvalues all have damping
ratios of greater than 0.35 could still have excessive overshoot due to the presence of zeros
in the response. This spec ensures that the end-to-end attitude response has an effective
damping ratio greater than 0.35 base on the time response. Anappropriate input should be
used to result in a step response.

(f) Crossover Frequency The crossover frequency is defined as the frequency where the
magnitude curve crosses 0 dB. For multiple crossings, the highest crossover frequency is
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returned. This specification is intended as an objective to minimize crossover frequency in
CONDUIT R© phase 3 optimization.

(g) Damping ratio This specification is used to ensure damping is above the minimum
value specified. This is achieved by checking the damping ratios of the eigenvalues within
the range of natural frequencies specified.

(h) Rise Time (Calculated from 10% to 90% of peak response) This spec estimates
rise time for first-order SISO systems by finding the peak of the time response, and
calculating the time between 10% and 90% of the peak magnitude.
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APPENDIX B

FOURIER TRANSFORMS

B.1 Fourier Transform (FT)

Fourier transform can be viewed as a generalization of the Fourier series representation of a
periodic function. Unlike the Fourier series which is an approximation of the source signal,
Fourier transform is a direct mapping between time-domain and the frequency-domain, and
it is fully reversible.

Let f(t) be a continuous-time signal, its continuous Fourier transformF (ω) is defined
by

F (ω) =
∫ ∞

− ∞
f (t) e−jωtdt, − ∞ < ω < ∞ (B.1)

whereω is the frequency variable in rad/sec. In many applications,the source signal
f(t) cannot be given in common function1; therefore, Fourier transform is often computed
numerically. This numerical computation can be performed in either the continuous-time
domain (continuous Fourier Transform) or the discrete-time domain (discrete-time Fourier
transform).

Because a digital computer works only with discrete data, numerical computation of the
Fourier transform off(t) requires discrete sample values off(t). In addition, a digital
computer can compute the transformF (ω) only at discrete values ofω; therefore, discrete-
time Fourier transform is often used in many applications.

B.2 Discrete-Time Fourier Transform (DTFT)

Let f (k) be a sampled version of a continuous-time signalf (t) with t evaluated at sample
time t = kT, whereT is the sample interval.

f (k) = f (t)|t = kT = f (kT) , k = 0, ± 1, ± 2, . . . (B.2)

The Fourier transform off (k) is defined by

F (Ω) =
∞∑

k=− ∞

f (k) e−jΩk, −∞ < Ω < ∞ (B.3)

Note that DTFT is directly analogous to the FT, and it is not anapproximation to the FT.
The DTFT requires the calculation of the sums of equation B.3for all frequencies range.

In practice,F (Ω) is usually computed only for a discrete set of frequency variableΩ, and

1It is the generalized transform typically shown in Fourier transform table
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this is accomplished by using the N-point discrete Fourier transform (N-point DFT).

Fn =
N − 1∑

k = 0

f (k) e− j2πkn/N, n = 0, 1, . . . , N − 1 (B.4)

whereN is a positive integer.

B.3 Fast Fourier Transform (FFT)

The computation of equation B.4 can be carried out using a fast algorithm called the
Fast Fourier Transforms. It is a new N-point DFT algorithm developed by Tukey and
Cooley (ref. 65) in 1965 which reduces the number of computations from something on the
order ofN2 toN logN . Because many special computers or add-on cards are available to
perform the FFT algorithm at ultra-high speed, FFT opens thepossibility of a wider use
of the FT in many other areas such as the computational physics and many engineering
applications. Additional information regarding to FT, DTFT, DFT, and FFT can be found
in references 66 and 67.
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APPENDIX C

MULTI-BLADE COORDINATE TRANSFORMATION

C.1 Converting rotor equations of motion

Let the blade flapping equations of motion for a four-bladed rotor in the rotating system be

ẍR + CR ẋR + KR xR = fR (C.1)

where

xR =
[

β1, β2, β3, β4

]T

(C.2)

The matrixTRF is the multi-blade coordinate transformation which converts x from the
fixed to the rotating system as follows:

xR = TRF xF (C.3)

The first and the second time derivative of equation C.3 are:

ẋR = ṪRF xF + TRF ẋF (C.4)

ẍR = T̈RF xF + 2ṪRF ẋF + TRF ẍF (C.5)

Substitute equations C.4 and C.5 into equation C.1 yields

T̈RF xF + 2ṪRF ẋF + TRF ẍF + CR
(

ṪRF xF + TRF ẋF
)

+ KR T
R
F xF = fR (C.6)

Multiply T FR through equation C.6 and re-arrange the equation, equationC.6 becomes

ẍF + CF ẋF + KFxF = fF (C.7)

where

xF =
[

β0, β1c, β1s, β2

]T

(C.8)

CF = T FR
(

CR T
R
F + 2ṪRF

)

(C.9)

KF = T FR
(

T̈RF + CR Ṫ
R
F + KR T

R
F

)

(C.10)

fF = T FR fR (C.11)
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TRF =











1 cos(ψ1) sin(ψ1) −1

1 cos(ψ2) sin(ψ2) 1

1 cos(ψ3) sin(ψ3) −1

1 cos(ψ4) sin(ψ4) 1











(C.12)

ṪRF =











0 − sin(ψ) cos(ψ) 0

0 cos(ψ) sin(ψ) 0

0 sin(ψ) − cos(ψ) 0

0 − cos(ψ) − sin(ψ) 0











(C.13)

T̈RF =











0 − cos(ψ) − sin(ψ) 0

0 − sin(ψ) cos(ψ) 0

0 cos(ψ) sin(ψ) 0

0 sin(ψ) − cos(ψ) 0











(C.14)

T FR =











1/4 1/4 1/4 1/4

1/2 cos(ψ) 1/2 sin(ψ) −1/2 cos(ψ) −1/2 sin(ψ)

1/2 sin(ψ) −1/2 cos(ψ) −1/2 sin(ψ) 1/2 cos(ψ)

−1/4 1/4 −1/4 1/4











(C.15)

Ṫ FR =











0 0 0 0

−1/2 sin(ψ) 1/2 cos(ψ) 1/2 sin(ψ) −1/2 cos(ψ)

1/2 cos(ψ) 1/2 sin(ψ) −1/2 cos(ψ) −1/2 sin(ψ)

0 0 0 0











(C.16)

T̈ FR =











0 0 0 0

−1/2 cos(ψ) −1/2 sin(ψ) 1/2 cos(ψ) 1/2 sin(ψ)

−1/2 sin(ψ) 1/2 cos(ψ) 1/2 sin(ψ) −1/2 cos(ψ)

0 0 0 0











(C.17)

C.2 Converting state-space representation

Let equation C.18 be the state-space representation of rotor equations of motion in rotating
system.

ẋR = AR xR + BR u (C.18)
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whereAR and BR is the state matrix and the control matrix in the rotating system,
respectively. Substituting equations C.3 and C.4 into equation C.18 yields:

ṪRF xF + TRF ẋF = AR T
R
F xF + BR u (C.19)

Multiply T FR through equation C.19 and re-arrange the equation as:

ẋF = AF xF + BF u (C.20)

where

AF = T FR
(

AR T
R
F − ṪRF

)

(C.21)

BF = T FR BR (C.22)
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