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A High-Order, Linear Time-Invariant Model for
Application to Higher Harmonic Control and Flight
Control System Interaction

Rendy P. Chenlg Mark B. Tischlet, and Roberto Celi
Ames Research Center

SUMMARY

Helicopters can experience high vibration levels, whictiuee passenger comfort and
cause progressive damage to the aircraft structure andartequipment. Because the
primary source of excitation is typically the main rotor,esf@l rotor control systems
have been proposed to reduce vibrations at the source. fdyg addresses one such
system, generally known as “Higher Harmonic Control” (HHGgcause it consists of
superimposing high frequency rotor inputs to the converatitow frequency ones used to
control and maneuver the helicopter. Because both the pyiftight control system and
the HHC system act on the main rotor, the risk of adverseaotams between the two
systems exists. This research focuses on these intersctibiich have never been studied
before due to the lack of suitable mathematical models.

The key ingredient is an accurate linearized model of theedyeder, which includes the
higher harmonic rotor response, and both the AutomatichElgpntrol System (AFCS)
and the HHC system. Traditional linearization techniqueesiito a system with periodic
coefficients. Although Floquet theory can be used to stuay geriodic systems, there
are far more control system design theories and softwale ta@ilable for linear time-
invariant systems than for periodic systems. Additiondhg theoretical evaluation of the
helicopter handling qualities requires linear time-inaat systems.

This research describes a new methodology for the extracfia high-order, linear time
invariant model, which allows the periodicity of the helater response to be accurately
captured. This model provides the needed level of dynamtditiydto permit an analysis
and optimization of the AFCS and HHC algorithms. The key tssaf this study indicate
that the closed-loop HHC system has little influence on th€8Br on the vehicle handling
qualities, which indicates that the AFCS does not need nuadiifin to work with the HHC
system. On the other hand, the results show that the vibreggponse to maneuvers must
be considered during the HHC design process, and this leadac¢h higher required HHC
loop crossover frequencies. This research also demosstiiagt the transient vibration

1Aeroflightdynamics Directorate (AMRDEC), Aviation & Midsi Research, Development, and
Engineering Center, U.S. Army Research, Development, agihEering Command, Ames Research Center,
Moffett Field, California

2Alfred Gessow Rotorcraft Center, Department of Aerospangirieering, University of Maryland,
College Park, Maryland



responses during maneuvers can be reduced by optimizietpged-loop higher harmonic
control algorithm using conventional control system asaty



1 Introduction
1.1 Motivation

Excessive vibration levels can reduce mission effectisenen military aircraft and
decrease passenger comfort and acceptance on commercialftai Even moderate
fuselage vibrations reduce the reliability of on board pgquent, such as avionics (ref. 1).
Maintenance costs can be significantly reduced if airfranteations are reduced. It
has been estimated (ref. 2) that by reducing the fuselagetiobs in the Sikorsky
UH-60 helicopter from 0.2g to 0.1g, $80,000 per aircraft gear can be saved in
direct maintenance costs. This is a savings of $160 miljieaw for a fleet of 2,000
aircraft! These savings are achieved primarily from reducemponent failures due to
vibration. Consequently, vibration reduction is a higlopty for helicopter designers and
manufacturers.

The major source of vibration is the unsteady aerodynamit@mment experienced by
the rotor blades including blade/vortex interaction,gating blade stall, and blade/fuselage
aerodynamics interaction. These blade loads are themtreiad through the hub, resulting
in vibration of the elastic fuselage. The traditional agmtoes for reducing helicopter
vibration are generally passive methods. They attack theation problem by increasing
the number of blades, isolating the transmission systeplyeyg hub absorbers, installing
bifilars, or adding dynamic absorbers. These systems avy hed have narrow frequency
effectiveness ranges. Over the past two decades, the pegicmdustry, government
and academia have demonstrated that Higher Harmonic CditHC) is an effective
method for vibration reduction. HHC technology may be abladhieve greater vibration
reduction with less weight than traditional approaches lyypsessing vibration at the
source. Typically, the HHC input frequency has beérv, wheren is the number of rotor
blades, but other frequencies have also been utilized. Allddtsurvey of the extensive
work in the area has been presented by Friedmann (ref. 3)aresEt al. (ref. 4).

The active rotor control system for vibration suppress®shown in figure 1.1. The
helicopter control system generally consists of two cdnggstems: Automatic Flight
Control System (AFCS) and HHC system. In figure 1.1, the AF@®ages the helicopter
stability and controls, and the HHC system suppresses tiepter vibration. The HHC
loop consists of three basic components. First, the dataigiign system (A/D, analog-
to-digital converter) receives the helicopter hub loZds) and converts them to the digital
signal Z(k). Next, the harmonic analyzer extracts thieev harmonic components of the
hub loads and forwards them to the HHC controller. Last, thCHontroller computes
the ideal HHC input#(k) for vibration suppression.

The rotor control system does not receive the new HHC inpprnfHHC controller
at every time step. The HHC input update rate (number of HHLitiupdate per rotor
revolution) depends on the time required to complete tha daguisition and post data
processing, and has a strong influence on the HHC loop stabkrgin. HHC update
rates from 0.5 to 16 times per rotor revolution have been éemgnted on several wind
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Compute Ideal Extract Harmonic
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Figure 1.1. Typical active rotor control system for vibeatisuppression.

tunnel and flight tests (refs. 5-10); however, the oncerpestution (or 1/rev) HHC update
is most commonly implemented. To date, very little inforioatis available on potential
interactions between the HHC and AFCS. Published liteeadescribes results from flight
tests, wind tunnel tests, and numerical simulations witegiclosed-loop HHC or closed-
loop AFCS, but not with both types of loops closed simultarsiyp Because of the periodic
nature of the helicopter, HHC is a control system applicatttat has developed without
the benefit of standard control system analysis technidieseley and Hall (ref. 11) have
studied the stability of the closed-loop HHC system, but ket model was assumed
to be quasi-static, and did include periodic behavior ofribter system. Therefore, the
achievable bandwidth of HHC algorithms was limited by thagjtstatic assumption on the
plant model. The HHC performance improvement could onlydieeved by including the
periodic behavior of the rotor system in the plant model agktbping a control algorithm
for the periodic time-varying plant model. Although Flotjtieeory can be used to study
the periodic time-varying system, there are far more corslystem design methods and
software tools available for linear time invariant systehremn for periodic systems.
Furthermore, the effects of the HHC system on vehicle hagediualities and
maneuverability remained unknown. There are several aaalyhat are important for
evaluating the handling-qualities of the helicopter systhat currently cannot be carried
out. These include calculations of gain and phase margittstiae closed-loop HHC and/or
AFCS, crossover frequency of the HHC loops, and closed-ktapility of helicopter



dynamics with closed-loop HHC. These quantities can bdyeabtained from a linear
time-invariant system. Therefore, there is a need for litie@e-invariant approximations
that can accurately model the coupled rotor-fuselage dicgnincluding the higher
harmonic response of the rotor. Such time-invariant liizear approximation methods
are not currently available.

1.2 Literature review

1.2.1 Higher harmonic control technology

In 1952, Stewart (ref. 12) showed the potential effectigsnef HHC in alleviating
retreating blade stall. The use of a second harmonic cor®oév) was shown to
redistribute rotor disk loads and suppress retreatingebssall. By delaying the retreating
blade stall to a higher forward speed, the speed limitatibra dnelicopter could be
raised. Based on his analysis, the advance ratio could eased by 0.1. However,
the analysis was based on a rigid flapping blade and airloads galculated with quasi-
static aerodynamics and uniform inflow distribution. Thengonic effects, separated flow
conditions, unsteady aerodynamics, blade flexibility, and-uniform inflow distribution
were all neglected.

In 1961, Arcidiacono (ref. 13) extended Stewart’s reseénscimcluding both 2/rev and
higher harmonic blade pitch control. The analyses showatlaicombination of 2 and
3/rev HHC inputs could be used to delay retreating bladé tet@n even higher advance
ratio than that reported by Stewart. Neither Stewart noidhacono considered the effects
of HHC input on vibratory hub loads.

In 1961, the first HHC flight test was carried out to investigtite feasibility of using
HHC for vibration suppression on UH-1A 2-bladed helicogtef. 14). A series of flight
tests was conducted by Bell Helicopter Company to deterthieeffects of HHC on rotor
performance, blade airloads, blade loads, control loads|dads, and airframe vibration.
The investigators noted that no reduction in shaft torque el@served. The investigation
also showed that drag reduction in the retreating side ofdtee was accompanied by an
increase in profile drag in the fore and aft portion of theraisk. These results confirmed
Stewart’s finding, and indicated that 2/rev HHC input coudused to change the rotor
disk loading.

In 1972, McCloud (refs. 15, 16) reported the first full-scalad tunnel investigation on
HHC. The rotor model was a two-bladed teetering rotor witippiisive jet flaps. A large jet
flow was expelled from the blade trailing edge to propel therand the HHC was applied
through the angular deflection of the jet flow. The experiraatiowed that the vibratory
hub load reduction was accompanied by an increase in the lblwding moments. The
HHC inputs required for the vibration suppression were tbtmvary with rotor forward
speed.

In 1975, McHugh and Shaw (refs. 17,18) conducted a seriesmaf tunnel experiments
on a four-bladed soft-inplane hingeless rotor model. TheCHkhs implemented in the



non-rotating frame, and HHC inputs were applied by osaitathe swashplate with servo-
actuators. Results from the experiments indicated thavithratory hub moments could
be suppressed effectively without a significant increasddde stresses. The experiments
also indicated that all five components of the 4/rev hub Id¢ateral, longitudinal, and
vertical forces; pitching and rolling moments) could beueed simultaneously with three
HHC inputs.

In 1979, a wind tunnel investigation of HHC on a four-bladé&wfeless rotor model was
conducted by Shaw and Albion (refs. 19, 20) in the Boeing \O&8Wind Tunnel. The
rotor model was Mach scaled and operated at full-scale gedpThe HHC inputs were
applied through swashplate excitation. The closed-loopgCHigntroller simultaneously
reduced the 4/rev vertical hub shear, hub pitching andnglinoments by up to 90%.
The closed-loop transient behaviors were studied by incod) a step disturbance in the
swashplate command. The results showed that the distiwelveas suppressed within two
rotor revolutions, which confirmed the quasi-static assimnpmade on the HHC model.

In 1980, Shaw (ref. 21) presented the results of a comprereeasalytical investigation
of HHC. He compared the potential benefits of servo-flap \g&ecaunventional blade root
feathering and studied the automatic in-flight adaptiverllgm. The investigation was
based on a coupled modal analysis and included a vortex wakeeéd flow calculation.
An approximation to the Theodorsen lift deficiency functwas used to include the effect
of the shed wake. A transfer matri¥’{matrix) approach was implemented to relate
the higher harmonic hub loads to the HHC inputs. The analtiesults showed that
nonlinearities in the HHC input-output model were smalleTasults also indicated that the
vibration suppression was caused by mutual cancellatitmdss aerodynamic and inertial
components of the transmitted vibratory loads at the bladesr With the HHC inputs the
control loads were increased by roughly 30%, and the chamgetor performance was
negligible. For changing flight conditions, the closeddd#HC controller with fixed gain
performed satisfactorily over an advance ratio range of @@ adaptive gain controller
was used in cases where the fixed gain controller performedypd-or the adaptive gain
controller, the model parameters were estimated using en&alfilter. Simulation results
showed that the adaptive controller performed well for wragyflight conditions.

In 1981, Molusis, Hammond and Cline (ref. 22) studied sdveitdC algorithms
for vibration suppression, and the algorithm performanes wvaluated in wind tunnel
testing. The rotor model was a Mach-scaled four-bladedddaied rotor. The HHC
controllers were configured to suppress the 4/rev vertiocagitudinal, and lateral signals
from a triaxial accelerometer mounted beneath the rotohénrnion-rotating frame. The
advance ratio was varied between 0.2 to 0.4. The HHC systesnmealeled using a
T-matrix approach. The HHC algorithms studied were sepdrat® two groups: the
adaptive controllers and the gain-scheduled controlleEach type of controller was
further classified. The adaptive controllers were clagsifiteo deterministic controllers
and cautious controllers. The gain-scheduled controllen® classified into perturbation
controllers and proportional controllers. The wind tunresults showed that the gain-
scheduled controllers performed poorly, possibly due ®® rtbnlinear behavior of the



HHC model. The deterministic (adaptive) controller wasvehdo significantly reduce
the steady-state vibration levels, but there were largesieat responses that occurred
before the vibration converged to the steady-state valbe.atithors noted that the cautious
controller offered the best performance among the fourrodats.

In 1981, the performance of four different feedback coidrsl or regulators were
investigated by Chopra and McCloud (ref. 8) for the multleycontrol of helicopter
vibration. These controllers were open-loop and closeg-lwith off-line and on-line
identification. The off-line identification of model chatadstics was made using the least-
squared-error method and used a succession of input angtoogasurements. The on-line
identification of model characteristics was computed usin¢alman-filter solution. The
optimal controls were calculated by minimizing the quadrperformance function based
on response and control inputs. Both global (linear) andllQmiecewise linear) models
were simulated. The results showed that the closed-loofralter with a local model
using on-line identification techniques performed the bEst the cases with large initial
errors in the transfer matrix, large overshoots were founthé transient response using
this controller.

In 1982, Wood et al. (refs. 23, 24) conducted a HHC flight tesaonodified Hughes
OH-6A helicopter with a gross weight of about 3,000 Ib. The®idput was achieved by
blade root feathering through the 4/rev swashplate osicifia. A triaxial accelerometer
was mounted beneath the pilot seat to sense and feed backrévevibrations to the
HHC controller. The aircraft was flown from hover to 100 knatsh the HHC system
operated in open-loop (manually) and closed-loop (compdetrolled). For the closed-
loop controller, the cautious controller presented innefee 22 was used. The test results
indicated that up to 90% reduction in vibration could be ot#d with HHC amplitude less
than E.

During the 1980s, extensive research on the use of HHC ingiésd in the form of
Individual Blade Control (IBC) was carried out by Ham and &isvorkers (refs. 25, 26).
The potential applications of IBC that were proposed ineticeducing the severe effects
of atmospheric turbulence, retreating blade stall, bhamhtex interaction, blade-fuselage
interference, and blade instabilities, while providingpmnoved flighting qualities and
automatic blade tracking. The theoretical analysis shathatithe rotor blade flapping,
inplane, and torsional motion could be reduced by feedbankral of the effective inertia,
damping, and stiffness of the appropriate modes.

In 1985, Shaw et al. (ref. 6) described wind tunnel tests opreanhically scaled three-
bladed CH-47D Chinook rotor in the Boeing V/STOL Wind Tunn€&he 2, 3, and 4/rev
HHC inputs were applied to suppress the 3/rev vertical hubef@and the 2 and 4/rev
rotating inplane hub shears throughout a wide test enveltypeh included trimmed flight
up to 188 knots. The open-loop tests were conducted to obtamsfer matrices under
several flight conditions. These transfer matrices were usth fixed- or gain-scheduled
controllers. The wind tunnel results showed that a fixedargantroller with a local model
can suppress more than 90% in all three vibratory hub sheapaoents. The wind tunnel
results indicated that the gain-scheduled controllergseréd as well as the fixed-gain



controller. The adaptive controllers, similar to thoseeference 22, were either unstable
or ineffective in suppressing the vibratory loads.

In 1986, Polychroniadis and Achache (refs. 27,28) disaudszapplication of HHC on
an Aerospatiale SA-349 Gazelle helicopter (4,500 Ib) fdradion reduction and noise
reduction, and included a performance analysis based dm thebretical studies and
wind tunnel testing. The HHC input was achieved by blade feathering through the
4/rev swashplate oscillations. The HHC controller was &aahptive controller that used
vibration sensors placed at pre-selected locations initheaét. The test results showed a
70 to 90% reduction in vibration was achieved at forward dpes to 135 knots.

In 1994 and 1995, Jacklin et al. (refs. 29, 30) described twadviunnel tests that
evaluated the effects of IBC at various frequencies on npé&oformance, vibrations, and
acoustics using a full-scaled BO-105 helicopter rotor. TB€ system, developed by ZF
Luftfahrttechnik, was tested on the NASA/Army Rotor Testpapatus in the NASA Ames
40- by 80-Foot Wind Tunnel. Test results indicated that glshirequency IBC input of
2-4/rev could simultaneously reduce all 4/rev rotor ba¢afurces and moments by up to
70% at 43 knots.

In 2002, U. T. P. Arnold (ref. 10) described the certificatiground and flight testing of
an experimental IBC system for a Sikorsky CH-53G helicoptién a gross weight of about
68,000 Ibs. The primary goal of the IBC system was to exteeds#rvice life of the CH-
53 by reducing the component fatigue and failure inducedigly fibratory stresses. The
IBC system was designed, built, installed, and certified By.dftfahrttechnik, GmbH. The
IBC system, weighing less than 1% of the helicopter maximaketoff weight, completely
integrated all mechanical and hydraulic components ineorttating frame. The IBC
controller was based on a second ordlematrix model. Initial test results showed a high
effectiveness of IBC in reducing vibration with a relatigsmall single harmonic input of
+0.15.

Most of the active vibration control algorithms discusséd\e were implemented in
frequency domain. In 1980, Du Val and Gupta (ref. 31) proda@séme domain approach
for the active control of helicopter vibration. The conteolwas designed by optimizing a
cost function, which placed a large penalty on fuselageatibn atn/rev frequency. The
fuselage accelerations were passed through an undampediseier system tuned to the
n/rev frequency. At the resonant frequency, the regulatckdd onto the magnitude and
phase of the fuselage accelerations without the need fondrdac analysis. By placing
an infinite weighting on thex/rev response, a controller is guaranteed to driveritnev
response to zero. Because the dynamics of the rotor ancafies@lere included in the
plant model, the quasi-static assumption was no longerssacg Also, because the state
feedback was used, on-line identification of the model patars was not necessary. This
method assumed the system was linear time-invariant (bob)linear time-periodic (LTP).
The standard linear analysis techniques and software ¢oals therefore be applied.

In 1989, Wereley and Hall (refs. 11, 32) presented a framkwwoprovide the evaluation
of active vibration control algorithms performance in terof classical control theory.
They showed that HHC was fundamentally similar to the simdadalisturbance rejection



techniques of classical control. By treating the periodstudbance as a stochastic rather
than a deterministic phenomenon, the methods of Shaw etedl.q) and Du Val and
Gupta (ref. 31) could be compared quantitatively. The asthmalicated that the achievable
bandwidth of HHC algorithms was limited by the quasi-staia linear time-invariant
assumptions on the plant model. The HHC performance impnewt could only be
achieved by including the periodic behavior of the rotortegsin the plant model and
developing a control algorithm for the periodic time-vanyiplant model.

In 2000, Spencer (ref. 33) presented the open and closgdwow tunnel testing of a
Mach-scaled active rotor system with piezoelectric berdtuated trailing-edge flaps for
active vibration control. The closed-loop vibration suggsion tests were conducted at
several advance ratios and collective settings. The clitertrdesign is based on a radial
basis neural network which is used to approximate the cordrnrgout to the active rotor.
The controller is implemented in discrete time by samplhmghub loads and control input
at 1/rev frequency. The optimum set of network weights ideined by minimizing
the cost function which is based on the vibration responsecammand input. One of
the advantages of the neural network controller is thatnitusianeously learns while it
commands the on-blade actuator, thus adaptively suppges blade or hub vibrations.
No off-line training of the network is required. These testecessfully reduced the
4/rev oscillatory fixed frame thrust, pitching moment, antlimg moment levels up to
90%. A transient vibration control test was also conductgdidrying the rotor speed,
wind speed, and the collective pitch angle to simulate maeréng flight. For all three
individual perturbations, the neural-controller was Uedb compensate vibration response
fluctuation. The authors indicated the controller was nd¢ &b react fast enough to the
perturbations because of hardware limitations.

1.2.2 Linear models

In 1981, Howlett (ref. 34) presented a nonlinear matherahtimdel known as GenHel,
based on the Sikorsky UH-60A Black Hawk helicopter, for parfance and handling-
gualities evaluations. The rotor was modeled with a rigiadel flap and rigid blade lag
degree of freedom. The torsional dynamics were modeledjwsisimple dynamic twist
model. The aerodynamic forces on the rotor were computedyudade element theory
and quasi-static aerodynamics. Aerodynamics coefficieintise blade were provided by
the look-up tables as a function of the angle of attack andhMaanber. The fuselage
was modeled as a rigid body with aerodynamic coefficienth®ftiselage and empennage
provided by the look-up tables as a function of angle of &ttac

The GenHel simulation model could provide a linear modet,ibwas limited to six
fuselage degrees of freedom. The linearization was peddmumerically by perturbing
each of the states and controls, and using finite differeppeoximations. Because of
the unusual flight dynamic model implementation in GenHed, gerturbation scheme was
not straightforward. For instance, the fuselage statescantrol inputs were perturbed
one at a time about the trim condition to produce a 9-staid bigdy linear model from



the nonlinear GenHel mathematical model. The rotor eqoataf motion continued to
be integrated while all rigid body acceleration integrasiavere suppressed. The change
in the state derivatives was calculated when the rotor respbad reached a steady-state
condition. This method produced a six-fuselage-degrefeeedom linear model with a
guasi-static rotor; i.e., the dynamics of the rotor systeznemot modeled.

In 1982, Zhao and Curtiss (ref. 35) developed the first limeadel of a helicopter that
included blade dynamics for forward flight. This linear mduked 24 or 27 states depending
on whether dynamic inflow was included. Flap and lag degréégedom were modeled
by transforming the rotor equations of motion into the notating frame using multi-blade
coordinate transformation. Only the collective and firsb teyclic modes for each rotor
degree of freedom were retained. Unsteady aerodynamicteffeere introduced through
the dynamic inflow model. A flat vortex wake model was used faraximate the effects
of the main rotor wake interference on the tail surfaces anddtor. The linear model
was derived using a symbolic mathematic manipulation @ogto obtain an analytical
solution. The linearization process consisted of expngsitie time dependent variables in
the equations of motion as the sum of the trim value and tirpe@ent perturbation about
the trim value. A linear model could be obtained by applyindes reduction and setting
the remaining perturbation quantities to zero.

In 1986, Chen and Tischler (ref. 36) discussed the metho@wa#ldping the simplified
analytical linearized model from the flight test data by gsimodern system or parameter
identification techniques. The simplified analytical modelld be used for handling-
gualities evaluation, design of stability and control aegmation systems, and ground
simulator validation. Authors stated that the importantescognizing that each lower-
order model used for rotorcraft parameter identificatioth&aéimited range of applicability.
They also discussed the benefits and limitations of usinguiacy sweeps as flight test
input signals for identification of frequency response fiiorcraft and for the subsequent
fitting of parametric transfer function models. The authoosmicluded that analytical
modeling and understanding the limitation of lower-orded®sls could be more important
than merely relying on the identification algorithms.

In 1987, Miller and White (ref. 37) presented an algorithmiethExponential Basis
Function (EBF) which allowed computer generation of a cahpnsive coupled rotor-
fuselage nonlinear model. EBF represented the positiotove€ a generic mass element
of the helicopter exponentially, and was used to simpligy differentiation of the position
vector. EBF was used to write the time dependent coordinatsformation as the product
of constant matrices and matrix exponentials. Since thdipfinhtion of exponentials
is equivalent to addition of exponential arguments, miittgiion of the transformation
matrices could be accomplished by adding matrix exponentialhe transformation
matrices written in EBF could also be differentiated easllge equations of motion were
formulated using Lagrange’s equation. The rotor degredéseetiom were transformed to
a non-rotating frame using the multi-blade coordinatedfammation. The rotor dynamics
included rigid body flap and lag degrees of freedom. Enginerrspeed, fuselage rigid
body degrees of freedom, and the inflow dynamics were alsceladd Authors stated
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that the linear model obtained through EBF could be used &yae handling-qualities
phenomena for highly augmented helicopters when reatigticconditions and high-order
dynamics were considered.

In 1990, Kim, Celi, and Tischler (ref. 38) developed a higher linearized model
of helicopter flight dynamics extracted from a nonlineardighomain simulation. The
model had 29 states that described the fuselage rigid boghees of freedom, the flap
and lag dynamics in a non-rotating frame, the inflow dynamacsl the delayed entry of
the horizontal tail into the main rotor wake. The blade tonsi degree of freedom was
approximated using a pseudo-modal approach. In GenHekatloelation of forces and
moments acting on the helicopter at a given instant in time saved sequentially; the
rotor equations of motion were solved first, and the fuselkegeations of motion were
solved next. Because of this separation, the equations dtibomavere not perturbed
simultaneously, which could cause inaccuracies in thetisolat higher frequencies. The
perturbation process was also complicated by this sgiittiolution process. Therefore,
GenHel could only produce a six-fuselage-degree-of-fveetinear model with a quasi-
static rotor.

To carry out a theoretically rigorous linearization andanetthe rotor dynamics within
the linear model, the mathematical model of the helicopsemaplemented in GenHel
was extensively modified to a first-order, state variablenfor This required several
modifications including solving both the rotor and the fagel equations of motion
simultaneously. The linear model was validated againstéméinear model, and the results
showed a good agreement between these two models for snitishe control inputs. In
case of large amplitude inputs, which violated the smaliygbation assumption inherently
contained in the linear model, the agreement deterioratesatly.

1.3 Objectives of study

The objectives of this study are as follows:

e Develop a methodology for the derivation of linearized, dimvariant, state-
space models of coupled rotor-fuselage dynamics thatdectbe effects of higher
harmonic response of rotor and fuselage to both higher haiopitch control and
pilot inputs.

e Apply the new linear state-space models for a study of themi@l interactions
between a higher harmonic control system and an automaght ftiontrol system,
including any impact on handling-qualities.

It should be pointed out that this research does not focuhhvemtethod to improve
the helicopter vibratory hub load predictions. A comprediem analysis on this topic
is beyond the scope of the present study. The helicopterlaion model used in this
study is adequate to capture the first-order effects, buait not be sufficient for accurate
guantitative predictions of vibratory hub loads.
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1.4 Principal contributions

e Implemented a HHC in a flight dynamics model for a free flighhdition to
investigate the interaction between HHC and AFCS.

e Developed a linear time-invariant state-space approxamdhat accurately models
the coupled rotor-fuselage dynamics including the higlamuonic response of the
rotor. This coupled high-order linear model provides thedssl level of dynamic
fidelity to permit study of AFCS and HHC interaction.

e Provided detailed analyses on the HHC/AFCS interactiord daveloped an
improved HHC controller to reduce the vibration transietising the maneuvering
flight.

1.5 Organization of the document

Chapter 2 describes the mathematical model of the helicopter andigieevthe solution
method for the trim calculation, linearization, time intagjon, and vibratory hub
load calculation.

Chapter 3 is devoted to the HHC system for the vibration suppressitwe. ifiner working
of the harmonic analyzer, HHC controller, and the HHC updateeme are discussed
in detail. The methods of obtaining the continuous-time dionequivalent for each
component are also presented.

Chapter 4 presents a new linearization method that converts a narlsystem to a linear
time-invariant system while capturing thérev characteristic of the helicopter. The
new linear model was validated by comparing vibratory huddkand rotor states
for both higher harmonic inputs and piloted input at sevinatard speeds.

Chapter 5 presents the results of the HHC/AFCS interaction study. éffect of HHC
input on handling-qualities was tested for both open-lood alosed-loop HHC
systems. This chapter also discusses the effect of the HHRkeoribration transients
during maneuvers, and develops a new HHC algorithm to oveedbe problem.

Chapter 6 presents conclusions of the study and recommendationatimefwork.
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2 Mathematical Model

This chapter contains a brief history of the helicopter raathtical model used in this
study, followed by the definition and implementation metlafdhe HHC system, the
methods used to calculate the helicopter trim states, arired model, and the time
history. Next, the definition and the computation methodhaf vibratory hub load are
discussed. Finally, the last section presents the methestadctingn/rev vibration using

Fourier series approximation.

2.1 History of helicopter simulation model

The flight dynamic simulation model used in this study is im@dly from the helicopter
simulation model GenHel (ref. 34) specialized for the SskgrUH-60 Black Hawk. The
rotor was modeled with a rigid blade flap and rigid blade lagrdes of freedom. The
torsional dynamics were modeled using a pseudo-modal appro The fuselage was
modeled as a rigid body with aerodynamic coefficients of tefage and empennage
provided by the look-up table. The fidelity of GenHel modelswenproved by
Ballin (ref. 39) who also implemented the engine model. Knefg. 40, 41) included
the main rotor inflow model using the Pitt-Peters dynamicoimfimodel (ref. 42). A
new trim procedure was also developed with the equationsatiom presented in first-
order state-space form. This allows a linear time-invdarmaadel to be extracted using a
perturbation-averaging method. The model developed by Waa named UM-GenHel.
UM-GenHel was continued in a series of calibrations basetti@flight test data at NASA
Ames Research Center. This version of UM-GenHel was rendf@RECAST, and is
widely used in flight dynamics analysis at NASA Ames Rese&ehter.

At the same time, the UM-GenHel remained at the Universitylafyland as a research
helicopter model. Turnour (ref. 43) extended the rotor éladodeling in UH-GenHel
by including the aeroelastic rotor, which was originallye®ped by Celi (ref. 44) and
extended by Spence (ref. 45) to include the coupled rowelaige formulation. Turnour
also added the finite state wake (ref. 46) and the Leishmarydig(ref. 47) state-space
unsteady aerodynamics model. This version of the reseandelwas renamed by Turnour
as FlexUM. Theodore (ref. 48) extended the inflow flow mod@&htbude the maneuvering
Free Wake model (ref. 49), which improves the off-axis resgopredictions. A full BO-
105 helicopter configuration is also added to the FlexUM. fEsearch model was renamed
to HeliUM by Theodore.

2.2 Helicopter model
The basic formulation and solution of the equations are anghd with respect to the

previous works. The helicopter model used in this studynsilar to the Sikorsky UH-
60 Black Hawk with the following simplifying assumption. @&thelicopter equations of
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motion are based on a set of coupled nonlinear rotor-fusedggations in first-order, state-
space form. The rigid body dynamics of the helicopter is nediesing non-linear Euler
equations. The aerodynamic coefficients of fuselage ahdudaces are provided in the
form of look-up tables. The blade is assumed to be straight,with zero tip sweep. The
blade dynamics consists of two rigid blade degrees of freedlus first torsional degree
of freedom. The aerodynamic coefficients of the blade are evided in the form of
look-up tables as a function of angle of attack and Mach nunihaless stated otherwise,
the main rotor inflow is calculated using a three-state dyoamiilow model, which yields
linear inflow distributions over the rotor disk. Tip losses taken into account by assuming
that the outboard 3% of the blade does not generate lift. Astate dynamic inflow model
is used for the tail rotor. Stall and compressibility effeate incorporated in a quasi-static
form, and unsteady aerodynamic effects have been negléat@dadditional assumptions
are that the rotor speed is constant and that there is naationton the power supplied
by the engine. All the results presented in this study arainbt from a coupled rotor-
fuselage trim procedure simulating free flight conditioA#.trim calculations include the
HHC input, if one is present. In all the parametric studies helicopter is retrimmed every
time the magnitude or phase of th&ev input changes.

2.3 HHC implementation

The higher harmonic control inputs are implemented by vayyhe blade pitch at blade
root. Unlike the real active pitch links system, stiffnegshe pitch link is assumed to be
infinitely stiff and dynamics of the active pitch links is igred. The geometric pitch angle
0 of the blade is given by:

O () = by + 01 cos(v) + Agp) + O15sin(v + Agp) + 6,(¥) (2.1)

whereb,, 6,., andf,, are respectively the collective, lateral cyclic, and ldadinal cyclic
pitch, Agp is the swashplate phasing angles, = —9.7°, andé,, () is then/rev input,
defined as:

0,(1) = A, cos(n + ¢,) (2.2)

whereA,, andg,, are the magnitude and phase of tiieev input.

2.4 Solution methods: trim

This section presents methods to calculate the helicaptestates. The flight condition is
assumed to be a steady coordinated helical turn. Straiggitfleght then becomes a special
case where both flight path angle and turn rate equal zero h&l®pter trim equations
were originally developed by Chen (ref. 50), and later estéehby Celi (ref. 51) to include
the steady state response of the rotor. They are modifidueiunly Kim (ref. 40) to consider
the periodicity of both rotor and fuselage motion. The tritatas are generally obtained
from an algebraic trim procedure.
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2.4.1 Algebraic trim

The typical trim solution is based on algebraic trim. Theusioh of the steady state
condition is determined by converting a set of coupled @adirdifferential equations to
a set of coupled nonlinear algebraic equations. The peitgdif the helicopter response
must be satisfied in a steady state condition. This set obedgeequations is then solved
using the Powell Hybrid algorithm. The trim solution is read when the sum of the forces
and moments at the vehicle center of gravity are zero in oo revolution.

Although this method can obtain a trim solution quickly, @te$ not guarantee that the
rotor blades return to the same position after one revalutictime integration. In other
words, time integration starting from an algebraic trimusian without control perturbation
may not respond precisely tomultiple/rev. This does not appear to be crucial for flight
dynamics analyses, but has a large effect on vibrationegledmputations. The periodic
trim procedures can fulfill this task.

2.4.2 Periodic trim

There are two methods to achieve a periodic trim solutior:stmooting method, and the
time marching method.

2.4.2.1 The shooting method

After algebraic trim is achieved, the state vector and admector are adjusted such that
the state vector remains the same after integration of aioe revolution. This is a two-
point nonlinear boundary value problem, and is based on atsigomethod (ref. 52). The
basic idea behind the shooting method is to convert a boyn@due problem (BVP) into
an initial value problem (IVP). Given an initial guess foetharameters, an iterative solver
is used to find values of the parameters that produce sotutttat satisfy the boundary
conditions. The method will guaranteen&rev periodic trim, but its convergence proved
erratic, and at least one order of magnitude more expensiguatationally, compared
with the algebraic trim procedure.

2.4.2.2 The time marching method

The second method is the time marching solution which isthlsone used in this research.
As stated earlier, the free flight response from the timegnation starting from the
algebraic trim solution may not have precisenultiple/rev response. Because of unstable
Phugoid mode, the helicopter will slowly drift away fromntri The low gain stabilization
loop was added to ensure the helicopter does not becomeblesis integration time
increases. As the time integration continues, theultiple/rev response will emerge.
Generally, the periodic trim solution can be reached witbumr rotor revolutions starting
from an algebraic trim solution. At the end of time integoati the trimmed state vectors
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around the rotor azimuth are available. Additional infotim@about the time integration
is presented in section 2.6.

2.5 Solution methods: linearization of the equation of motn

This technique consists of perturbing each state and datiout an equilibrium position.

Using this approach, the individual blade pitch is introgltign terms of the harmonics
in the rotating frame. This method leads to systems of rotpragons containing

periodic coefficients, which are represented in the rogaframe. The transformation
from the rotating frame to the fixed frame is accomplishedgisi Multi-blade Coordinate
Transformation (MCT, Appendix C). To remove the time depsmy, the linearized

models are computed over one rotor revolution and then gedri obtain a LTI system in
the fixed frame. As a consequence, this averaging elimitlagegeriodicity of the system
and all the higher harmonics in both the controls and rospease. Additional information
about this technique is discussed in chapter 4.

2.6 Solution methods: time integration

The free flight response of the helicopter is computed bynatttng the equations of motion
based on a given set of initial condition and control inputhe equations of motion are
represented by a system of coupled nonlinear ordinaryrdiiteal equations expressed
symbolically in the first-order ODE form

y =f(y,ut) (2.3)

wherey is the state vector and is the control vector. Equation 2.3 can be solved
numerically using Adams-Bashforth method, which is a \@éastep, variable-order,
predictor-corrector, numerical method for solving lindast-order ordinary differential
equations. It estimates the behavior of the solution cupve\aluating the derivative
function at the old solution values along with the currerdtison and derivative function
and uses the interpolation method to estimate the new esolutn other words, Adams-
Bashforth methods try to squeeze information out of old smtupoints. For problems
where the solution is smooth, these methods can be highlyaecand efficient.

In this study, the simulation is started from the trim coiwif and the equations of
motion are integrated with respect to time. This produacas tiistories of all state variables
for prescribed control inputs. Generally, control inputslude the time history of pilot
inputs or the swashplate controls. For the HHC system, ther@dnputs are extended to
the blade root pitch angle which can be prescribed as simgteutiiple harmonics in terms
of then/rev amplitudeAd,, and phase angle, as stated in equation 2.2.
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2.7 Vibration calculation

2.7.1 Hub loads calculation

The helicopter equations of motion can be expressed asiequa8. Because the coupled
rotor-fuselage-inflow equations of motion have the statesdeves appearing on the right
hand side of the equations, these equations are expressed as

YC = fc <Y7y7u; t) (24)

wherey. is a vector which contains all the state derivatives appgaon the right hand
side of equation 2.4. For instance, the flap equation*foblade of a simple rotor model
(rigid flap and lag modes only) is:

B, = ?—:<cosﬂi{w+ e[2Q (pcost; — gsinay;) + psini; + q'coszﬂi]}
+ sin 3 cos(; [1’) siny; — wcos; — e(r — Q)Q} >
+ cos? Bi{ cos G [psindh; + Geosr — 2(C + Q) (¢sin gy — peosily)]
— 2Qsiny; (psine; + geostly) |
+ cos (3;sin f3; {2@ (r—Q)— (r— Q)Q - sz}

~ (-9~ dz + (Mips, J; Maerop;)
b

wheresS, and, are the first and second blade moments of inertia about itehid 4.,z iS

the flap aerodynamic moment, anf}, s is the flap moments due to the lag damper. Since

the state derivatives, v, w, p, andq on the right hand side of equation 2.5 do not couple

with other state derivatives, it can be rewritten as:

(2.5)

G = [e] ye+ Fs (y,uit) (2.6)
where
[ —%sinﬁcos(cosw 1"
}q—bb sin (3 cos ( sin ¥
5 cos
— I 2.7
© %e cos Asin) + cos? 3cos ( sine) (2.7)
%e cos 3costp + cos? 3 cos ( cosp
L 010x1 |

yc = [u,@,u‘],p,q',f",9,51732733754751,62,63,é;l]T (28)

Similar expression can also be rewritten for the remainopgaéons ¢, o, w, p, ¢, 7, .. .).
The resultant row vectorks are assembled into a coupling matkx and equation 2.4 can
be rewritten as follow:

ye=[E] ye + Fi (y,u;?) (2.9)
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By re-arranging equation 2.9 into first-order forin,can be solved as
ye=1[I— E|”" Fi(y wt) (2.10)

Re-write equation 2.9 again and parse it as follow:

qus _ Ell E12 qus
. = . 4 Py + Fy + Fros 2.11
[ Ymr ]c [ E21 E22 ] [ Ymr ] y f ( )
N—_———— Fk(yﬂ-l;t)
Ve (E] ye
Vius = [0, 0,10,p,¢,7]" (2.12)
Yo = | Br, Ba. B, B, Gy oy G5, G (2.13)

where[E,1y 4] IS the inertial acceleration due to the fuselage acceterdtt;,y,,, | is the
inertial acceleration due to the main rotor acceleratigp, is acceleration contributed by
the main rotor excluding the inertial coupling teri,. is the acceleration contributed by
the tail rotor, andF,, is the acceleration contributed by the fuselage, the hot@pand
the vertical surfaces. Therefore, the vibratory hub loadslze sum of all the loads that are
transmitted from the main rotor to the hub in the fixed systeen,; 7., + [E12¥m:)-

2.7.2 Cockpit vibration calculation with the rigid fuselage

In flight test, the helicopter vibration level is measuredrhgunting accelerometers at
several key areas inside the helicopter. One of the key tlorareas is the pilot station.
The flight dynamics model (HeliUM) used in this study needegroduce the same pilot
station acceleration in order to compare the results wiéhflight test data. However,
this information is not directly available. Although HelUis based on a coupled
rotor/fuselage formulation, the fuselage is actually medeas a rigid body and does not
contain any dynamics. All results from free flight trim prdcoee are only available at
the center of gravity (CG) of helicopter. Nevertheless, fiiiet station acceleration can
be obtained by a simple transformation. Velocity at thetmtation can be expressed as
follows:

Vpilot = Veg+w xR (2.14)
Veg = [u,v,w]T (2.15)
w = [pqr] (2.16)
R = [z.y2]" (2.17)

wherev,, is the velocity vector at CGy is the rotational vector of the helicopter at the
CG, andR is the position vector from CG to the pilot station. The p#tdtion acceleration
can then be calculated by differentiating equation 2.14 waspect to time,

Vpitot = Veg + @ X R+ w x R (2.18)
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As the fuselage is a rigid body, the distance between the @@wrpilot station is constant;
i.e.,R = 0. Expanding the cross product term, equation 2.18 becomes

W — 7y + gz
vpilot :vcg—i_w xR = U+Ty—p2 (219)
w—qr + py

The 4/rev vibration can then be determined by collectipg, over one rotor revolution,
and extracting its 4/rev components using the Fourier aqpation.

Figures 2.1a and 2.1b compare pilot and copilot stationatidns with flight test from
hover to 140 kts. The flight test data represents severabsbtseline data collected over
the span of the flight test program. The scatter in the dataldmicaused by changes in
the aircraft configuration and non-ideal flight conditionsidg the test.

The main rotor inflow used in HeliUM is based on a linear inflowdal. The blade
dynamics consist of a rigid blade flap, a rigid blade lag, arsd filade torsion mode. The
figures also show Yang's (ref. 53) results from UMAR®@hich uses 8 blade modes, a
free wake model, and a flexible fuselage model. These twodgjmdicate that the cockpit
acceleration computed from HeliUM is underestimated tghmut the entire speed range.
This study has also included additional blade flexibilitgsfult not shown here), but the
vibration level is very similar with the rigid blade model.

It was believed that this under prediction could be causea tgck of aerodynamic
interaction. Because the linear inflow model only contaifrevilharmonics, the higher
harmonic airload was not excited. The linear inflow model vegdaced with a free wake
model, and the results are shown in figures 2.2a and 2.2b. geseed, the cockpit vibration
level was greatly improved. However, the vibration levethe higher speed range is on
the low side; especially at 120 kts, which is the baselindigaration of this research. In
addition, the helicopter simulation with the free wake nlasleomputationally expensive.
The computation time required is generally over one ordenafnitude higher than the
one with a linear inflow model.

2.7.3 Cockpit vibration calculation with the flexible fusebge

To determine the importance of the fuselage flexibility orlkgot vibration calculations,
the effect of the flexible fuselage is added to HeliUM. Thisachieved by feeding the
hub loads from a trim condition into a separate fully ela8ib fuselage model. This
fuselage model is built using NASTRAN (ref. 54) based on a&ky SH-60B (a variant
of UH-60) helicopter fuselage. It consists of structuraneénts such as scalar springs,
rods, bars, shear panels, and triangular and quadrilatezadbranes for more than 8,400
elements. NASTRAN is used to calculate fuselage mode shaypetal mass, and stiffness.
The resulting data are used to build a transformation mafriwhich maps the 4/rev hub
shears and moments to the cockpit accelerations at the #&guency. For example,

1Both the flight test data and the UMARC results are the coyédl. Yang and |. Chopra.
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the first column vector Nis obtained by applying a unit 4/rev longitudinal forég,,
at the NASTRAN model’s hub node and measuring all six 4/resekrations at the
cockpit station. Note that this “open-loop” method is ontyapproximation. The flexible
fuselage dynamics are not part of the coupled rotor-fusdiag flight trim procedure. The
calculated hub load does not include the flexible fuselaggoms.

Ay F,
y Ey
(029 o Fz
. =[N Ny N (2.20)
am M,
L % Icockpit, 4/rev L M- Ihub, 4lrev

Figures 2.4a and 2.4b show the 4/rev acceleration magsitadthe pilot and copilot
stations. Note that the result from HeliUM closely followsetUMARC result up to 90
kts. Beyond 90 kts, the HeliUM result continues to rise asftmeard speed increases.
Overall the predictions qualitatively follow the trends tbe flight test data except in a
higher speed range. This over-prediction could be causeskbgral factors. First, the
hub load calculation from HeliUM does not include the effettthe flexible fuselage
dynamics. The effect of aerodynamic damping on the hub |I@cutation is also not
considered. Second, HeliUM does not have any passive \obhrdamping device such as
the hub absorbers, the bifilars, and the spring-mass fusealagprbers. Third, equation 2.20
assumes that the 4/rev cockpit station acceleration issadioombination of the 4/rev hub
shears and moments. Because vibration is not a linear premmmthis assumption may
not hold true in the high-speed flight condition. The coclspéttion accelerations provided
here are only intended to serve as a qualitative measure.

2.8 Optimization formulation

In the first attempt to formulate the optimization probleheg trim equations were included
directly in the form of equality constraintg X) (recall that the trim problem is formulated
as a set of nonlinear algebraic equations as stated in sgt#al, and the trim unknowns
X were included as design variables. Therefore, the optiizgroblem was formulated
as follows: minimize the norm of 4/rev in-plane hub sheéisg,

F(X) = ||Fyplla — min
Subject to
Equality Constraintsy;(X) < ¢

Of the 29 equality constraints, 11 represented trim comwiitifor the entire aircraft, 4 for
the inflow trim equations, and 14 for the main rotor equatiohle vectorX of design
variables was composed of 31 elements, namely, 29 trimhlasaand the sine and cosine
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magnitudes of the HHC input. The initial solution was ob&airfrom an algebraic trim
procedure without a HHC input, and therefore it was alwagsitde. The optimization was
carried out using a modified method of feasible directiors &5), as implemented in the
code DOT (ref. 56). The numerical properties of this forniolaproved to be extremely
poor. Convergence was very slow, and the software ofteninated the optimization for
lack of progress. Several variations of the baseline psowe&se tried unsuccessfully and
this formulation was abandoned.

A different approach to the optimization process provedersarccessful. The problem
was formulated as amnconstraineaninimization:

F(X) = ||Fyplls — min
Subject to
Unconstrained optimization

with a vectorX of design variables consisting of just 2 elements, namedysihe and

cosine magnitudes of the HHC input. This way, the trim praceds decoupled from the
optimization, and it is simply executed separately for gwalue of X proposed by the
optimizer. The optimization was carried out using a Broyégtcher-Goldfarb-Shanno
(BFGS) algorithm (ref. 55), as implemented in the code DOT.
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Figure 2.1. Cockpit vibration comparison; 18,000 Ib, lingdlow model, rigid fuselage.
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Figure 2.3. SH-60 fuselage NASTRAN model; courtesy of M. and |I. Chopra.
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3 Active Rotor Control System for Vibration Suppression

The active rotor control system is implemented in the n@amhelicopter simulation as
shown in figure 3.1. This loop consists of three main partshégrmonic analyzer, the HHC
controller, and the discrete HHC update. Because the figakiiharmonic control (HHC)
and automatic flight control systems (AFCS) interactiordgt(chapter 5) is performed
in the continuous linear time-invariant system, each camepo in the feedback path is
converted to an equivalent linear model.

This chapter is divided into three main parts. The first dbserthe function of the
harmonic analyzer and its linear time-invariant equivaleodel. The second describes
the algorithm of an HHC controller for the steady-state &ilon suppression. The third
section describes the discrete HHC update and its linearitinariant equivalent system.

3.1 Harmonic analyzer

In several research studies, the method of extractingy vibration components is to use
a harmonic analyzer. The harmonic analyzer can be forndilatausing either an analog
bandpass filter (refs. 6,9, 32) or a Fourier analyzer (refs0,229, 30, 57).

3.1.1 Analog bandpass filter method

This type of harmonic analyzer consists of three componerdsbandpass filter,
demodulator, and a lowpass filter (fig. 3.2a). An analog fd{@erates on continuous-time
signals, and provides a continuous sensor output withewtffiect of the sampling window
(Sec. 3.1.3) that is typically associated with Fourier gsial

First, the analog bandpass filter extracts the spectral bamterest from the source
signal. This spectral band is centered on 4/rev frequendyhais a width ofugy,. The
pre-filtered signal is demodulated by multiplying the ex&ttv harmonic frequencies.
The resultant signal contains all the sum and differencguiacies created by the
multiplication. Finally, the lowpass filter removes freqog abovewgy /2 with an
assumptionv < wpy /2. The following example illustrates this process. &k (t) be
one of the spectrum band of some general non-periodic habsigaalZ (t).

Zyp(t) = Agcos(4Qt + wt) (3.1)

where A, is the 4/rev amplitude) is the rotor speed in radian per second, amnds the
4/rev phase angle in radian. Although the hub loads in a tondition are restricted to
periodic waveforms, there is no such restriction duringgasd maneuvers in which the
hub loads may contain significant non-periodic transieriteerefore, the source signal
Z(t) is first screened through the bandpass filter to extract itgpoments near the 4/rev
frequency, i.e., more precisely, in the rangelff — wpy /2 and4€) + wpy /2. This pre-
filtered signal is calledZ,»(¢) and can be written in the form of equation 3.1. Next, the
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pre-filtered signal is demodulated, i.e., multiplieddoy 42t andsin 42t as follows:

A = Zyp(t) cos 40
= %A4 [cos(wt) + cos(8Q + wt)] (3.2)
12145 = Z4p(t) sin 40t
1
= §A4 [— sin(wt) + sin(8Q + wt)] (3.3)
The demodulated signal&4c and A, are passed through the lowpass filter to remove all

frequencies abovey, /2 and doubled with an assumption < wgy /2. The resultant
signal is given by equations 3.4 and 3.5.

Ay = Agcos(wt) (3.4)
Ay = —Aysin(wt) (3.5)

Equation 3.1 can be rewritten, using equations 3.4 and 8.5, a

Zyp(t) = Aycos(4Q + wi)
Ay cos(wt) cos(4Qt) — Ay sin(wt) sin(4Qt)
Ay cos(4Qt) + Ay, sin(40) (3.6)

Using analog bandpass filter to extract the 4/rev signal addsge time delay to the
system because the method requires a high order bandpasailh narrow passband
width (small wgy) to extract the steady-state vibration value. The analagnbaic
analyzer does not present a problem for steady-state Mbrattraction, however the large
time delay will mask all the transient responses.

3.1.2 Fourier analyzer method

Another method of extracting the harmonic components frioensburce signal is to use a
Fourier analyzer, which was applied in this study. This tgpearmonic analyzer consists
of three components: a sample window, the Fourier analgmeéra lowpass filter (fig. 3.2b).

The sample window serves as the data buffer which storesnimgpdata streams. The
Fourier analyzer then identifies the harmonic contents efgburce signal within the

sample window. This Fourier analyzer can be either a Foseees approximation or a
Fourier transform in either the continuous-time or disett@ine domain. The lowpass filter
then removes the undesired frequency contents ahiveg frequency. The Fourier series
approximation method was chosen as the Fourier analyzéimatite harmonic analyzer

because the HHC/AFCS interaction study is performed iniocaontis-time domain system.
Nevertheless, one can use the Fourier transform (such gsAppéndix B) as the Fourier

analyzer for the digital version of the harmonic analyzer.
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The theory of Fourier series approximation lies in the idea most signals, and all
engineering signals, can be represented as a sum of sing:wave

f(t) = %ao + i [a, cos(2mn ft) + by, sin(2mn ft)]

n=1
with
2 T
an—?/o f(t) cos(2mn ft) dt, n=0,1,2...
2 T
by, = —/ F(t)sin@mnft) dt,  n=1,2,3,... (3.7)
T Jo
whereT is the fundamental period anfd= 1/7 is the fundamental frequency in Hz. For

example, the vertical vibratory hub lod¢, can be approximated using the finite version of
equation 3.7 that will pass through N data values in one foreadal period:

N/2 (N/2)—1
_ 2mnk 2
PRS0 = Tz + 3 Frcos (505 ) 4% s () a9)
n=1 N n=1 N
with
t=kAt, k=1,2,...,N, where At=T/N (3.9
_ 1 X
Fr ==Y Fy(kAt) (3.10)
Nk:l
2 XN 2mnk N
F = — Fy(kAt =12,....,——1 3.11
Znc N ,;1 Z( )COS < N ) ) n ) &y ) 9 ( )
2 XN 2mnk N
F = — Fr(kAt) si =1,2,...,——1 12
Zns N /;1 Z(k t) S ( N ) ) n ) &y ) 9 (3 )

The fundamental frequency is the rotor speed? in rad/sec or2/27 in Hz, and the
fundamental period” is 27 /<) second. To extract/rev components of’;, the sampling
frequency must be at least twice as fastagv frequency to avoid aliasing problems. In
this study, a factor of 6 is chosen which leads to a samplieguiency of 6n(2/27) Hz.

For a rotor with four identical blades and zero tracking ggreéhe only frequencies
transmitted to the fixed system are the four multiples pemoltgion (4/rev, 8lrev,
12/rev ...). Therefore, the sampling frequency requiredxivact F,,. and F;,, of the
Sikorsky UH-60 helicopter with a nominal rotor sped27 rad/sec igf; = 6nQ2/21 =
(6 x 4 x 27)/2r = 103 Hz or N = 24 sample data per rotor revolution. Although the

1The main rotor blades are all flying in the same tip-path-pkamd maintain equidistant angular spacings
during flight.
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major vibratory hub loads interested in this study have awvfirequency, the study also
monitored 8 and 12/rev frequency, which are the second arttithirmonics transmitted to
the fixed system for a four-bladed helicopter. In this case sampling frequency required
iS fs = 6nQ/2m = (6 x12x27) /27 = 310 Hz or N = 72 sample data per rotor revolution.

The calculation of the Fourier coefficients is very time aoming since it requiresv>
number of function evaluations. To reduce the computatioe,tthe most frequently used
algorithm for real-time applications is the fast Fouriamnsform (FFT, Appendix B). Itis a
discrete Fourier transform that reduces the number fumetialuation fromV?2to N log .
Since the helicopter simulation program used in this stady ihe continuous-time domain
and it is not a real-time simulation, the simulation time sloet advance to the time frame
until the Fourier series calculations is finished. Thereftine additional computation time
required for the Fourier series calculations has no impael/eev vibration extraction.

The lowpass filter implemented in this harmonic analyzer4& arder Bessel lowpass
filter with the break frequency, at 6.5/rev. The 6.5/rev break frequency is chosen to
produce a -12 dB magnitude drop between 4/rev and 8/revisighdditional information
about Bessel filter will be discussed in section 3.1.4.

Use of the Fourier analyzer (either Fourier series appraton or FFT method) to
extract the 4/rev signals causes additional delay to theesys The source of delay is
from the sample window, which is discussed next.

3.1.3 Effect of windowing

When performing a digital harmonic analysis with a physggtem, a sample window
must be used, as it is necessary to truncate long data stteanfisite size. The size of the
window has a significant effect on the accuracy of the extraatf the desired frequency
components. A large window; i.e., a window that extends @vieng time, increases the
accuracy of the low-frequency components identificationdagrades the high-frequency
identification. On the other hand, a small window improveghHirequency components
identification but degrades the low-frequency. Genertily,minimum window size is one
cycle of the source signal. For the 4/rev hub load study, temum sample window is
equal to quarter revolution. However, a sample window of @welution (4 cycles of the
source signal) was used in this study. As the rotor rotatgerixkits first revolution, the
sample window advances with it continuously.

Figure 3.3 illustrates the time delay introduced by the damypndow. The vertical
hub loadF’;, shown in the second figure, starts from a trim condition auttHHC input
for the first two revolutions. At the end of the second reviolut a 4/rev HHC input is
added (this is an arbitrary input, which will not necesgardduce vibrations), and the
helicopter reaches the new steady state condition. In theréwvolution, F; has reached
the steady state almost instantaneously. Although theaelasv frequency drift, mainly
1/rev response, the third revolution is dominated by thew/esponse, but is near to the
new steady state condition. The spectral analysis peridmomethe third revolution also
confirms this finding and the result is shown in the third figuHowever, according to
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on-line Fourier analysis with a moving sample window (foutgure),F, . andF,, take
approximately one rotor revolution to reach the new steaaly condition. This does not
agree with the result stated earlier. The cause of thisrdifige is the sample window. In
other words, the sample window behaves as a lowpass filtechvetldds large time delay
and masks all transient responses.

3.1.4 Equivalent lowpass filter

A window essentially behaves as a lowpass filter. The samjpldow used in the study is
based on a rectangular or "box car” window. Figure 3.4a igé¢ieeangular windowh (t),
in time domain which has a window size 2if;. Its expression is given by:

h(t) _{ 0 e (3.13)

and its Fourier transform is given by:

To

H(f) = / h(t) e 27 Ftqt

—Ty
To To

= A/ cos(2m ft)dt —jA/ sin(2m ft)dt
~Tp ~Tp

sin(27 7o f)

= 24T,
O on T f

(3.14)

where f is the frequency in Hz. Figure 3.4b shows that the Fouriersfiamation of a
rectangular waveform consists of a central lobe which doatmost of the energy of the
window and the side lobes which generally decay rapidly. mlagnitude difference of the
first two lobes is 13.4 dB (79% reduction) with a break frequyeof 1/27; Hz.

Equation 3.14 is a closed form solution, and is a functioredfiency. The LTI system
analysis, equation 3.14 can be approximated by an equialepass filter. The equivalent
lowpass filter chosen is the Bessel filter because it has tlusviog characteristics:

e k poles and no zeros

DCgain=1

Break frequency =,

Maximally flat group delay about 0 Hz, and the phase respans@proximately
linear in the passbhand

The linearity degrades at the higher frequencies, and thgpgielay drops to zero

No overshoot around break frequency
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For the Sikorsky UH-60 helicopter, the Bessel filter chosea 4" order function with the
break frequency, at1/2T7;. 27 is the length of the sample window, which is equal to the
time to complete one rotor revolution.

The frequency response comparishiif) of the rectangular window and that of the
Bessel filter are compared in figure 3.4 (c). The Bessel fittierpasses the signal at a
break frequency, of 4.3 Hz and produces a frequency drop off similar to theanegtilar
sample window. Note that the Bessel filter designed in the@e is only implemented in
an LTI system analysis to mimic the dynamics and the timeydefiahe actual rectangular
sample window.

3.2 Higher harmonic control algorithm

3.2.1 T-matrix method

The closed-loop HHC algorithm implemented is based on tleelfgain/-matrix feedback
controller:
Zyp (k) = Zyp (k = 1) + T [Opne (k) — Oppe (k — 1)] (3.15)

Equation 3.15 is a difference equation for discrete-timedio system. The variableis
the discrete-time index, whilé, » is the vibration response vector consisting of cosine and
sine components of 4/rev vibratory hub loads excluding fhevd/awing moments:

Z4P - [FX407 FX457 FY407 FY457 FZ4c7 FZ457 MX4c7 MX457 MY407 MY45]T (316)

and is a function of the state vectorthe pilot inputs,,;.:, and the HHC input$,,,..

Zip = f(x, 00, Onic) (3.17)

Opitot = [O1at: Oton Ocol Oped] (3.18)

Omne = 030,055, 0ac, Ous, Osc, Oss] " (3.19)

TheT-matrix is the Jacobian of functidhcomputed about a reference input vecéyy,.,
of

T 50 - (3.20)

In other words is a linear approximation of the 4/rev vibration respo#se to the HHC
inputsé,;,. at a steady-state condition. That is, equation 3.20 asstiraeshanges in the
vibration respons@&Z,» with respect to the changes in the HHC inp\#,,,. are linear
over the entire range @f,,.. This relationship can be written as

AZyp = T AOpe (3.21)

In this study, the helicopter is trimmed without the HHC inptherefore, the reference
input vector@y,,., is a zero vector, and tha#,;. in equation 3.21 is the same @gy,..
Total 4/rev vibration approximated usifigmatrix method is given by

Zyp = Zyp, + T Oppe (3.22)
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whereZ,p, is the 4/rev vibrations of the nonlinear baseline (HHC-offye.
For vibration suppression, optimal control is obtained hgimizing the cost function

J:
T =3 Znk) Q Zap(k) + 5 603, (k) R Oune(h) (3.239)
where() and R are the weighting matrices on the responses and controls:
Q = diag{l, 1,1, 1, 1, 1, g7,..., quo} (3.24)
R = diag{1, 1,1, 1,1, 1} (3.25)
andgr,...,qu0 = 1/Az§g whereAz,, is the vertical displacement of the rotor hub to the

center of gravity of the helicopter. The choice of the weiiggltl/Azig transforms the

moments to the equivalent forces. The optimal control is mat@d by setting the first
derivative of the cost function of equation 3.23 to zero anldisg for the optimal HHC
input:

aJ

— = 3.26

20 (3.26)

With this scheme, the HHC input is computed based on the muresponse vector:
Ok)=T'TT 0k —1) — T Zyp(k — 1) (3.27)
where the fixed-gain regulator is
T'= (T"QT + R) ' T Q (3.28)
If R=00rT"QT > R, T"is a pseudo-inverse @f, and equation 3.27 becomes

Ok) = 0(k—1) — T" Zyp(k — 1) (3.29)

3.2.2 T-matrix validation

As stated beforel-matrix is a linear approximation of the 4/rev vibrationpesseZ, » to
the HHC inputs#,,,,. at a steady-state condition. The total 4/rev vibrationo@spZ,pr of
the nonlinear model and that of tHématrix approximation are compared in figures 3.5—
3.7 for 3, 4, and 5/rev inputs to determine the accuracy offthraatrix approximation.
The total 4/rev vibration respona » of the nonlinear model at the steady-state condition
was computed for HHC input, and the 4/rev vibration respomas extracted from the
helicopter hub loads using Fourier series approximatitme total 4/rev vibration response
Z,p of the T-matrix approximation is computed using equation 3.22 wl#yy, is the
4/rev vibrations of the baseline (HHC-off) case from the lireear simulation. The HHC
input for both methods have an amplitude éflith a phase angle varying fromi @ 360
with increment of 30.

The diamond symbol represents the baseline (HHC-off) 4/fleration responses,p,
from the nonlinear model, with values tabulated in table 3He open circles represent the
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vibration responses from the nonlinear model with the HH@lts engaged; solid circles
represent the vibration responses frdirmatrix approximation based on equation 3.22
with ;. determined from equation 3.29. The number next to the symloén/rev input
phase angle.

These figures illustrate the 4/rev vibration predictioroeresulting from thel’-matrix
approximation. In the 3/rev case (fig. 3.5), 4/rev vibratiesponses from th&-matrix
approximation match well with that from the nonlinear modé€br the 4/rev and 5/rev
cases, there are differences between the two methods. dilifesence are from an earlier
assumption that the vibration response to the HHC inpunisali over the entire range of
0,.,.. Since the vibration responses to the HHC inputs are notssacéy linear, the small
differences between linear and nonlinear models are eggect

3.3 Discrete HHC update

The ideal HHC inputs computed by tHématrix controller for vibration suppression are
not returned to the rotor system at every time step. The HigGtinas a discrete update rate
which typically varies from 0.5 to 16 times per rotor revadut (refs. 5-10). A typical HHC
input update rate is once-per-revolution. In the disctete domain, the discrete HHC
update is performed by the sample-and-hold operation. pbeiment this in a continuous-
time domain system, the effect of the sample-and-hold djperanust be approximated in
the continuous-time domain.

Figure 3.8 illustrates the effect of a sample-and-hold ajp@n on a continuous signal.
The sampler transforms the continuous signal to an amghtnddulated pulse signal at a
sample ratev,. At the output of the digital controller, the digital sigrmalust be converted
to analog by the process called digital-to-analog conwersiThe simplest device that
transforms digital input to analog output is a zero-ordeldh The bottom of figure 3.8
shows the relationship between digital input and analoguwufThe zero-order-hold holds
the value of the sampled signal oVér second to produce a reconstructed signal with
staircasewaveform. Notice that an approximation to the reconstisignal is identical
to the original signal with a delay df,/2 second. Therefore, a zero-order-hold operating
at a sample rate; is equivalent to a time delay of/w, second. Similarly, the discrete
HHC input operating ab,, frequency also can be approximated by a Padé function with a
time delay ofr/w,, second.
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Table 3.1. Baseline (HHC-off) vibration level.

4P Cos-Comp. 4P Sin-Comp. Amplitude

Fx (Ib)
Fy (Ib)
Fy (Ib)
My (ft-Ib)
My (ft-lb)

151.6
73.5
39.5
40.1
80.0

87.8
-61.3
8.9
62.6
30.2

175.2
95.7
40.5
74.3
85.5
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Figure 3.5.
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4 Extraction of the Constant-Coefficient Linearized
Model

A key ingredient for the study of potential interactionsvbe¢n HHC and flight control
system is a linearized time-invariant model of the helieogtynamics, including higher
harmonic inputs and controls. This chapter contains thivatesn of such a model, and is
composed of three sections.

Section 1 summarizes the main steps of the extraction ohgectional linearized model,
i.e., one without higher harmonic inputs and controls. i®ac? extends the derivation
to include such higher harmonics to show that: (i) one portd the output equation
is the equivalent of the traditiondl-matrix, and (ii) through an appropriate formulation
of the output equation, the need for online identificatiod adaptation of th@-matrix
in maneuvering flight is substantially reduced. Section 8cdbes the application of
the methodology to simple linear rotor equations, for whaclalytic expressions for the
coefficients of the model can be derived.

4.1 Extraction of a linearized model without higher harmonics

Consider the equations of motion of the helicopter writtesymbolic form as:

f(x,x,u;¢) =0 (4.1)
and take first order differentials
df(x,x,u;9) =0 (4.2)
which can be expanded into
8—? dx + ﬁ dx + of du=0 (4.3)
8x5(:5(0 8XX:XO 8uu:uO

where the subscrift . .), denotes the trim values of the respective vectors. Replaae n
d(...) with A(...) and introduce the notation

def of
ECUN - (4.4)

def Of
LD (4.5)
Bi(v)] g—f (4.6)

Ulu =,
Then equation 4.3 can be rewritten as:
Ax = —[E@)] " [A®)] Ax — [E@)] 7 [Bi(¥)] Au

= [AW)]Ax + [B(¢)] Au (4.7)
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with [A@)] < —[E@)] " [A@)] and [Bw)] < —[E@)] " [Bi(v)]. The
linearized matrice$E (v)], [A1(v)], and[B; ()] can be calculate using finite difference
approximations. For example, using central finite diffees) thej-th columns of the
matrices A, (v)], [B1(v)], and[E(v)] at the azimuth); are given by, respectively:

(@), = o| s rrhein) SHThein) g
JIX = Xg
f f he.: 1. — f(uy — he.: 1,
{Bl(’(/)l)}] _ 007 ~ (110—|— e]awl)2h (ll() ej7¢2) (49)
Jia = ug
of f(xo + hej; ;) — £(xo — hej;
By = gl = othesitn) TG0 Zheitt) g 40
= Xp

wheree; is a vector with all its elements equal to zero except forjthie, which is equal
to one, andh is the finite difference step size. All the matrices abovepeaodic, with
common period equal to one rotor revolution. Therefore stia¢e matrixA(¢))] and the
control matrix[B(v)] are also periodic, and can be expanded in Fourier Series:

M=

[A(W)] = [Ad] + > ([Age] cos ktp + [Ay] sin k1) (4.11)
[B(y)] = [B0]+Z([Bkc] cos ki + [Bys] sin k) (4.12)

If the state vectox is defined entirely in a fixed coordinate system, then a timariant
linearized model can be obtained by retaining only the @msnatricesA,| and[By]. If,
additionally, the blades are assumed to be identical, thesummations in equations 4.11
and 4.12 only contain harmonics that are multiples of thelmemof blades. Therefore, for
an N-bladed rotork = N,2N,3N, ...

4.2 Extraction of a linearized model with higher harmonics

This section presents the extension of the linearizatimtquure to the case in which
both the state vectax and the control vectou contain higher harmonics. The precise
definitions ofx andu will be introduced first, together with general expressitorsthe
linearized system. The derivation of the control mafi(v')| will be presented next,
as it requires only minor modifications of the baseline pdoce of the previous section.
Finally, the derivation of the state matriX ()], which requires some special treatment,
will be presented.
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4.2.1 Definitions

The control vecton(v)) used in the present study is defined as:

u(y) = l 1‘;;;;((13) ] (4.13)
whereu,;;.(1) is the vector of conventional pilot controls
upizot(¢) = [5lat Oton Ocol 5ped]T (4-14)
anduy g is the vector of higher harmonic controls
wune(V) = [0s O35 Oac Oas O5c Os,]" (4.15)

The HHC is applied to the blade in the rotating system. In thdadled helicopter
configurations used in this research, 3/, 4/, and 5/rev obmmputs in the rotating system
are required to generate the desired 4/rev inputs in the $ixgl@m. The vectax(v) should
be interpreted as “perturbations from the trim values ottir@rols”. The state vectst(v)),
also representing perturbations from trim values, can lgenrin the symbolic form:

X(¢) =

XB
o ] (4.16)

wherexp is the vector of states not associated with the main rotdineis as:
xp=[uvwpqgr ¢y A A\s Ay Vs I/y]T (4.17)

andx, is the vector of rotor states, defined in a fixed coordinateesysThe elements of
the rotor state vector are based on the assumption that edelisscomposed of an average
and a 4/rev portion, both azimuth dependent. For exampth,tive longitudinal rigid body
flappingfi.(v) written as:

B1e() = Breane (V) + Prea () cos 4 + Pie,, () sin 41 (4.18)

the quantitiess;.,,. (¢)), fie,.(¥), and Sy, (¢) will be considered as states and included
in the rotor portionx,,;r of the state vector. The stat§.,.(v) is equivalent to the
longitudinal flap state that would appear in a traditionabretate vector. The additional
higher harmonic state$,., (v) andj,.,. (¢) represent a new way of modeling the effects
of higher harmonic control, introduced for the first time lire tpresent research. Although
the formulation of equation 4.18 appears intuitively reedme, it will not be justified on a
rigorous theoretical basis. However, its validity will bet&blished through simulation, by
comparing linearized and nonlinear responses to pilottsipu

The assumption that each rotor state is composed of an @&vanaa 4/rev portion leads
to an expanded state vector defined as follows:

x = l Kave ] (4.19)

XqpP
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wherex,,. contains the vectoxz defined in equation 4.17 and the average rotor states,
that is:

Xave = |:XB /60(1/116 /Glcave /Blsa’ue /Bzave /60(1/116 /Glcave /Blsa’ue /Bzave e
te Coa'ue Clcave Clsave C2a'ue Coa'ue Clcave Clsave C2ave et
e ¢0a1/e ¢1Cave ¢1S(L’U€ ¢2a1/e ¢O(L’U€ ¢1C(L’U€ ¢15a1/e ¢2a1/e :| (420)

andx,p contains the 4/rev components, sine and cosine, of the stdates:

X4p = {5046 5043 51C4c 51043 51346 51343 5246 5243 e
oo Bose Bose Brese Press Brsae Brsse Boue Bose -
tee éO4c é(]4s C.104C 61045 éls;;c 61345 C'24c 6245 cee
o Gose Cose Clese Cless Crsae Cisae C2ue C2ue - - -
- P0se Ps Prese Dres, Prose Pros, s Pasy - -
o D0se D0ty Drese Pes, Drose Ps, D2 D2,,]" (4.21)

The notation in equations 4.20 and 4.21 reflects the factithtéie present study the rotor
blades are modeled using one rigid flap motjeone rigid lag mode, and one flexible
torsion modeyp, but both equations can be rewritten for a generic numbergad and
flexible modes. Also note that both vecters,. andxy ;- are in general time dependent.

With these definitions of the state and the control vectolitiearized system [Eq. 4.7]
becomes

Xave Aave A12 Xave Bave Bl2 Upilot
) = + 4.22
{ X4pP } [ Ao Apnc ] { X4pP } l By Brnuc UnHC ( )
where now all the partitions of and B are time-invariant. In other words, by decomposing
the state vector into an average and a 4/rev component, itfieadinearized system with
periodic coefficients has been converted into a larger tined system, but with constant

coefficients.
The linearized model also includes an output equation, lwhas the form:

Yave I 0 0 0
Yar 0 C22 Xave 0 0 Upilot
= + 4.23
Fove Cs1 Cso { X4pP } D31 Ds UpHC ( )
F4p 041 042 D41 D42
N—— —
def y def def

where theC' and D matrices have constant coefficients. The veckys andF,» contain
average and 4/rev hub loads at the hub, and are defined as:

Fove = [Fu. Fouo Fyowo My, M, M. " (4.24)

Tave Tave Yave Tave Yave Zave
]T

Fipp = [Fuc F:B4s Fy4c Fy4s Fz4c Fz4s Muc Miv4s My4c M,,, M., M

Yas Zdc Z4s

(4.25)
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whereF,, F,, F,, andM,, M,, M, denote the rotor force and moment components along
and about the body axes. The remaining two partitions of thgpud vectory in
equation 4.23 arg,.. andy,p. The output subvectayr,,. is identical to the average state
vectorx,,.. The output subsectgr, is the global 4/rev rotor state vector:

Yap = |:/664c ﬁ(lhs ﬁiczxc /61043 /6134c /61345 ﬁé4c ﬁé4s e
/ / ! / / ! ! !
s CO4c CO4S Clc;;c ClC4S C184C C184S <24C C24S e
T
/ / / / / / / /
T ¢O4c ¢04s ¢104c ¢104s ¢134c ¢134s ¢24c ¢24s:| (426)

The portion of the output equation corresponding @ andy,p is simply a mathematical
means to indicate that the outputs are the average and glbalrotor states; no physics
are involved.

The submatrice€’s; andCs, express a linearized relationship of the average hub loads
F... with the average rotor state,,, and the 4/rev rotor states,r. Similarly, the
submatrice€”’,; andCy, express a linearized relationship of the vibratory loRds with
the average rotor states and the 4/rev rotor staies

As for the feedforward matrix, the submatricBg; and D, link the average vibratory
loads to pilot and HHC inputs, respectively. The submasridg, and D, link the 4/rev
harmonics of the vibratory loads to pilot and HHC inputspexgively. Therefore, th®,,
submatrix is the equivalent of tHE-matrix in typical HHC studies. The submatrixy;
represents the effects of pilot maneuvers on the vibratmagd: these effects are not taken
into account explicitly in typical HHC studies, insteade timaneuver effects are captured
by online identification of th@'-matrix and adaptation. By including the maneuver effects
in the output model, the need for adaptation is substaptietiuced.

4.2.2 Extraction of the control matrix B

The extraction of the control matrig is presented first, because the procedure is more
similar to that for the traditional linearization withougher harmonic components of the
states. In fact, the control perturbation vecatois already defined in the rotating system.
The control matrixB is extracted through numerical perturbation of the full limoear
equations of motion about a trimmed equilibrium positiorack element of the matrix

is obtained using central difference approximations. Tdlewation proceeds as follows:

For every azimuth angle;:

1. Perturb thé:-th elementu(1);) of the control vecton (pilot and HHC controls are
treated in exactly the same way) By, i.e., let the perturbed control vectar (v;)
be
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Uy
U2

u (¢;) = (4.27)

ug + Auy,

U

where the subscript “+” denotes the positive perturbatiothie central difference
calculation.

2. Substitute the perturbed control vectnr(v); ) into the system of equations of motion
of the helicopter, to obtain the perturbed accelerationorec; ,

Xp+ = £(xgr, up, 9i) (4.28)

where a subscripk has been added to the state vector to indicate that the rotor
portions are formulated in the rotating system (note that tate vector in the
linearized model is entirely expressed in the fixed systenfhe state vector

xr corresponds to the desired trim condition, and is held @mstluring the
perturbation.

3. Repeat the two previous steps with a negative perturafithe £-th control,u;, —
Auy, to obtain the perturbed acceleration vectgr .

4. Build the derivative using central difference approximas. This derivative is the
k-th column of theBx matrix (i.e., with the rotor portions still in the rotatingsgtem)
at the azimuth angle;:

1. :
{Br(vi)}y, = Aur (Xr+ — Xp-) (4.29)
5. Repeat the four previous steps for each ofrthelements of the control vector, i.e.,
for u,, k = 1,...,m, to obtain the complete control matrixz (1;)
Br(vi) = {Br(Wi) 11 {Br(Wi)}y - - - {Br(¢i)},,] (4.30)

The next step of the linearization procedure typically ¢stisf performing a multiblade
coordinate transformation, to convert the rotor statesiftioe rotating to the fixed system,
and therefore to obtain a control matiiX(¢);) entirely in the fixed system. After steps
1-5 are made for a sufficient number of azimuth anglggshe resulting control matrices
B(v;) are typically averaged to obtain the final constant contratrim B. This is the
traditional linearization procedure used in the presamtysfor the calculation of the rows
of the B matrix corresponding to the “average” states, i.e., forghlematrices3,,. and
By, in equation 4.22.
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Some additional manipulations are required for the rowsesponding to the 4/rev
states, i.e., for the submatricés, and By . These manipulations consist of Fourier
analysis ofB(v);) to extract the 4/rev cosine and sine harmonics. Define:

N,
2 )
B4C = — Z B(iﬂl) COS 4¢2 (431)
Nw i=1
2 M
By = — Z B(v;) sin 44 (4.32)
Nw =1
whereN,, is number of azimuth anglg; in one rotor revolution. Then it is essentially
By,
[B21 Bunc| = l B4 1 (4.33)
4s

except that the rows aB,. and B,, must be appropriately permutated because the state
subvector,p [EQ. 4.21] is arranged with the 4/rev cosine and sine compisriaterlaced
rather than grouped together.

4.2.3 Extraction of the state matrix A

The general procedure to extract the state matrig similar to that of the control matrix
B, except that the state vector is defined in the fixed systeth,foothe average and the
4/rev components.

4.2.3.1 Rows corresponding to the average statgs,.

The rows of thed matrix corresponding to the average staigs, i.e., the submatrices,. .
andA,; in equation 4.22 can be obtained with the same proceduresa®psly shown for
the B matrix, i.e., through the following steps.

For every azimuth angle;:

1. Perturb the:-th elementz,,., (¢;) of the partitionx,,. of the state vectax by Az,
i.e., let the perturbed state vector(v);) be

Lavey

Laves
X+<¢i) = Lavey, + Al’k (434)

Lave
Xap

where the subscript “+” denotes the positive perturbatiothe central difference
calculation.
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2. Substitute the perturbed state vectarv;) into the system of equations of motion
of the helicopter to obtain the perturbed accelerationorect. Because the rotor
equations are formulated and implemented in the rotatistesy,x , (¢;) must first
be converted to the rotating system, using a multibladedinate transformation
that yields the corresponding rotating state vester(v;)

XR—!— = f(XR+7 u, wl) (435)

where the subscripR again indicates that the rotor portions are in the rotating
system. The control vectar corresponds to the desired trim condition, and is held
constant during the perturbation.

3. Repeat the two previous steps with a negative perturbafithek-th average state,
Zave, — Ay, 10 Obtain the perturbed acceleration vectar .

4. Build the derivative using central difference approximas. This derivative is the
k-th column of a matrixdz(¢;) at the azimuth angle; , that is:

{Ar(¥i)}, = ﬁ (Xpy — Xg-) (4.36)

Position in the state matrix and dimensions4f(v;) are the same as the submatrix
Agve In €quation 4.22, butl,,,. is constant and in the fixed system, wherdag);)
is periodic and in the rotating system.

5. Repeat the four previous steps for each offhelements of the state vector partition
Xaves 1-€., TOr 240, , k = 1,..., N, to obtain the complete matrix(1;)

Ar(i) = {Ar() 1 {ARW) Yy - - {AR(1) } ] (4.37)

The next step of the linearization procedure typically ¢stisf performing a multiblade
coordinate transformation, to convert the rotor statesiftioe rotating to the fixed system,
and therefore to obtain a state matriXv,;) entirely in the fixed system. Then, after
steps 1-5 are carried out for a sufficient number of azimugtesn);, the resulting state
matricesA(v);) are typically averaged to obtain the final constant stateimat This is
the traditional linearization procedure, and it is also tnbkalone in the present study for
the calculation of the portion of thé matrix corresponding to the “average” states, i.e., for
the submatrix4,,. in equation 4.22.

Some additional manipulations are required for the rowsesponding to the 4/rev
derivativesx,p, i.e., for the submatrixd,;. As for the B matrix case, first perform a
multiblade coordinate transformation @i (¢);), resulting inAx(v;) , and then extract the
4/rev cosine and sine harmonics through a Fourier analpsifne:

2 v

AF4¢ = F Z AF(’(/JZ) COS 41/12 (438)
Y i=1
2

AF4S = F Z AF(’(/JZ) sin 4¢2 (439)
¥ i=1
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Then it is essentially
Ay = [ Ap. ] (4.40)

except that the rowsly, and Ag,, must be appropriately permutated because the state
derivative subvectak,p [EQ. 4.21] is arranged with the 4/rev cosine and sine comipisne
interlaced rather than grouped together.

4.2.3.2 Rows corresponding to the 4/rev states,p

The rows of thed matrix corresponding to the 4/rev state vectgp, i.e., the submatrices
As and Ay e in equation 4.22 can be obtained with the same procedureeasopsly
shown for theA,,. and A5; matrices with two special treatments: 4/rev perturbatiod a
kinematic relationship.

Unlike the conventional linearization method which has astant perturbation, the
submatricesi, and A ¢ are obtained by perturbing,» in 4/rev frequency in both sine
and cosine direction. The 4/rev frequency is chosen to @xicé 4/rev response. Because
the equations of motion of the helicopter are not expressedrins of 4/rev states, they
cannot be perturbed directly. The alternative solutioripdrturb each main rotor states
g Of the partitionx,,. by Az, cos 4y, and Az, sin 41);. This is the same as
perturbingz sz, andzy g, by £Az R, respectively.

Another important aspect regarding the 4/rev perturbasdhe kinematic relationship
between the rotor states. There are several types of kineneddtionships, and one of
them is the integral relationship such as

d
%(ﬂlc) - ﬁlc (441)

d .
%(ﬂlc) - ﬁlc (442)

Because the periodic nature of the 4/rev states, the kinemnedationships are maintained
in a different way. Continuing with the previous examples flist and second derivatives
of equation 4.18 with respect to time are given by:

Pre(@) = Preae(¥) + Bres () cos Y + Prey (¥) sin g (4.18) repeated

Bic(¥) = Bieg. T+ (6104c + 4Q04,, ) cos 4t + (51045 — 4QB4e,,) sin 49
Blese Blens
(4.43)
Bre(h) = Biey,. + (Bres, + 8QB1e,. — 16Q%8y,,,) cos 41
Blley,
+ (Bren, — 801y, — 16026y, ) sin e (4.44)
B ens
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Although 8., Bi, and ;. on the left-hand side of equations 4.18, 4.43, and 4.44
correspond to the integral relationships, the primed arnttdwariables on right-hand side
of equations 4.18, 4.43, and 4.44 do not maintain the sanegrait relationships. For
example,

d :

Bie) # B, (4.45)

d :

B £ B, (4.46)

d

E (61046) 7& ﬁilalc (447)

d

E(ﬂims) % 51/043 (448)
(4.49)

Define all the dotted and non-dotted variables suchas, Bic,.. fic.., and 3., on the
right-hand side of equations 4.18 and 4.43 to be4hev rotor statesand the primed
variables such as;,, andg3],, to be theglobal 4/rev rotor state¢for this simple example).
Then, the kinematic relationships between the 4/rev ratdes and global 4/rev rotor states
are as follows:

Bl = Prow T40510, (4.50)
Bree = Biew — 4081, (4.51)
fere = By, + 821c,, — 16Q°Bic,, (4.52)
lers = 51045 - 8951% — 169 By, (4.53)

For this research, the 4/rev rotor state vector and the glbev rotor state vector are
shown in equations 4.21 and 4.26, respectively.

The kinematic relationship must always be maintained tipnout the linearization
process. For instance, if the. was perturbed by a constaidj;,., the Blc must also
be perturbed by (Aj,.) at the same time to maintain kinematic consistency. Bectiiese
time derivative of a constant perturbation is zero, theiti@ahl linearization method only
perturbs one state at a time while the rest of the states nefimad.

For a 4/rev perturbation, i;. is perturbed byA ;. cos41) , Blc must also be perturbed
by %(Aﬂlc cos41)) at the same time. Conversely,f. is perturbed byA ;. sin 44, Bie
must also be perturbed %(Aﬁlc sin4)). It is important to remember that the equations
of motion of the helicopter are not expressed in terms ofvdmoéor state x,» cannot be
perturbed directly. The procedure described below pesteaazh main rotor state withy, z
in both sine and cosine direction at a 4/rev frequency.

The calculation of submatrice$;, and Ay ;¢ proceeds as follow:

For every azimuth angle;:

1. Perturbation of the 4/rev cosine component
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(a) Perturb thej*® main rotor statery g, (¥;) of partition x,,z(¢;) in the state
VECOrX o, (i) by Az g, cosdq);, i.€., let the perturbed state vectoy., ()
be

XB
TMR,y

Tyr;_, + [—4QAT N R, sin 41

Xt (¢2) = (454)

TyR; + ATyr, cos 4

TMRy

where the subscript “4c+” denotes the positive 4/rev copergurbation in the
central difference calculation.

(b) Substitute the perturbed state veciqr, (v;) into the system of equations
of motion of the helicopter, to obtain the perturbed statetamederivative
%40+ (1);). Because the rotor equations are formulated and impleméntine
rotating systemx,.. (¢;) must first be converted to the rotating system using
a multi-blade coordinate transformation that yields theesponding rotating
state vectok ga. (1)

X Rdc+ (%) = f(XR4c+ (%), 11(%), M’) (4.55)

The control vecton(v);) corresponds to the desired trim condition, and is held
constant during the perturbation.

If and only if 2,5, is one of the displacement states, (5., Bis, Fe, Co, Cles

Gisr G2 0y P1cr P15, $2), its derivative stateyr, (Bo, Bres Brss B2r Cou Cier Ciss

Cay G0, G1es 15, P2) AlSO Needs to be perturbed BYQAT ) R, sin 41); at the

same time. This additional perturbation is represented. an equation 4.54.
(c) Repeat the two previous steps with a negative pertunbafi the;** main rotor

state,xar, — Azar, cos 41, and build the derivative using central difference

approximations. This derivative is th&é column of an interim matrix’z (1;)
at the azimuth angle; , that is:

{Pr(¥i)}; =~ ﬁ (XRac+ (Vi) — XRrac— (i) (4.56)

IR;

(d) Repeat the three previous steps for each of/thedements of the main rotor
state vector partitiox g, i.€., for the main rotor state inyz,, j = 1,..., L,
to obtain the first half of the interim matriz (v;)

Pr(hi) = {Pr(vi) 1 {Pr(Wi)}s - - APr(Vi) s (4.57)
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2. Perturbation of the 4/rev sine component

(@)

(b)

(©)

(d)

Perturb thej’® main rotor statery g, (¥;) of partition x,,z(¢;) in the state
VECOrxa,. (i) by Azag, sindy;, i.e., let the perturbed state vectoy,, ()
be

XB
TMR,y

TR,y + [4QAT N R, cos 41

Xyst (Vi) = (4.58)

Tympr; + Az g, sin 4y

TMRyL
where the subscript “4s+” denotes the positive 4/rev sinéugeation in the
central difference calculation.

Substitute the perturbed state vectgr, (v;) into the system of equations of
motion of the helicopter to obtain the perturbed state vedgavativex,,  (¢;).
Because the rotor equations are formulated and implementtdte rotating
systemx,,. (1;) must first be converted to the rotating system, using a multi-
blade coordinate transformation that yields the corredpanrotating state

vectorxryst (1)

X Ras+ (%) = f(XR4s+ (%‘), U(?/)i% %‘) (4.59)

The control vecton(v);) corresponds to the desired trim condition, and is held
constant during the perturbation.

If and only if x,,, is one of the displacement states, its derivatiyg;, , also
needs to be perturbed bylQ2 Az g, cos 4¢; at the same time. This additional
perturbation is represented by.] in equation 4.58.

Repeat the two previous steps with a negative pertunbafi the;** main rotor
state,xr, — Arrr, sin 44, and build the derivative using central difference

approximations. This derivative is thé + j)th column of the interim matrix
Pr(1;) at the azimuth anglé; , that is:

{Pr(vi)}py; = ﬁm (Xpras+ (Vi) — Xpas— (i) (4.60)

Repeat the three previous steps for each of/tledements of the main rotor
state vector partition g, i.€., for the main rotor state inyz,, j = 1,..., L,
to complete the second half of the interim matFix(1);)

Pr(vi) = [{Pr(i)}y - {Pr(¥)}, {Pr(i)}pyy - {Pr(t)}a]

nx2L

(4.61)



The next step is to perform a multi-blade coordinate tramsédion to obtain an interim
matrix Pr(1);) entirely in the fixed system. Then, after steps 1-2 are choig for one
rotor revolution, the resulting interim matricé%-(v);) are averaged to obtain the state
matrix A;5. Next, the columns ofi;, must be appropriately permutated because the state
subvector,p [EQ. 4.21] is arranged with the 4/rev cosine and sine compisriaterlaced
rather than grouped together.

The state matrixl ; ;o can be obtained by extracting the 4/rev cosine and sine hacso
from Pr(1;) using Fourier analysis. Define:

2 v
Ap, = N > Pr(1;) cos 41, (4.62)
Y =1
2 v
AF4S = F ZPF(wz) sin 4’(/JZ (463)
Y =1
Then it is essentially
A
Annc = [ A?C ] (4.64)

except that the rows and columns @f,,. and Ar,, must be appropriately permutated
because the state subvectoyr [Eq. 4.21] is arranged with the 4/rev cosine and sine
components interlaced rather than grouped together.

There is one last special treatment related to state mdifix-. Both submatricesl!,,
and Ar,, do not contain the 4/rev state derivativeg-. Recall that the interim matrix
Pr(1);) contains the perturbed state vector derivative which hemmehts such as;.. The
Fourier analysis only extracts the global 4/rev rotor stdt¥. and 3y, ) not the 4/rev
rotor statesZ@lc4c or 51045)- To conform with standard state-space representatienAx +
Bu, the global 4/rev rotor states iAg,, and Ap,, are converted to the 4/rev rotor states
using the kinematic relationship as shown in equations-<4153.

4.2.4 Extraction of the feedforward matrix D

Consider that the hub loads at hub in body axes can be writtsyrmbolic form as:
F = g(xx,u) (4.65)

The extraction procedure for the feedforward maibviis the same as the one for the control
matrix B except the subject of the interest is the hub loRdsstead of the state vector
derivativesx.

The calculation proceeds as follows. For every azimutheangl|

1. Perturb thé:-th elementu(¢);) of the control vectou (pilot and HHC controls are
treated in exactly the same way) By, i.e., let the perturbed control vectar (v;)
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be
Uy
U2

u, (¢;) = (4.66)

ug + Auy,

Um

where the subscript “+” denotes the positive perturbatiothie central difference
calculation.

. Substitute the perturbed control vector(v;) into the equation 4.65, to obtain the

perturbed hub loadE
F, =g(xu,¢) (4.67)

The state vectok corresponds to the desired trim condition, and is held ewrist
during the perturbation.

. Repeat the two previous steps with a negative perturbafithe k-th control,u, —

Auy, to obtain the perturbed acceleration vedtar.

. Build the derivative using central difference approximas. This derivative is the

k-th column of theD matrix at the azimuth angle;:

1
(Db~ 55— (P —F) (4.68)
. Repeat the four previous steps for each ofrthelements of the control vector, i.e.,
for ux, k = 1,...,m, to obtain the complete control matrix(1);)
D) = {DWi) ) {DWi) by - - - {D(Wi)},)] (4.69)

. Repeat steps 1-5 fov¥,, azimuth angles); for one rotor revolution.

. Extract the average, 4/rev cosine, and 4/rev sine hagsafiD(1);) using Fourier

analysis.
Define:
1 N
Dcwe = F Z D(wz> (470)
Y =1
9 Nu
Dic = 53 D(wi)cosdy, (4.72)
i=1
Ny
Dy, = Nl Z D(1);) sin 41 (4.72)
Y =1



Then it is essentially

[D31 D32] = D(we (473)
Di Dig] = [ B ] (4.74)

except that the rows ob,. and D,, must be appropriately permutated because
the output subvectoF,, [Eq. 4.25] is arranged with the 4/rev cosine and sine
components interlaced rather than grouped together.

4.2.5 Extraction of the output matrix C

The general procedure to extract the state matrig similar to that of the control matrix
A.

4.25.1 SubmatrixCss

The submatrixCs, relates the 4/rev rotor statesp to the global 4/rev rotor state vector
yap; 1.€., Coy is a kinematic matrix. Usingj., andp], as an example, the kinematic
equations fors;,. are

Blor. = DBies + 4061, (4.50) repeated
Bley, = Bres, — 4081, (4.51) repeated
(4.75)

Re-write the above equations in matrix form:

/6:104‘:
ﬁ{cc |10 0 40 Bles.
e ]=[o 0 Ja )| (79
/61045
Likewise, theCy, can be structured as follows:
H 0 0
yip=1] 0 H 0 |xy (4.77)
0 0 H
I 000 W 0 0 O
0O I 00 0 W 0 0 0 40
H=1oo0r100 0w o W‘l—m 0] (4.78)
Ooo0oo0or~I 0o 0 0 W
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4.2.5.2 Submatrices; and Cy;

The rows of the” matrix corresponding to the average statgs, i.e., the submatricess,;
andCy; in equation 4.23 can be obtained with the same proceduresa®psly shown for
the A,,. and A,; matrices, i.e., through the following steps.

60

For every azimuth angle;:

1. Perturb the:-th elementr,,., (¢;) of the partitionx,,. of the state vectax by Az,

i.e., let the perturbed state vector(v;) be

Lavey

Laves
X4 (Vi) = Tape, + Axy (4.79)

Lave
X4p

where the subscript “+” denotes the positive perturbatiothe central difference
calculation.

. Substitute the perturbed state vestf);) into equation 4.65 to obtain the perturbed

hub loadsF, .
Fi =g(xy,u,¢) (4.80)

The control vecton corresponds to the desired trim condition, and is held ewrist
during the perturbation.

. Repeat the two previous steps with a negative perturbafithe k-th average state,

Tave, — Az, 10 Obtain the perturbed hub loaHs.

. Build the derivative using central difference approximas. This derivative is the

k-th column of an interim matri¥’(v;) at the azimuth angle; , that is:

1

(PO}~ g3 (Fy —F.) (4.81)

. Repeat the four previous steps for each ofAhelements of the state vector partition

Xaves 1€, TOrTape, , k = 1,..., N, to obtain the complete matrik(v;)

P(i) = {PWi) } {PWi) s A PWi) } ] (4.82)

. Repeat steps 1-5 fo¥,, azimuth angles); for one rotor revolution.



7. Extract the average, 4/rev cosine, and 4/rev sine haosaiiP(1);) using Fourier

analysis.
Define:
1 N
Cave = sz(qﬁz) (483)
Y oi=1
2 v
Cy = sz(wi) cos 41); (4.84)
Y oi=1
2 M
Cis = FZP(zpi)sinzmi (4.85)
Y i=1
Then it is essentially
031 - Cave (486)
Cae
Cy = [ ci ] (4.87)

except that the rows),. andC;; must be appropriately permutated because the output
subvectorF,p [EqQ. 4.25] is arranged with the 4/rev cosine and sine comipisne
interlaced rather than grouped together.

4.2.5.3 Submatrice3, and Cy,

The submatrice€’s; andC; can be obtained with the same procedure as previously shown
for the A;, and A ¢ matrices which proceeds as follow:
For every azimuth angle;:

1. Perturbation of the 4/rev cosine component

(a) Perturb thej’” main rotor statery g, (¥;) of partition x,,z(¢;) in the state

VECOrX o, (1s) by Az g, cos i), i.€., let the perturbed state vectoy., ()
be

XB
TMR,y

Tarr;_, + [—4QAT R, sin 41

Xaet (Vi) = (4.88)

TyR; + ATy, cos 4

TMRy

where the subscript “4c+” denotes the positive 4/rev copergurbation in the
central difference calculation.
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(b) Substitute the perturbed state vectgr, (¢;) into equation 4.65 to obtain the
perturbed hub loadB,. (1/; ).

Fiotr (V) = g(Xuer (¥5), u(vhy), ¥y) (4.89)

The control vecton(v);) corresponds to the desired trim condition, and is held
constant during the perturbation.

If and only if TMR, is one of the displacement states,(51., Bis, 52y Coy Cie

glsy §2| (b'(]) (bl.Cl ¢1:9) ¢2)| Its derlvatlve State]\/[Rj,4 (/601 /6101 /618) 621 C'-O) é-lcy CIS)
G2y D0r 10 P15, P2) @ISO Needs to be perturbed BYIQAz ), 5, sin 41; at the
same time. This additional perturbation is represented.byin equation 4.88.

(c) Repeat the two previous steps with a negative pertunbafi the;** main rotor
state,xyr, — Axar, cos41;, and build the derivative using central difference
approximations. This derivative is th& column of an interim matrix’(z;) at
the azimuth angle); , that is:

(P, ~ 53— (Fuee (91) — Fac (1) (4.90)

J

(d) Repeat the three previous steps for each of/thedements of the main rotor
state vector partition g, i.€., for the main rotor state inyz,, j = 1,..., L,
to obtain the first half of the interim matriR (¢);)

P(i) = [{PWi) } AP Wi) g AP W)} L] wer (4.91)

2. Perturbation of the 4/rev sine component

(a) Perturb thej’” main rotor statery g, (¥;) of partition x,,z(¢;) in the state
VECOrxa,. (i) by Azagr, sindy;, i.e., let the perturbed state vectoy,, ()
be

XB

TMR,y

JIMR].74 —+ [4QAJJ1\/[Rj COS 41%]

X454+ (lpl) = (492)

xMRj + AZIZ’MRJ. sin 4’(/)Z

TMR;,

where the subscript “4s+” denotes the positive 4/rev siméugeation in the
central difference calculation.
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(b) Substitute the perturbed state vectgr, (¢;) into equation 4.65 to obtain the
perturbed hub loadB . (1); ).

Fuor (i) = g8(xass (i), u(ey), ¢5) (4.93)

The control vecton(z);) corresponds to the desired trim condition, and is held
constant during the perturbation.

If and only if x,,, is one of the displacement states, its derivatiyg;, , also
needs to be perturbed bylQ2 Az g, cos 4¢); at the same time. This additional
perturbation is represented by .| in equation 4.92.

(c) Repeat the two previous steps with a negative pertunbafi the;** main rotor
state,xnr, — Arrr, sin 44, and build the derivative using central difference

approximations. This derivative is thé + j)th column of the interim matrix
P(v;) at the azimuth angle; , that is:

1

{PWi)}p,,; ~ 27z, (Fasy (Vi) — Fas—(14)) (4.94)

(d) Repeat the three previous steps for each ofitredements of the main rotor
state vector partition g, i.€., for the main rotor state inyz,, j = 1,..., L,
to complete the second half of the interim matFix;)

P() = [{P@)}, - {PW)}, (P} {PW)}ay] . (4.95)

3. Repeat steps 1-2 fo¥,, azimuth angles); for one rotor revolution.

4. Extract the average, 4/rev cosine, and 4/rev sine hamsafiP(v;) using Fourier
analysis.

Define:
Ny
C(we = %Zp@bz) (496)
Nw i=1
9 Nu
Cy = sz(wi) cos 41); (4.97)
Y oi=1
2 M
Y oi=1
Then it is essentially
032 - Cave (499)
Cp = [ chi ] (4.100)
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except that the rows and columns@f. andC, must be appropriately permutated
because the state subvectap [Eg. 4.21] and the output subvectBrp [EQ. 4.25]
are arranged with the 4/rev cosine and sine componentdaoeer rather than
grouped together.

4.3 Application to simple rotor equations

In this section, the perturbation technique described énpirevious section is applied to
a simple example, namely the flap equation of motion of a dddasolated rotor written
in fixed-system coordinates. The blades are assumed toideand hinged at the axis of
rotation. This simplified model represents a useful test tesause states and harmonics
appear explicitly in the equations of motion, and therefcae be manipulated directly,
rather than being hidden in the more complicated numerich®fmodel used in the
remainder of this research.

The flapping equations of motion in the rotating system fortdadled rotor with rigid
blades hinged on the axis of rotation, and flapping degrefeeedom only can be expressed
as

Gi+1%8 = [—,ucoszﬁi (é + % sinzﬁi) Bi — (% + é,usinwi) B;

1 1 1
+ <— + Susiny; + ZMZ sin? 1/%) 0;

8 3
— <é + %,u sin @DZ-) )\] (4.101)

where )\, 0; are the main rotor inflow and the blade pitch angle, respelgtiv After
performing the multi-blade coordinate transformatiom, ¢lguations of motion are:

@0 'BO ﬁo F1
ﬁlc ﬁlc ﬁlc _ F2
B:;S +C @13 + K By = | R (4.102)
Ba Ba Ba Fy
where
S S
o 3 — E/.L S1n
¢ = Tu —2 1 Lpicos 20 (4.103)
0 —husin2y Hpcos2y 3
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<

2 0 0 —%uz sin 2¢

L —14+ 02+ LpPsindy I — LpPcosdp 4+ Lp? —Zpcos2y
0 —1 — LpPcosdp+ Lp? =1+ — LpPsindyp  —Zpsin2e
—2p4? sin 2¢) —2picos 2t — 2y sin 2¢) 2
(4.104)
_ b 2
= 3 (1 + u ) 90
b T = It |2 (14 2) bac Db, — Db cosay
+ {% (14 1) 04+ guegc — %uesc] sin 49 (4.105)
gl 1 )
A
1
+ |:—%/J,2910 %(1 —+ 5#2)‘956 + % (1 + 5/12) 930] COS 4¢
+ |:% (1 + 5 2) 953 g (1 + 5 ) 933 16”2913] Sil’l4w
— 16 14205 sin 81 — —,u295c cos 81 (4.106)
= = D T (0 ) 00+ Tty — e,
4 8 2 3 16
_7 3 2> gl ( 32 ) a2 gl ]
+ 8<1+2u O, + 2 1+2 O+ g0, + Tt cosay
3 .
+ Pu% T (1701 — 3 (1 o ?)0s. + 8(1 +op )930] sin 44
— —u26’5c sin 8 + —M2955 cos 81 (4.107)

16

- (—luegsﬂuels 1200 + 16;3940) cos 24

+ <;;3 2948 6,uelc + g:uei’)c) sin 2¢

72 72 b
+ ( L2, - 6“95“) sm6lp+( L126,.+ 6“953> cos 61) (4.108)
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To illustrate the technique for the extraction of a lineard®lothat included 4/rev
characteristics, the longitudinal flapping equation ofimmotn the fixed system is:

Blc + 2B15 + (VZ - ]-) ﬁlc =

- %ﬁwmwm+%mmw@—1m%—%&

+ (%,u cos Qw) By — (% — %,u cos 49 —|— ) Prs

2
* 8<1+2 >9“ 16" # s

1
+-[——ﬁ&c 8@+—u)%c 8@+ u)%Jw%¢

16 2 2
Y 2 .
* [8 (1 ok )955 B (1 ol )938 16“ 915] sin 4y
— 1—6,u295s sin 8 — —u26’5c cos 81 (4.109)

For simplicity, only the—-L 1i* sin 443, term from aerodynamics argd1+%2)<‘930 cos 4+
055 sin 49)) terms from the 3/rev input, and 16#?913 sin 41 term from the longitudinal
cyclic pitch angle are retained. The rest of the variablesrapresented by/, and M
terms. Equation 4.109 can therefore be rewritten as:

Blc = %Blc + (V2 - % sin 4¢ - 1) ﬁlc
g 1 : g .
+ 3 (1 + 5#2) (ch cos 41) + 3, sin 4¢) — 1—6u2915 sin 4v + My + Mpg

(4.110)

4.3.1 Prescribed solution form

The assumed solution for equation 4.110 has an average pies dosine and sine
components as shown in equation 4.18. Substituting equat#hl18 and 4.43 into
equation 4.110, the longitudinal flapping equation of motiecomes:

Pe= — %[ﬁl + (Bres. +49B1e,, ) cos 40 + (Bire,, — 40Py, ) sin 40
2 '
+ (l/ 6 sin 41) — 1) (ﬁlc(we + Bicy, s 49 + P, sin 4¢)
+ %(1 + Mz) (930 cos 41 + O3 sm4¢) _ _M2913 sin 4¢p + My + M,
(4.111)

Note that equations 4.43 and 4.44 contain an average vathbamonics at only 4/rev,
which results from the original assumed solution definedquagion 4.18. However, the
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equation of motion shown in equation 4.111 also has 8/reyugacy components that
result from the aerodynamic term in equation 4.110.

0 oy 4

16

— —% sin 49 (ﬂlcm + (e, cOos 4y + [y, sin 4¢)

fylu (ﬁlc(we sin 477D + 6104S + 6104C sin 8¢ ﬁlals COS 81/))
(4.112)

Therefore, equation 4.111 can also be written as follows:

Blc = -

% [51%6 + (51&;6 + 4951043) cos 41 + (51043 — 4951%) sin 44)
(V2 — 1) (ﬂlcm + By, cOs A + [y, sin 4¢)

7,u (ﬁlcw sin 41 + ﬁl%)

fylu ( ﬁlalc n8¢ - 561043 COS 8¢)
g (1 + ,u2) (936 cos 41) + 3, sin 4¢)

1—6,u %015 sin 49 + My + My (4.113)

4.3.2 Perturbation of the equations of motion

To simplify the expression, the perturbations of figand/; terms in equation 4.111 are
not shown here, but are not eliminated from equation 4.111.

4.3.2.1 PerturbingB;. by + A3, at v;

+

Bre(ty)

leave

= = N Brew + [Bres + 4981, ] cos

o [Brew = 4981, sim 4w + (v - % sin e — 1)

x [(ﬂlcm + ABic) + Prey, €08 4 + Biey, sin 4y

+ %(%2 + 1) (930 cos 41 + O3, sin 4¢)

- %M@ls sin 4¢) (4.114)

where the superscrigt represents the direction of the perturbation, and the sighst.., .
represents the perturbed state variable.
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4.3.2.2 PerturbingB;. by & AB;.cos 4y at y;

+

Bre(ty)

= = N+ (Brew +1981,) cos ty

51C4c

+ {51% —4Q (ﬁl% + Aﬁlc)} sin 4¢} + (u2

sin 41 — 1)

X {ﬁleave + (ﬁl% + Aﬁlc) cos 41 + fBig,, sin 4¢]

U oot s

- %M2918 sin 41)

4.3.2.3 PerturbingBi. by &= AB1.sin 44 at ¢;

+

Bre(ts)

/311243

= - %{Blcwe + {quc + 40 (/51C4S + Aﬁlc)] cos 49

+ {/51548 — 4Qﬁlc4c] sin 4w} + (1/2 _ I sin4y — 1

X [Brew + ey 05U + (e, + ABL) sin 40

+ %(%2 + 1) (930 cos 41) + 03, sin 4¢)

- 1—76u2ms sin 41

4.3.2.4 PerturbingB:. by + AB;. at ;

+

ﬁlc(wz) , = — %{ (Blcaue =+ ABM) + [51% + 4961045] cos 41

leque

+ |:6‘1045 - 4961646

X |:/615ave + /61040 COs 4,l7b _I_ 61043 Sin 4'l7b:|

+ %(%2 + 1) (93c cos 41) + 03, sin 4?/’)

Il6 142015 sin 41
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4.3.2.5 PerturbingB:. by + AB;. cos 49 at 1,

+

Bre()]

lege

o 2
(B — 108, ] s} 4 (02 - 2

X [ﬂlcm + By cOs 4 + By, sin 414

4 %(,u; + 1) (930 cos 41 + 03, sin 4¢)

- %6#2913 sin 44

4.3.2.6 PerturbingB:. by + ApB;.sin 49 at 1,

+

Bre(vi)|

= - %{Blc(we + {/Blmc + 4961043} COs 477D

S + [(51C4S + A/Blc) - 4Qﬁlc4c] sin 4¢} + (Vz

X [ﬂlcm + By cos 4 + By, sin 4y

v i
+ : ( 5 + 1) ((930 cos 41) + O3 sin 4¢)

— 116#2913 sin 49

4.3.2.7 Perturbing8,, by & A8, at ¢;

+

Bre(ty)

= - %{Blcaue + [ﬂ'l&m + 4961045] COs 4¢

915
o'

= - %{Blcm + [(51% + Aﬁlc) + 4951%} cos 49

sin 41 — 1)

—ﬂsinélw—l

+ {5'1045 — 4951040] sin 4¢} + (V2 — ——sin4y — 1

16
X [ﬂlcm + Bies. cOs 4 + By, sin 414

+ 1('“_2 + 1) [93 cos 41 + 03 sin4w]
8\ 72 ‘ )

1%‘ 12 (61, £ A9, ) sin 4y



4.3.2.8 Perturbingfs. by + A0;. at v;

Bre()

= = bt + [Bres, + 4981, | cos10
2

+ [61048 - 4Qﬁ164c} sin 4¢} + (1/2 — % sin 41 — 1)

% B+ Bre oS40 + B, sin

03¢

8\ 2

- %M@ls sin 44 (4.121)

L+ 7 (“_2 + 1) [(930 + Aﬁgc) cos 41 + B3, sin 414

4.3.2.9 Perturbing8s, by + A5, at v;

Bre(i)

0 - - %{Blcave + [610@ + 4Qﬁ1C4S] COS 4?/)
3s

2

+ {Bl&xs - 4Qﬁlc4c] sin 4?/)} + (V2 - % sin 4y — 1)
X |:ﬁlcave _I_ /8104.3 COs 4,l/) + 51045 SlIl 4'¢):|

+1(’“‘—2+1)9 4 + (03, £ Aby,) si
<5 {30(:08 w—i-(gszl: 3S)sm4w]

— %6#2913 sin 49 (4.122)

4.3.3 Extract four/rev harmonic components

The average value and the 4/rev harmonic components of tieriped equations 4.114—
4.122 can be obtained by applying the Fourier series apmation over one sample
window. The length of the sample window used in this studynie ootor revolution or
1 = 0-2m.
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. % % ==
aﬁlcave 8'61‘340 aﬁ1643 3 .
4.3.3.1 Extractggleece, Soieie Soncde from (3. (vh;)

lcave

1 +

. or .
/Gf_cave = % 0 ﬁlc(,@bz) Brean d’gb
s . 2
- % /02 [ - %ﬁlca’ue + (V2 - 1) (ﬁlcwe + Aﬂlcm) — % sin? 4¢] dv
. 2 27
B %J‘%@mﬂ+OP-QQ%W+Am%Jw—¥§%ﬂO
2
_ —%Blcw + (12 = 1) (Bren + DB, ) — %
. 1 o . _
B = 7)) Gl v
- % /027r [ - %Blcm + (V2 - 1) (ﬁlcm - Aﬂlcm) - % sin? daop|dyp
2
— —%BICME + (y2 _ 1) (61&1% — Aﬂlcaue) — %

The elements of the state matrix can be calculated usingatelifference approximation.

OPrcave _ Prome = Brewe _ (V7 = 1)(2AB10,,,)

= = =r-1 4.123
aﬁlc(we 2Aﬁlc(we QA/Glcave ( ) ( )

J’_

2w ..
61/c4c+ = l 61c(¢i)

™ Jo

cos 41 dip

leave

= ] (e + 1980, ) 08 404 (0 = 1) e cos? 4]

2

+ %(% + 1) (930 cos® 41) + B5 sin 41 cos 4¢) }d¢
. 2 2
A T 9] (7 s T ]
2
- %(BI% + 4951%) + (V2 - 1)51040 + %(% + 1)930
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72

I -
/8104c =

"o+
/81043 =

/ T | cosdu du
0 616ave

1
s
% /027r { [ - %(/Blmc + 4961043) COS2 477D + (V2 - 1)/61040 COS2 41#]

+ %(,u; + 1) (93c cos® 41p + B3 sin 49 cos 4¢) }d@b
2
) - 3

+ —
85 1/04C _ ﬁ 1/04C B ﬁ 1/04C
8610(1'“5 2A/610a'ue

=0 (4.124)

sin 4dy

L[

—/0 {[— —(ﬂl er = 4B, ) sin® 40 + (V2 = 1) By, sin® 4

™

_ 71_'%2 (ﬁlcm + Aﬁlcm) sin 414 + %('u_z + 1) (930 cos 4 sin 41

2
+ B, sin® 41#) — l,u291s sin? 4¢}d¢

16
%{— 1(5104\ — 4QB1c,, ) + (V2 — 1)51% - %(61aaue + Aﬂlcaue)
+ 3 00— ] ()]
R 2 e/l
g (Bre = 4001e,.) + (v = 1)Bies, = 7 (Brewse + ABrcy,c)
+ 1(:“2 )‘93 - —,u291
8\ 2 16



61045 = % 0% Blc(wi) _M sin 4vdv)
/ {3
—6 (61&1% - Aﬂlcwe) sin? 4¢] + g

+ 05, sin? 4¢) — 1%5“2915 sin? 4¢}d1/)

s

- 1(51C4S - 4951%) + (V2 - 1)51&18 —

= (Bres, — 4981y, ) sin® 49 + (V¥ — 1) By, sin® 4

12

5 + 1) (930 cos 4 sin 49

”1—’5 (Bicwwe — DBrc,,. )

2
7
+§(2 )938_1_6:u 915
2
851645 61045 6104 — _%(zAﬂlCave) — 7:“2 (4 125)
aﬁlc(we 2Aﬁlc(we QAﬁlcave 16 .
4332 Extract?icave s, 8%48 from 8
xtrac OB1cy. ' OP1cy.’ OBic ° ﬁlc(wz) Bicy
8Blc
2 =0 4.126
s, (4.126)
8/61 “Mlege 2
Cae — (12 1 4,127
a6104C ( ) ( )
B, i
“s — 4,128
0Bic,. 16 ( )
aﬁlcave '8 C4c '8 c4s 2
4.3.3.3 Extract DB Bﬁicis, Bﬁicis from B1.(v;) .
aBlc ’ 7:““2
e = - 4.129
0P1e,. 32 ( )
a/81 “HMleae ryQ
. _ ¢ 4.130
e, 2 (4.130)
8/61 T Mleys 2
“s — (p* -1 4,131
a6104S ( ) ( )

73



/! /! :I:
aﬁlcave 8'81‘34 8ﬁ164s 3 .
4.3.3.4 Extract BBropue’ OBronne ' OBreawe from ﬁlc(d;z) .

lcave

aﬁlcave

‘ - _7 (4.132)
aﬂlcaue 8
)
e _ (4.133)
aﬁlcaze
B,
61046 — 0 (4134)
aﬂlcaue
4335 Extract®iease ese Oess grom 3y -
aﬁlc4c ! 8ﬁ164c aB104¢: te ¢ .1c4
OPrewe _ (4.135)
a/81041:
)
s _ _ (4.136)
a/81041: 8
)
Wi, _ (4.137)
051040
4336 Extract®Preave eac O%ess g, Bie(v:) -
OBicy, 8'61‘343’ 8'61‘:48 te ’ .164
aﬁ'lcave — 0 (4.138)
aﬁlqs
0
Wiew _ (4.139)
aﬁlqs
B,
e _ 7 (4.140)
aﬁlqs 8
. cuve 8,8”(_. . Ic .
4.33.7 Extracteams Pics Phies from Blc(wz) 1
aﬁlc
ave — 0 4.141
o ( )
By,
ey _ 4.142
e ( )
0514 Yoo
C4s — 4.143
90, 16" ( )
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8,8;_’64 aﬁll

0 poes from Bie(ts)

O3

85 Cave
4.3.3.8 Extract 81630

aBlc
awe _ 4.144
00, 0 ( )

W, v W
005, 8
0

+1) (4.145)

861046 —
= (4.146)

8ﬁlcave 8'8110 c 10 s
4.3.3.9 Extract=jgave, —ode, 394 from ﬁlc(tbz) )

8Blc

ave  _ 4.147
005, 0 ( )
op

e 4.14
36, 0 (4.148)
[
= 8(2 +1) (4.149)

4.3.4 Construction of the state equation

Combining equations 4.123-4.149 and equations 4.50-th&ktate equation of the 4/rev
LTI-HHC model can be constructed as follows:

Bcan. /8 (=1 00 0 —2/327 ( Brea.
/Glcave 1 0 0 0 0 0 /Qlcave
Bles. — 0 0 —7/8 0 (1*=1) —Q/2 @1%
Bles, 0 —w?/16 0  —v/8 u’/16 (v —1) Bres,
B, 0 0 1 0 0 40 Bren.
B, 0 0 0 1 —40) 0 || B
0 0 0 |
0 0 0 ;
0 I&+1) 0 1
+ 82 2 Osc ¢+ My + Mg (4.150)
St 0 Ay | g
0 0 0
0 0 0

The vector on the left-hand side of equation 4.150 consistsoth primed and dotted
variables. To conform with the standard state-space reptason,x = Ax + Bu,
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the primed variables are replaced with the dotted varialdasg equations 4.50-4.53 as
follows:

Blcave @1cave 0
/Blca'ue 6}0“”6 . 0
! Bics. 80 F1e,. — 16023
lcge — ._1C4c + 1'046 lege 4.151
i B, 80y, — 1692250, (4.151)
ﬁiqc 6‘104.: 4Qﬁlc4s
61045 51043 _4951040

Substitute equation 4.151 in equation 4.150, and re-aeréimg equation. The 4/rev LTI-
HHC model is given by:

Prcaue Bicane
/6“100,1;6 610(1716 9
> 1s
@1C4c = A @1040 + B { 930 } + My + Mﬁ (4152)
@1045 ﬁlc;;S 935
6'1046 6104c
61045 61045
where
[ —y/8 (*—=1) 0 0 0 —yu?/32
1 0 0 0 0 0
A - 0 0 —y/8 =80 (v?—1+160?) —82/2
N 0 —yu?/16 80 —v/8 yu?/16 (v? —1+1602)
0 0 1 0 0 0
. 0 0 0 1 0 0 |
(4.153)
[0 0 0 |
0 0 0
v (B2
B = 9 ) sz 1) X “20 (4.154)
0 0 0
0 0 0 |
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4.3.5 Analytical model validation

From equation 4.152}.,.., (1.,., andf.,. can be expressed as follows:

2
.o . B l . 2 . B ﬂ
61011716 - 8/6100,116 _'_ (V 1)61011715 32 /61043 (4'155)
B = = ghaw = 8es, + (¥ = 14 162°)Bucy, — -bre
2
4 %(% +1) s (4.156)
2
5 v : Y ~<2
Bl = — gﬁlms + 8001, — Fﬁlc(we + 751% + (V2 -1+ 1692)51043
2
YR )

Substitute equations 4.155-4.157 in equation 4.44,

Blc = - % {ﬁ.lcaue + (610@ + 4Qﬁ1C4S) COS 4?/) + (61043 - 4Qﬁlc4c) sin 4¢]
+ (1/2 — 1) (610%6 + (e, cOs 4 + By, sin 4¢)

fylu (6101“1E SlIl 4¢ + 51045)

1&3 i
+ 8 ( 5+ 1) (ch cos 41 4 B5 sin 4¢)

1 GH (20, sindap 4+ My + Mg (4.158)

Compare equation 4.158 with the equation 4.113 which is sHmelow:

B = = 2B+ (Brew +4981e,) 00540 + (Brer, — 4981, ) sin 401
+ (2 = 1) (Brcase + Bres. cos 4t + By, sin 4¢))
U (B i+ S, )
= 2 (LB sin 80 — i, cons)
+ Z(M_ 1) (65 cos 4 + O, sin 44))

8\ 2

— %6”2915 sin 41 + My + Mpg (4.113) repeated

The differences are the 8/rev frequency contents which wewracated from the
linearization procedures. These 8/rev frequency contambe retained in the linear model
if the prescribed solution of equation 4.18 also containev8¢omponents as well as 4/rev
components.
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4.4 LTI-HHC model validation

In this section, the LTI-HHC model was validated against fak-blown nonlinear
helicopter model by comparing their 4/rev hub load and therreesponses over several
flight configurations.

4.4.1 4/rev hub load comparison

Validation was conducted for forward velocity of 40, 80, atD kts. Each case starts
from the trim condition without HHC input. After two rotorvelutions, the HHC input is
engaged, and results are shown in figures 4.1-4.15. The Hpi€ima 3/rev input with an
amplitude of 0.6 at O phase angle.

The 4/rev hub loads calculated from the nonlinear heliaoptedel are the output of
the harmonic analyzer which contain time delays. On therdthad, the 4/rev hub loads
calculated from LTI-HHC model are obtained instantanepudihere is no time delay
associated with the sample window as with the harmonic aealy The effects of the
sample window can be approximated by an equivalent lowpléssthat must be included
in the output of the LTI-HHC model before it is compared to tiomlinear 4/rev results.

As illustrated in the figures 4.1-4.15, the LTI-HHC modelguoes the levels of 4/rev
vibrations that are very close to the nonlinear 4/rev vibrat A close match is seen not
only in steady state condition but in transients. The snigiles in the nonlinear results
are the 8/rev and higher frequencies that were not modeléneibTI-HHC model.

The effect of pilot input on vibrations is illustrated in figas 4.16—4.30. The input is
a lateral cyclic doublet input with an amplitude of one stickh. From the figures, the
LTI-HHC model shows the capability of predicting the 4/ravbHoads. There are strong
8/rev and higher frequencies in the nonlinear results tteahat modeled in the LTI-HHC
model. However, the 8/rev frequency can be captured by théHHC model if the 8/rev
frequency is prescribed in the assumed solution. The dimers the LTI-HHC model
matrices will increase to accommodate the additional Sivew states.

4.4.2 Rotor states comparison

Figures 4.31-4.33 compare the rotor states from both thieream and the LTI-HHC model
simulation for the 120 kts case. The HHC input is the sames &fgeut in the previous case.
The rotor states compared in the figures are full valuesthey are not 4/rev rotor states.
The rotor state data of the nonlinear helicopter model igiabt directly from the time
integration of the equations of motion. Since this set oadwets never passed through the
harmonic analyzer to obtain its 4/rev components, the effethe sample window is not
included.

To compare with nonlinear results, rotor state data of tHeHFIC model is constructed
by modulating instantaneous 4/rev rotor state data as shoveguation 4.18 without
including the effect of the sample window. These figuresthate that the prediction from
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the LTI-HHC model is very similar to the nonlinear helicapteodel in both steady-state
and transient condition.

Figures 4.34-4.36 show the effect of lateral pilot input dedk rigid flap, rigid lag,
and torsion modes for both nonlinear and the LTI-HHC modétgput is a lateral cyclic
doublet input with the amplitude of one stick inch. Variatiof the 4/rev rigid flap and
4/rev rigid lag modes within the nonlinear helicopter moale relatively small compared
with variation of their mean value. With the LTI-HHC modely@v characteristic of the
torsion mode of nonlinear helicopter model as shown in figudé is predicted not only in
the steady-state condition but also in the transient.
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Figure 4.1. Longitudinal hub shear comparison; V=40 kts,1W800 Ib, A3

@3 = 0°.
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Figure 4.2. Lateral hub shear comparison; V=40 kts, W=13#|B0A3; = 0.6°, ¢3 = 0°.
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Figure 4.3. Vertical hub shear comparison; V=40 kts, W=0@ b, A; = 0.6, ¢35 = 0°.
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Figure 4.4. Longitudinal hub moment comparison; V=40 kts;M/,000 Ib,A; = 0.6°,
@3 = 0°.
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Figure 4.5. Lateral hub moment comparison; V=40 kts, W=0a)0, A; = 0.6°, ¢3 = 0°.
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Figure 4.6. Longitudinal hub shear comparison; V=80 kts, 1800 Ib, A3 = 0.6°,
o3 = 0°.
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Figure 4.7. Lateral hub shear comparison; V=80 kts, W=14|D0A3; = 0.6°, ¢35 = 0°.
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Figure 4.8. Vertical hub shear comparison; V=80 kts, W=04 b, A; = 0.6°, ¢3 = 0°.
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Figure 4.9. Longitudinal hub moment comparison; V=80 kts;M/,000 Ib,A; = 0.6°,
@3 = 0°.
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Figure 4.10. Lateral hub moment comparison; V=80 kts, W84 b, A3 = 0.6°
3 = 0°.
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Figure 4.11. Longitudinal hub shear comparison; V=120 Ws14,000 Ib,A; = 0.6°,
o3 = 0°.
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Figure 4.12. Lateral hub shear comparison; V=120 kts, Wa{@b, A; = 0.6°, ¢3 = 0°.
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Figure 4.13. Vertical hub shear comparison; V=120 kts, WeQ@ Ib,A; = 0.6°, ¢3 = 0°.
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Figure 4.14. Longitudinal hub moment comparison; V=120 Ws14,000 Ib,A3 = 0.6°,
@3 = 0°.
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Figure 4.15. Lateral hub moment comparison; V=120 kts, Wed@Ib, A3 = 0.6°
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Figure 4.16. Longitudinal hub shear comparison; V=40 kts;14/000 Ib, 1-inch lateral
cyclic doublet input.
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Figure 4.17. Lateral hub shear comparison; V=40 kts, W=1@]0, 1-inch lateral cyclic
doublet input.
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Figure 4.18. Vertical hub shear comparison; V=40 kts, W&Q@4a,lb, 1-inch lateral cyclic
doublet input.
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Figure 4.19. Longitudinal hub moment comparison; V=40Wts,14,000 Ib, 1-inch lateral
cyclic doublet input.
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Figure 4.20. Lateral hub moment comparison; V=40 kts, WeQ4a b, 1-inch lateral cyclic
doublet input.
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Figure 4.21. Longitudinal hub shear comparison; V=80 kts;14/000 Ib, 1-inch lateral
cyclic doublet input.
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Figure 4.22. Lateral hub shear comparison; V=80 kts, W=@]0, 1-inch lateral cyclic
doublet input.
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Figure 4.23. Vertical hub shear comparison; V=80 kts, W&Q@4a,lb, 1-inch lateral cyclic
doublet input.
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Figure 4.24. Longitudinal hub moment comparison; V=80 W{s,14,000 Ib, 1-inch lateral
cyclic doublet input.
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Figure 4.25. Lateral hub moment comparison; V=80 kts, W&Q4@ b, 1-inch lateral cyclic
doublet input.
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Figure 4.26. Longitudinal hub shear comparison; V=120Wts14,000 Ib, 1-inch lateral

cyclic doublet input.
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Figure 4.27. Lateral hub shear comparison; V=120 kts, Wa{@l|b, 1-inch lateral cyclic
doublet input.
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Figure 4.28. Vertical hub shear comparison; V=120 kts, W8Q4 Ib, 1-inch lateral cyclic
doublet input.
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Figure 4.29. Longitudinal hub moment comparison; V=12Q M&14,000 Ib, 1-inch
lateral cyclic doublet input.
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Figure 4.30. Lateral hub moment comparison; V=120 kts, W8Q4@ Ib, 1-inch lateral
cyclic doublet input.
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Figure 4.31,3 comparison; V=120 kts, W=14,000 Idg = 0.6°, ¢35 = 0°.
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Figure 4.33.¢ comparison; V=120 kts, W=14,000 Id; = 0.6°, ¢3 = 0°.
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Figure 4.34.3 comparison; V=120 kts, W=14,000 Ib, 1-inch lateral cyclabdlet input.
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Figure 4.35 comparison; V=120 kts, W=14,000 Ib, 1-inch lateral cycloublet input.
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Figure 4.36.¢ comparison; V=120 kts, W=14,000 Ib, 1-inch lateral cyclaublet input.
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5 HHC and AFCS Interaction Study

A linear time-invariant state-space approximation thatiaately models the coupled rotor-
fuselage dynamics, including the higher harmonic respofite rotor, has been developed
in chapter 4. This work allows several important questiamdé answered regarding
the dynamic interaction between Automatic Flight Contrgktem (AFCS) and High
Harmonic Control (HHC), including the effect on handlingadjties. The key breakthrough
is in the method to extract a linear time-invariant modet theludes a harmonic analyzer
and allows the periodicity of the helicopter response to &gtwred. The coupled high-
order linear model provides the needed level of dynamicifided permit study of AFCS
and HHC interaction.

5.1 Effect of a fixed HHC input on rigid body dynamics

To understand the potential coupling between AFCS and HHiCaralysis was first
performed in the open-loop system to determine whether d fit¢C input had any direct
effect on the rigid-body dynamics. Any influence from the HW be indicated by the

changes in the frequency response. Before proceeding mjtingeraction analyses, it is
important to validate the baseline (HHC-off) cases of bathHHC and nonlinear models
by comparing their frequency responses against the flightitga.

5.1.1 Open-loop frequency response validation

In section 4.4, the LTI-HHC model was validated against thh@inear model by comparing
the hub load responses over several flight configurations.altime domain comparison,
and it is sufficient for checking the aeromechanic quastitieor flight dynamics analysis,
it is more common to perform the comparison in frequency donfagure 5.1 shows the
P/é,.; frequency response comparison between the LTI model, thénear model, and
the flight test. Unless noted otherwise, all the resultseuresl in this chapter have the
weight of 14,000 |b at a speed of 120 kts. The frequency respohthe nonlinear model
was obtained by performing frequency sweeps in pilot l&sgrek input and recording the
vehicle roll rate response time history. Th¥¢,,; frequency response was identified by
extracting the information from the time history data usBigFER® (ref. 58).

Since the LTI-HHC model is already in the linear system, liexjfiency response can
be calculated directly from the LTI-HHC model. Figure 5.1oals that all three cases
agreed with each other in the frequency range of 2—20 rad/Ebere were some small
disagreements in the frequency range of 1-2 rad/sec betthhedhght test result and the
analytical results, but the difference is not significanan@aring the nonlinear and LTI-
HHC frequency responses, there is also a little differeand, most of the difference is in
the phase curve below 2 rad/sec.
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5.1.2 Effect of an optimum three/rev input on rigid body dynamics

Figure 5.2 shows the effect of a fixed HHC input on the rigid yoalgnamics for the
nonlinear model. The fixed HHC input chosen is an optimumv3input which is
calculated from the optimization procedure that minimi#geinorm of 4/rev in-plane hub
shears. The optimization procedure is similar to the onerde=d in section 2.8. This
figure indicates that the optimum 3/rev input has no effecthanrigid body dynamics in
the frequency range of interest. Figure 5.3 shows the sam&u=ion for the LTI-HHC
model.

The frequency response of the nonlinear model with the aptir8/rev input is extracted
using the same method as the nonlinear baseline (HHC-&# siated earlier. For the LTI-
HHC model, one cannot simply include an optimum 3/rev input @@mpute the frequency
response because the linear model will only respond at time $eequency as the input
signal. In this case, the input signal is a 3/rev (81 rad/eetJH-60) and it is beyond the
frequency range of interest. To see the effect of the optir3inev input on rigid body
dynamics, one must engage the HHC loops and let the effetie @/rev input propagate
through the HHC feedback loops.

Although the results above show that the HHC input has naedierigid body dynamics
(or AFCYS), it does not necessarily mean the AFCS has no effetite HHC. There is still
a possibility that the AFCS affects vehicle vibration andiiactly affects the HHC. This
closed-loop analysis is discussed in the next section.

5.2 Interaction of HHC and AFCS

A SIMULINK ® simulation of the combined flight and higher harmonic cansgstem
was developed for analysis and optimization in the Contre$iDners Unified Interface,
CONDUIT® (ref. 59). The key elements of the simulation are illustlgtefigure 5.4,
and they are:

1. Higher-order linear airframe model that provides thehtligrechanics and 4/rev
vibration responses to both pilot and HHC inputs.

2. Automatic Flight Control System loops based on a simptgprtional-integral-
derivative (PID) controller in roll, pitch, and yaw.

3. Typical actuator/sensor filter dynamics.

4. Equivalent harmonic analyzer approximates the sample@daoaw dynamics and
equivalent time delay.

5. Higher harmonic controller based on fix€ematrix feedback.

6. Zero-order-hold approximation simulates the discrét€Hipdate time delay.
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Like the open-loop analysis, it is important to validate thesed-loop model to ensure
that the linear continuous time domain model implemente®IMULINK ® is equivalent
to the nonlinear multi-rate model. This can be accomplishyedomparing the broken
control loop response of both models.

5.2.1 Broken control loop response validation

Figure 5.5 illustrates the schematics of both linear andinear simulation models. The
simulation model shown in figure 5.5a is a nonlinear multe ystem. Because the control
system analysis was performed in the linear continuous-tiomain, the entire nonlinear
multi-rate system was converted to an equivalent lineaticoaus time system as shown
in figure 5.5b. The harmonic analyzer is now embedded witenLiTI-HHC model. The
effect of the sample window is modeled by an equivalent I@eggdter. The discrete HHC
controller is transformed to a continuous-time domain HH@Gtmller. The discrete HHC
update (zero-order-hold) is approximated by a Padé fancti

The broken control loop response is a method of studying $balpility; it allows one to
determine the gain and phase stability margins. Ugipgroken control loop for instance,
it is the d;. response at point B in figure 5.5 with respect to #heinput at point A while
the 3/rev-cosine and 3/rev-sine loops are open. The flightrabsystem is also disabled
during the frequency sweep. For the purpose of the validagox broken control loop
responses (3/rev-cosine, 3/rev-sine, 4/rev-cosiney-4iree, 5/rev-cosine, 5/rev-sine) were
extracted from each model, and the direct comparisons a@rsin figures 5.6-5.8. In
these figures, the frequency response of the LTI-HHC modétmea very well with the
one from the nonlinear model in both the magnitude and phases for all six loops
within frequency range of interest. This indicates thatlthear continuous time domain
model in figure 5.5b is equivalent to the nonlinear multenatodel in figure 5.5a.

Although HHC input operates at 3, 4, 5/rev frequencies (qr2818, 135 rad/sec for
UH-60 helicopter), the crossover frequency of each HHC Isamly about 1 rad/sec. The
crossover frequency, gain margin, and phase margin of e&t® ldop are tabulated in
table 5.1. Because of the high HHC input frequency, one wewftect a large frequency
separation between the flight control and HHC system andrasshiese two systems do
not interfere with each other. However, research resulsvghat not only do the HHC
loops operate at a much lower frequency, but they are aldunwtite frequency range of
the flight control system. This is another indication of poit@l HHC/AFCS interaction.

5.2.2 Optimization of AFCS (HHC-off)

One way to see whether the closed-loop HHC system has angt effethe AFCS or
handling-qualities is to optimize the AFCS for the satitdag (Level 1) handling-qualities
with the HHC loops disengaged (fig. 5.9). Any influence introed by closing the HHC
loops will be indicated by the change in handling-qualiti@he AFCS implemented in
this study is based on a simple PID controller (fig. 5.10) ilh ptch, and yaw axis. The
PID controller computes individual actuator command wébprect to the changes in rigid
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body states and pilot inputs. The actuator is a second ordeeh{fig. 5.11) including
both the position and rate saturation limits. The actua¢sigh parameters are tabulated in
table 5.2.

First, CONDUIT® was used to optimize the PID gains of the AFCS, with the HHC
loops disengaged. The PID gains were tuned to achieveaatsy handling-qualities,
based on the Aeronautical Design Standard (ADS-33E (rel), @d standard control-
system design specifications list below (Appendix A):

e Eigenvalue real part (EigLcG1)

Crossover frequency (CrsinG1)

Stability margins (StbMgG1)

Bandwidth (BnwRoF3)

Step response damping ratio (OvsAtH1)

Crossover frequency (CrsMnG1)

Eigenvalue damping ratio (EigDgG1)
e Step response rise time (RisTmG1)

CONDUIT rapidly tuned the PID gains to achieve satisfactugvel 1) requirements
with minimum over-design as shown in figure 5.12. The optediPID gains are tabulated
in table 5.3. Each symbol in figure 5.12 represents the résula particular loop and
shows that all the responses lie in the light region (LevelAQr example, note that the
roll bandwidth is 3 rad/sec [fig. 5.12d] which meets ADS-33Ee PID gains of the roll
and yaw loops yield bandwidths in excess of the requirenreatder to meet some of the
other specifications. It is important to mention that thiss§d’1D gains is not théestfrom
the handling-qualities point of view. It is simply the lowwgmins needed to satisfy all the
design specifications while staying in the level-1 region.

5.2.3 NominalT-matrix controller

Next, theT-matrix HHC loops were engaged with a nominal gairkefl (same in all six
loops) as shown in figure 5.13. This is referred to as the “maihicase. With both AFCS
and HHC loops closed, the CONDU®T HQ design specifications were re-evaluated
without changing the PID gains. The results are presentddjume 5.14 which shows
that the closing of the HHC loops had a negligible effect ca A+CS performance and
overall handling-qualities. This indicates the lack of dgmc coupling of HHC into flight
control. Therefore, no re-tuning of the AFCS was neededHerdcombined AFCS/HHC
system. The lack of interaction from HHC to AFCS is consisteith the earlier system
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identification results obtained in section 5.1.2, whicltbatowed no effect of an HHC
input on the rigid-body dynamic response.

In terms of suppressing the steady state vibration levelntiminalZ-matrix controller
can reduce the vibration by a large amount. Figures 5.18-8hbw the changes in the
lateral and longitudinal 4/rev vibration level with respaxthe HHC and pilot stick inputs
for both the baseline case (HHC-off) and nominatl) case. At t=0, the vehicle starts
from a steady state condition, and the 4/rev vibrations ai@tained at a steady level. The
baseline 4/rev vibrations are tabulated in the first coluftalole 5.4. At t=5 seconds, the
HHC loops are engaged and the nomifiamatrix controller begins to reduce the 4/rev
vibrations to a lower level. It takes approximately 2—-3 setofor the 4/rev vibrations
to reach a new steady state condition where 67% of 4/revanepVibrations have been
reduced (Table 5.4). The large time constant of 2—3 secaomusists with the slow HHC
loop dynamics stated in section 5.2.1.

5.2.4 Transient vibration in maneuvering flight

While the impact of HHC on handling-qualities is negligiftleere are significant vibration
responses to pilot inputs in both the baseline (HHC-off)ecaad the nominalk&1)
case. Figures 5.15 and 5.16 show the large transient respémsa -50 roll maneuver
(moderate) starting from t=12 seconds. Once the maneuveonpleted, the vehicle
reaches a new trim vibration level. Similar results can &lsambserved in figures 5.17
and 5.18, which demonstrate the large transient respoosa20 pitch maneuver starting
from t=12 seconds.

Using Fx,.. as an example, figure 5.19 shows thé'y, . response of both the baseline
and nominal case for the same 250Il maneuver. The symbak denotes the steady state
vibration of 'y, , att=12 seconds has been removed from the figure. With théihasase,
figure 5.19 shows that there is a maximum transient peakatmtof 150 Ib above the
steady state vibration level in théy, . channel. Note that th&', , steady state vibration
level for the baseline case is 151 Ib (Table 5.4). Therefibris,maximum transient peak
excitation is roughly the same as the baseline steady statdion level. With the nominal
T-matrix controller engaged, the maximufy, . vibration transient increases to 163 Ib,
which is 9% higher than the baseline case. In other wordg) thié nominall’-matrix
controller engaged, the transient vibration responsendumaneuvering flight reaches
similar levels to the trim condition with HHC-off. Nevertless, the nominal -matrix
controller is able to reduce the transient load back to Idexzls faster than baseline case
after the 15-second point.

The performance of the HHC system in suppressing the vdaraisponse to pilot input
is also reflected in the frequency-respond€s;,. /diat, Fx,s/0iats Fv,../d1at, €1C. The RMS,
determined from the integral under the frequency-respsgsared functions, is a useful
measure of the vibration response to the broadband pilotsripr different HHC system
designs. The spectral integration to determine the RMSnslected up to a frequency of
3 rad/sec. The 3 rad/sec cut-off frequency correspondsetadih command bandwidth,
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and itis a good estimate of the maximum closed-loop pilotiaguency. Finally, the RMS
levels were normalized using the baseline vibration RMS3Herroll maneuver to show the
relative improvement (or degradation) in vibration suggren by the HHC system.

Figure 5.20 shows the frequency responsé’gf. with respect to the lateral pilot input.
Looking at the magnitude curve, the nominal case has a snagfhification effect at higher
frequency range (1-3 rad/sec) and a large reduction effgoibthe frequency of 0.9
rad/sec. Both effects are consistent with the result shawiigure 5.19, where there is
a small increase in the transient vibration excitation amar@e reduction in steady state
vibration level. Because the nominatmatrix controller is capable of suppressing the
Fx,. /i vibration response more than it magnifies, there is 4.1%atéatuin Fx, . /6jqs
channel. The small reduction of 4.1% does not seem to refiecuat of vibration
suppression shown in the figure. This is because the figura ith® logarithm scale,
which biases toward the lower range. When including otheesehannels Ky, . /dia.
Fy,i./01ats Fyis/O1ats Fxyo/tons Fxys/0tons Fyie/ions Fy,s/d1on), the average vibration in
maneuvering flight for a nominal case is 3.2% above the besekse (Table 5.5). This
shows that the nomin&l-matrix controller is ineffective for vibration suppressiduring
maneuvers.

5.2.5 Ideal integrator approximation

Many previous studies (refs. 6,18-20,22,23,61-64) repites the helicopter plant model
in figure 5.13 by a fixed"-matrix, which is a linear approximation of the vibratiospense
to the HHC inputs at a steady-state condition. In other wdfdsatrix corresponds to the
linear state-space model at DC gaia within the accuracy of the linear model extraction
process. This method eliminates the need for a detailed hoddlee periodic helicopter
dynamics. The nominak&l) T-matrix controller (HHC Controller in fig. 5.13) is simply
a k/s diagonal compensator multiplied by the fixed-gain reguldta The broken-loop
response matriXk/s) T T will thus be a nearly diagonal matrix df/s responses.
This corresponds to single-input/single-output loop aittieut loop interactions (e.g., no
response of th&s loop to 3¢ transients). Assuming a nominal gain ofl, this ideal
approximation gives loop crossover frequenciesugfl rad/sec, 90phase margin, and
infinite gain margin in every loop as illustrated in figure B.2

Next, the helicopter vibration model is replaced with thé-HHC model. The actual
broken-loop response for the 3/rev-cosine loop shown idi§L21 confirms that thee/s
approximation is accurate for frequencies up to about thadisec crossover frequency.
There is a gain offset associated with the deviation betwbkersteady response of the
nonlinear simulationf-matrix) and the steady-state response of the linearizeteim&or
frequencies above 1 rad/sec, there is significant devidtam the 1/s ideal response,
especially in phase, due to the dynamics of the 4/rev vibmatesponse relative to the
simple steady-state approximatidf-(natrix).

IDC Gain is the ratio of theutput /input signal at the steady-state condition.
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The FY, vibration response to a unit pulse input is shown in figure€ 3®be well
damped. Increasing the HHC feedback gai2) raises the broken-loop crossover
frequency and the closed-loop HHC disturbance rejectiordath (fig. 5.23). There
is an associated reduction in the closed-loop transietlirggtime, as was also concluded
by Shin et al. (ref. 5). But, there is also a magnification ailpdisturbance at frequencies
above crossover (fig. 5.23), which is consistent with ctadstontrol theory and which
shows up in the time-domain as well (fig. 5.22).

5.2.6 Optimized HHC controller

Analyses with CONDUI® show that an improvement in the suppression of vibration
transients during the maneuvering flight can only be aclkldwe increasing the HHC
crossover frequency to a value that is close to the 3 rad/getegh bandwidth. At
this increased crossover frequency, the use of Thmatrix (which is a steady-state
approximation) to simulate the helicopter vibration moelinacceptable for controller
optimization and analysis, and must be replaced with theptet@ dynamic LTI-HHC
model developed in chapter 4. Furthermore, the simpleHHC controller architecture
must be augmented with the addition of a second order lepddmpensator (fig. 5.24) in
each loop to add robustness and achieve the needed staimalityns. The HHC feedback
controller now takes the form:

H(S) — <ﬁ> (w?lcn ) (82 + 2Cnumwnum3 + wgum> TT (51)

2 2 2
S Whum 5%+ dicnwdons + Wien

Each HHC control loop contains five design parameters, amddme controller is used for
the cosine and sine loops of a particular harmonic. Thughthree harmonics (6 loops),
there are 15 HHC feedback parameters in total.

CONDUIT® was used for HHC controller analyses and optimization. Ty HHC
design specifications included in the analysis were HHC lstgbility margins and
vibration suppression performance. Gain and phase dtahifargins were determined
for each of the six broken HHC loops, and the vibration supgios performance are
determined from the RMS value. The design metrics are lisvbéAppendix A):

e Eigenvalue real part (EigLcG1)
e Stability margins (StbMgG1)
e Actuator RMS value (RisAcG1)

CONDUIT® quickly minimized the sum of the normalized vibration RM3ues for the
four in-plane shears to both lateral and longitudinal inpithout sacrificing the required
HHC loop stability margins. The optimum HHC feedback parsrseare presented in
table 5.6. The final evaluations of these HHC design spetiditaare shown in figure 5.25.
Subfigures 5.25e, f, g, and h show the relative improvemegtéatiation in vibration
suppression by the optimized HHC controller. The RMSepresents the vibration level as
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increased with respect to the baseline (HHC-off) case, Mi&R1 indicates the vibration
level as reduced with respect to the baseline case, and ti&-RIvepresents the vibration
level as the same as the baseline case. Except fdf,théd,,,, channel, the vibration levels
of other channels have been reduced.

Following the previous example, figure 5.26 shows the fraqueesponse of'x, . with
respect to the lateral piloted input. The magnitude plqgi {igure) shows that the optimized
HHC controller has dramatically reduced the vibration cese by 64% over broadband
pilot lateral inputs. In terms of overall performance, therage vibration in maneuvering
flight for the optimized HHC controller is 37% below the baselcase (Table 5.5). This
is achieved by increasing the crossover frequencies to th&ximum values (e.gw). =
2.5 rad/sec in the 3/rev-cosine loop, Table 5.7) while still maining adequate stability
margins (fig. 5.27).

Similar conclusion can also be drawn from the time domainltes Figures 5.28-5.31
are the time history of the vibration responses with theroééd HHC controller. The
vibration responses of the nominaH1) and baseline cases (HHC-off) are also presented
in the figures. Looking af'y, /0. in figure 5.28, the vehicle starts from a steady state
condition, and maintains at a steady 4/rev vibration led¢lt=5 seconds, the HHC loops
are engaged and the optimized HHC controller begins to ethe 4/rev vibrations to a
lower level. Although the optimized HHC controller has read the same new steady-
state condition as the nomin@lmatrix controller, the optimized HHC controller has a
much lower raise time which is directly related to the higheyssover frequency. The
peak vibration inf'y, /0, channel shown in figure 5.32 is now 73 Ib, or 51% below the
baseline result, which again tracks the frequency-donesults of table 5.5 closely. One
can clearly see that the optimized controller has achieeefbpnance superior to that of
the baseline (HHC-off) and nominalmatrix controller cases.
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Table 5.1. HHC broken-loop stability margins; nomifiamatrix controller.

Broken-Loop w. Gain Margin Phase Margin
Channel (rad/sec) (dB) (deq)
3/rev COS 0.92 16.0 74.3
3/rev SIN 1.01 14.9 75.4
4/rev COS 1.03 15.9 75.1
4/rev SIN 0.99 16.2 75.9
5/rev COS 1.00 15.8 76.0
5/rev SIN 0.93 16.5 76.7

Table 5.2. Second order actuator model parameters.

Nature Frequencyy, (rad/sec) 30.0
Damping Ratio{ 0.8
Rate Saturation Limit (in/sec) 600.0
Upper Position Limit (in) 60.0
Lower Position Limit (in) -60.0

Table 5.3. Flight control system parameters.

K, 0.000
K, 0.000
K, 0.000
K, -0.570
K, -0.766
K, -0.693
K,  -2.480
Ky -3.416
K,  -2.565
KI,  1.084
KI,  0.000
KI,  0.000
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Table 5.4. Effect of fixed-matrix on steady state vibration level.

Baseline Nominal{=1) Percent
(HHC-off) T-matrix Controller Changed

Fx,.. (Ib) 151.6 51.4  -66.1%
Fx,, (Ib) 87.8 21.7 -75.3%
Fy,,, (Ib) 735 34 -95.4%
Fy,. (Ib) -61.3 426 -30.5%

Average -66.8%

Table 5.5. Vibration RMS with respect to piloted roll andcpiinputs.

Nominal7T-matrix Optimized HHC
(k=1) (Lead-Lag)

Roll Maneuvering Flight

Fy\e -4.1% -63.8%
Fy,q 1.4% -21.3%
Fy,. 20.1% -15.4%
Fy,q 13.6% -67.9%

Pitch Maneuvering Flight

Fx,. -1.8% -46.4%
Fx,g -59.9% -51.1%
Fy,. 43.5% 9.7%
Fy,, 13.0% -40.8%
Average 3.2% -37.1%

Normalized relative to the baseline RMS
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Table 5.6. HHC controller parameters.

Nominal7-matrix Optimized Lead-Lag

Controller Controller
K, 1.000 1.153
Ky, 1.000 1.663
Ks, 1.000 1.236
Wn3 1.463
Wn4a 5253
W5 2.848
GCn3 2.539
Cna 0.583
GCns 1.246
Wd3 6.900
W4 5.627
Wds 6.787
Caz 3.494
@ 1.207
Cas 1.179

Table 5.7. HHC broken-loop stability margins; optimized Eldontroller.

Gain Margin  Phase Margin

Broken-Loop We

Channel (rad/sec) (dB) (deg)
3/rev COS 2.46 8.2 74.6
3/rev SIN 2.71 6.0 78.6
4/rev COS 1.52 17.6 52.8
4/rev SIN 1.45 18.0 55.5
5/rev COS 1.80 6.0 99.6
5/rev SIN 1.33 6.6 102.3
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Figure 5.27. Broken-loop response of 3/rev input; optimilead-lag compensator.
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6 Summary and Conclusions

The increasing opportunities provided by novel sensing astdation technologies, and
the advancements in the theory and practice of flight andr redatrol systems open
unprecedented possibilities in the constant search forvitmation levels and favorable
handling qualities in modern helicopters. At the same tinogyever, greater care than ever
must be taken to ensure that these advanced controls ce®paranoniously and prevent
adverse dynamic interactions.

The present work makes a contribution toward this goal bylbgimg new mathematical
tools for the analysis and design of active rotor controteys, more specifically, Higher
Harmonic Control (HHC) systems, and by using these toolatymut the first systematic
study of the interaction of HHC and Automatic Flight Cont&yjstems (AFCS) available
in the literature.

This chapter provides a summary of the work presented in &search, details
conclusions drawn from its results, and outlines some recentdations for future work.
Chapter 2 describes the key features of the formulation ahgtisn techniques for
the baseline helicopter simulation model used in this stu@papter 3 provides basic
information on the HHC algorithm. The extraction of a linead, time-invariant dynamic
model of the helicopter that includes higher harmonic caintea key contribution of this
study, and is described in detail in chapter 4. Other immbreantribution, namely, the
AFCS-HHC interaction study, is presented in chapter 5. AF@Sign procedures, and
basic concepts of Fourier analysis and treatment of rotgre#s of freedom, are briefly
reviewed in the Appendices.

6.1 Summary

A realistic analysis of the interaction between AFCS and HidQuires a mathematical
model of a helicopter of adequate sophistication. This rhauest be able to provide
sufficiently accurate predictions of vibratory loads in bdtimmed and maneuvering
flight. This model was described in chapter 2. An existingtesbf-the-art flight dynamic
simulation model was improved to allow the calculation dbration levels both at the
center of mass of the helicopter and at specific locationk ascpilot and copilot seats.
The results obtained with this model were successfullydeadid through comparison with
other simulation models and with flight test data.

An HHC system is composed of several elements which mustealinbdeled in a
rigorous mathematical way. This is the main topic of chaftehe harmonic analyzer,
which extracts the desired frequency components of the uithoations, was studied first.
A Fourier analysis method was described, and the effectsimfiaws were discussed.
Then, the HHC control algorithm was presented, in the tiaak 7-matrix form, and
validated through simulation. Finally, issues associatéth the discrete, rather than
continuous, implementation of HHC were discussed.
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The methodology for the extraction of a high-order, timeamant linearized model of
the coupled rotor-fuselage system was systematicallyridbestin chapter 4. This model
included both the pilot and the HHC inputs, and both the ayentaand the high frequency
dynamics of the rotor states. The resulting model contass, subset, the more traditional
linear time-invariant representation without high freqeye rotor dynamics and higher
harmonic controls. Therefore, the description of the meétthagy started with this well-
known subset. The methodology to extract the remainingtjpens of the state, control,
and output matrices was presented next, with partitionseman an order to allow the
progressive introduction of the new key concepts. Chaptendinued with the application
of a technique to a simplified rotor model, entirely formathtanalytically. This model
was not sufficiently sophisticated to be used in the remaiotithe research. However, it
was very useful to illustrate and validate the methodoldgyfact, the higher harmonics
of the rotor motion and of the control inputs were explictlycessible in the equations in
analytic form. A more complete validation, performed by @amng hub loads and rotor
states predicted by the linearized model and by the fullineal simulation, concluded the
chapter.

The newly developed linearized model was then used to cantyaostudy of the
interaction between HHC and AFCS, described in chapter Bst,Rhe effect of open-
loop HHC on rigid body dynamics was examined in detail, byesbisig the changes in the
frequency responses of helicopter to pilot inputs when tH&Hontroller was turned on.
Then, a full closed-loop interaction study was performele $tudy included a validation
through simulation of the response of the helicopter withcahtrol loops closed, an
analysis of the vibratory loads with and without HHC in batimimed and maneuvering
flight, and a discussion of the tailoring of the HHC controlie improve its performance
in transient maneuvers.

6.2 Conclusions

This section presents the main observations originatiam fthis research, and the key
conclusions of the study. The conclusions related to the Imearization procedure are
presented first, followed by those concerning the AFCS/Hrt€raction study.

6.2.1 Extraction of linearized, time-invariant models

1. The traditional constant coefficient linearized modeiscoupled rotor-fuselage
dynamics, obtained through multiblade coordinate tramsé&tions followed by
averaging over one rotor revolution, are not suitable fodigts involving rotor
vibrations, even if the control vector includes the highamhonics typical of HHC.
In fact, the averaging removes all higher harmonics of therreesponse. Such a
model will capture the effects of HHC on the low frequencydigody motion of the
helicopter and of the tip path plane, but not on the N/revatibns.
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2. The constant coefficient linearized model developedigr#search, which explicitly
includes states describing the high frequency rotor dyogmiloes capture the
vibratory loads, and the effects that HHC can have on thers.pFite for modeling
vibrations with a linear time-invariant system, compardthva linear system with
periodic coefficients, is an increase in the size of the systén the other hand, the
entire arsenal of tools of linear time-invariant systenotiyecan now be used.

3. The validation with the full nonlinear simulation modkbsvs that there is very good
agreement between the hub loads predicted by the new LTI-kid@el and the hub
loads of the nonlinear model, both for HHC and pilot inputshisTsuggests that
a linearized model that intrinsically includes higher rot@rmonics is sufficiently
accurate for full load predictions, at least for the airci@nfiguration and flight
conditions considered in this study. In other words, pecitygl plays a far more
important role than nonlinearity.

4. One limitation of the current LTI-HHC model is that it carodel only the 4/rev
components of the system and not the higher frequency coemp®that enter the
fuselage, i.e., 8/, 12/rev, etc., for the 4-bladed rotorhod study. However, this
limitation can be easily overcome, by including additiohakmonics in the LTI-
HHC model using the same methodology as for the 4/rev states.

5. Possibly for historical reasons, the starting point foe vast majority of HHC
modeling research and applications has been an updateia@yulat links the
vibration harmonics to the HHC harmonics through fhenatrix. Using instead
an(A, B, C, D) state-space representation as a starting point leads tela richer
and informative picture. In fact, the traditional updatau&iipn is included as a
subset (through a partition of the control matiy, and the additional effects on
vibrations of pilot inputs and all the states, includingceaft rigid body, rotor, and
inflow states, are now modeled explicitly. These additi@ff@cts are not included in
the traditional update equations, and are usually takeraictount indirectly through
on-line identification and adaptation schemes.

6.2.2 HHC/AFCS interaction study

1. In general, the closed-loop HHC system has little infleemc the handling qualities
characteristics of the helicopter, and on the behavior efflight control system, at
least for the articulated rotor configuration used in thigdgt This conclusion is
drawn on the basis of the analysis of the effects of HHC on itbgufency response
to pilot inputs. The effects of HHC on trim were not addressaglicitly, but
the simulated free flight responses with HHC suggest thatethedfects are not
significant.

2. Although the typical 3/, 4/, and 5/rev HHC inputs for a 4dd rotor are at high
frequency (81, 108, and 135 rad/sec, respectively, for #ledpter used in this
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study), the crossover frequency of each HHC loop is only ahoad/sec. Because
of the high HHC input frequency, one might expect a large Usspy separation
between the flight control and the HHC inputs, and assumethieae two systems
would not interfere with each other. Instead, the resuttarty show that this is not
the case, and that the potential for AFCS/HHC interactiogsdexist.

3. The vibration response tnaneuveinputs, and not just to steady state inputs, must
be considered as part of the HHC system design process. HHill@zalgorithm is not
properly designed, the transient vibrations in the earlgsgls of a maneuver could
be higher than if no HHC system was present.

4. An HHC controller that improves the suppression of viiorattransients has the
higher loop crossover frequencies. For the cases studiede tfrequencies are of
the order of 3 rad/sec. At these frequencies, the use of theatrix approach to
simulate the helicopter vibration model is unacceptabtectmtroller analysis and
optimization. This is because tffématrix is simply ak/s diagonal compensator
multiplied by a fixed-gain regulator, and a comparison wité more sophisticated
LTI-HHC model developed in this study shows that it is inaete for crossover
frequencies greater than about 1 rad/sec. Increasingltneatrix controller
feedback gainK=2) reduces the closed-loop transient settling time anceases
the magnitude of the peak disturbance at frequencies alvogsayer frequency.

5. For the maneuvering flight conditions considered in thislyg the optimized HHC
system designed using the new linearized model reducestoilgrhub shears by 37%
compared to the baseline case, and 39% compared to nofHmedtrix controller
case. Therefore, the need for on-line identification angh&dien of thel-matrix is
greatly reduced if not completely eliminated. This is intpat from a practical point
of view, because of the danger that an adaptive system ol laolaelicopter might
react in unpredictable and unwanted ways, which can cleaelgte safety-of-flight
issues.

6.3 Future work

The research presented in this study has shown the impertahdhe HHC/AFCS
interaction on the transient vibration suppression. Haxethere are areas in which the
present analysis was limited. This section suggests sogas &or improvement.

1. Improve the flexible blade model, for example by addingitamithl blade modes
and increasing the number of blade finite elements. Whileviivation results can
be considered qualitatively representative, a more stipaisd model is probably
needed for quantitative evaluations (e.g., for a precisstication of the benefits
of HHC).

164



. For the same reason just mentioned, improve airload ledicns, especially by
adding non-uniform inflow and unsteady aerodynamics maodeliFor the design
of the HHC system, the improved models must obviously beatesspace form (not
necessarily linear). This characteristic is not requikad/alidation purposes.

. Further validate the vibratory hub load level predictgdthie mathematical model
with wind tunnel data or flight test data. Because of the |aggdter, the flight test
data used in this study were only adequate for a qualitatilidation. Unfortunately,
no other flight test data was publicly available for a helteopvithout some or all of
the normal vibration suppression devices.

. Repeat the study with a helicopter configuration with jowdlamped coupled

rotor/body modes, such as hingeless or bearingless roioopters. The articulated

rotor configuration used in this study had hydraulic lag darepand aeromechanic
stability was never an issue.

. Apply advanced control design theories such asHd, control design methods in
an attempt to achieve further improvements in vibratioruotion that may remove
the need for adaptivE-matrices.
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APPENDIX A

CONDUIT HQ-WINDOW SPECIFICATIONS

Following are the handling-qualities specifications andtiem system metrics used in the
AFCS optimization procedure:

(a) Eigenvalues (All) This criterion is used to ensure that all the real parts of the
eigenvalues of the system are zero or negative, ensuringlinhe dynamics are stable
or neutrally stable. At any given iteration, the sum of ubhtaigenvalues real parts or the
largest stable eigenvalue is returned as the spec metric.

(b) Minimum Crossover Frequency The crossover frequency is defined as the
frequency where the magnitude curve crosses 0 dB. For railtijpssings, the highest
crossover frequency is returned. This specification isnithtel as a hard constraint to a
greater than zero value of crossover frequency.

(c) Gain/Phase Margins The spec has very sophisticated logic for treating stable,
conditionally stable, and unstable systems. It also ha kog correctly accounting for
right-half plane poles and zeros. A table of margins is arlall crossings of the 0 dB and
-180 deg lines and displayed in the supporting plot. The sgteicns the minimum gain and
phase margin values from the table. The level 1 boundareeta&en from MIL-F-9490D.

(d) Bandwidth Specification The vehicle response to cockpit control force or position
inputs shall meet the limits specified. It is desirable to ntl@e criterion for both controller
force and position inputs. If the bandwidth for force inplati$s outside the specified limits,
flight testing should be conducted to determine that thesféeel system is not excessively
sluggish.

(e) Attitude Response Damping Ratio (from peak overshoot) The calculation of the
damping ratio (zeta) is from peak overshoot of the time raspdo a step input. ADS-33D
required a minimum damping ratio of 0.35. Systems whosenggjaes all have damping
ratios of greater than 0.35 could still have excessive dvarsdue to the presence of zeros
in the response. This spec ensures that the end-to-enddattiésponse has an effective
damping ratio greater than 0.35 base on the time responsappwopriate input should be
used to result in a step response.

(f) Crossover Frequency The crossover frequency is defined as the frequency where the
magnitude curve crosses 0 dB. For multiple crossings, thledst crossover frequency is
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returned. This specification is intended as an objectiveitomize crossover frequency in
CONDUIT® phase 3 optimization.

(g) Damping ratio This specification is used to ensure damping is above thamimi
value specified. This is achieved by checking the dampingsaf the eigenvalues within
the range of natural frequencies specified.

(h) Rise Time (Calculated from 10% to 90% of peak response) This spec estimates
rise time for first-order SISO systems by finding the peak @f time response, and
calculating the time between 10% and 90% of the peak magmitud
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APPENDIX B

FOURIER TRANSFORMS

B.1 Fourier Transform (FT)

Fourier transform can be viewed as a generalization of thei€ioseries representation of a
periodic function. Unlike the Fourier series which is an@pmation of the source signal,
Fourier transform is a direct mapping between time-domiaththe frequency-domain, and
it is fully reversible.

Let f(¢) be a continuous-time signal, its continuous Fourier tramsfF'(w) is defined

by
F(w) = /_OO f)e“dt, —o0 < w < o0 (B.1)

wherew is the frequency variable in rad/sec. In many applicatidhs, source signal
f(t) cannot be given in common functirtherefore, Fourier transform is often computed
numerically. This numerical computation can be performrediiher the continuous-time
domain (continuous Fourier Transform) or the discretestdomain (discrete-time Fourier
transform).

Because a digital computer works only with discrete datepemical computation of the
Fourier transform off (¢) requires discrete sample values fit). In addition, a digital
computer can compute the transfoff{w) only at discrete values of; therefore, discrete-
time Fourier transform is often used in many applications.

B.2 Discrete-Time Fourier Transform (DTFT)

Let f (k) be a sampled version of a continuous-time sigh@l with ¢ evaluated at sample
timet = kT, whereT is the sample interval.

fk) = f®)|,—pp = fFKT), k=0, £1, £2, ... (B.2)

The Fourier transform of (k) is defined by
FQ) = Y fk)e’™ —o00 < Q< oo (B.3)
k=— oo

Note that DTFT is directly analogous to the FT, and it is noapproximation to the FT.
The DTFT requires the calculation of the sums of equationf@&.all frequencies range.
In practice,F' (Q2) is usually computed only for a discrete set of frequencyalde(?, and

LIt is the generalized transform typically shown in Fouriansform table
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this is accomplished by using the N-point discrete Fouramgform (N-point DFT).

N-—-1
F, = Y f(k)e i2mho/N n=2~01,... N-1 (B.4)

k=0

whereN is a positive integer.

B.3 Fast Fourier Transform (FFT)

The computation of equation B.4 can be carried out using adg®orithm called the
Fast Fourier Transforms. It is a new N-point DFT algorithnveleped by Tukey and
Cooley (ref. 65) in 1965 which reduces the number of compmrnatirom something on the
order of N2 to N'log N. Because many special computers or add-on cards are dedidab
perform the FFT algorithm at ultra-high speed, FFT opengtesibility of a wider use
of the FT in many other areas such as the computational phgsid many engineering

applications. Additional information regarding to FT, DILEDFT, and FFT can be found
in references 66 and 67.
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APPENDIX C

MULTI-BLADE COORDINATE TRANSFORMATION

C.1 Converting rotor equations of motion
Let the blade flapping equations of motion for a four-blad®dmrin the rotating system be
}“(R + CRXR + KRXR = fR (Cl)

where

XR = [ﬁl, B2, B, 54r (C.2)

The matrixT# is the multi-blade coordinate transformation which cotser from the
fixed to the rotating system as follows:

xp = THxp (C.3)
The first and the second time derivative of equation C.3 are:

xp = TExp + TExp (C.4)

Substitute equations C.4 and C.5 into equation C.1 yields

Multiply 75 through equation C.6 and re-arrange the equation, equatbhecomes

Xr + Cpxp + Kpxp = fp (C.7)
where
T
Xp = {507 Bres Bis, 52] (C.8)
Cp = Tf (CrTE + 21F) (C.9)
Kp = T (Tf + CaTF + Kp TF) (C.10)
fr = T§ fr (C.11)
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(1 cos(vy) sin(yy) —1
e - 1 cos(g) sin(e) 1 (€.12)
1 cos(i3) sin(vs) —1
[ 1 cos(¢) sin(¢y) 1
[0 —sin(y)  cos(y) 0]
P 0 cos(y)  sin(yp) 0O (€.13)
0 sin(yp) —cos(y) 0O
[ 0 —cos(yp) —sin(y) 0
[0 —cos(yp) —sin(yh) 0]
o 0 —sin(e) Cf)S(Qﬂ) 0 (C.14)
0 cos(¢)  sin(¢p) O
L0 sin(y)  —cos(yp) 0
1/4 1/4 1/4 1/4
TE 1/2 cos(vp)  1/2sin(yp)  —1/2 cos(vp) —1/2 sin(v) (C.15)
f 1/2 sin(¢) —1/2 cos(e)) —1/2sin(e))  1/2 cos(¥) '
—1/4 1/4 —1/4 1/4
0 0 0 0
FE —1/2 sin(v)) 1/2 cos(vp) 1/2sin(yp)  —1/2 cos(v) (C.16)
" 1/2 cos(¥)  1/2sin(y) —1/2 cos(s)) —1/2 sin(y)) '
0 0 0 0
0 0 0 0
Fr o —1/2 cos(vp) —1/2 sin(vp) 1/2 cos(vp)  1/2 sin(v)) ©17)
f —1/2sin(¢)  1/2 cos(yp) 1/2sin(e)) —1/2 cos(t) '
0 0 0 0

C.2 Converting state-space representation

Let equation C.18 be the state-space representation afegt@mtions of motion in rotating
system.

XR = AR Xp + BRLI (C18)
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where Ar and By is the state matrix and the control matrix in the
respectively. Substituting equations C.3 and C.4 into tou&.18 yields:

TExp + TE%p = AR TE xp + Bru
Multiply 75 through equation C.19 and re-arrange the equation as:
Xr = Apxp + Bru
where

Ap = TF (ApTH - TF)
Br = Tk Bg

rotatingtays

(C.19)

(C.20)

(C.21)
(C.22)
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