
Johann Schumann, schumann@email.arc.nasa.gov
Ewen Denney, edenney@email . arc. nasa. gov

March 31, 2006

National Aeronautics and
Space Administration

https://ntrs.nasa.gov/search.jsp?R=20060051796 2019-08-30T00:00:53+00:00Z

Contents
1 Executive Summary 4

2 Introduction and Objectives 5

3 Application Areas and Respondents 6

4 ACG application characteristics 6

5 ACG tools 8

5.2 Target Languages, Target Systems. and Generated Artifacts . 11
5.3 Sizes . 13
5.4 Generated Components within the Project 13

r 1 h r . .C u*.... T* ..
J.i LJiuau V w L i i i i i u i i 1 uuL . 8

6 Experience with ACG 14
6.1 Overall Experience and Benefits 14
6.2 Quantifiable Benefits . 15
6.3 Learning to Use ACG . 15
6.4 ACG Customization and Reliability 17

7 Certification and V&V 17
7.1 BugsinACG . 17
7.2 Validation of generated code 17
7.3 Important Safety Properties 18
7.4 Software Process and ACG . 18

8 An ACG “Wishlist” 19
8.1 Important Features . 19
8.2 Tool Integration . 21
8.3 Design -Wizards and Analysis Tools 21
8.4 Documentation and Traceability 22

9 Conclusions 23

A Questionnaire 25

B Change Control 28

2

List of Tables
1 Importance of safety properties 18
2 Importance of ACG features 20

1
2
3
4
5
6
7
8
9
10
11
12

Target domains for code generation
Roles of survey respondents 8
Application areas . 9
Purpose of ACG . 10
Levels of safety-criticality . 11

Target languages . 12
Additional artifacts produced by ACG 13
Software parts generated by ACG
Integration with other tools 21
Important ingredients of generated documentation
Traceability graph . 24

. 7

Tools used for ACG . 12

14

23

3

1 Executive Summary
This deliverable describes a customer survey which was carried out by the
RSE program synthesis team in March 2006. The project team set up an on-
line questionnaire on the use of automated code generators (ACG) in safety-
critical application areas and emailed an invitation to participate in the sw-
vey to developers, tool vendors, researchers, and managers at NASA, leading
aerospace companies, and other related industries, as well as tool providers
and research institutions. People who have worked in the area of software
development and have extensive experience with code generators were specif-
ically targeted.

We received 23 responses; several colleagues were also contacted directly
by telephone - their responses have informed our analyses here, but the
statistics arc based solely on the survey.

This report presents the objectives of the survey, summarizes the results of
the returned questionnaires. The results of the survey indicate that the use of
automated code generation is now widespread and being actively used by in-
dustry. Moreover, there are many safety-critical applications where ACG has
been applied to generate production/flight code. While the most commonly
used tools are the integrated modeling, analysis and simulation tool suites
provided by commercial vendors (primarily Real-Time Workshop, IVIatrixX,
and SCADE), in-house extensions of these tools are common, particularly
to address modeling and verification issues. Indeed, there appears to be a
natural synergy of ACG with extensions to support certification activities,
namely the production of V&V artifacts, documentation, and traceability
information.

In most cases, respondents were generally satisfied with the tools, al-
though substantial effort is typically spent both in learning to use the tools,
and in modifying existing development and V&V processes as actual V&V
tasks can M e r substantially. So, using ACG for a safety-critical application
is a long-term decision, as in most cases, benefits won't show up immediately
and the V&V process needs to be planned carefully. Although none of the
tools were qualified, auto-generated code has itself been successfully certified
to meet DO-178B (Level A)'.

lhttp ://www.rtca.org

4

2 Introduction and Objectives

Automated code generators (ACG) are tools that convert a (higher-level)
model of a software (sub-)system into executable code without the necessity
for a developer to actually implement the code. Although both commercially
supported and in-house tools have been used in many industrial applications,
little data exists on how these tools are used in safety-critical domains (e.g.,
spacecraft, aircraft, automotive, nuclear).

The aims of the survey, therefore, were threefold:

0 to determine if code generation is primarily used as a tool for prototyp-
ing, including design exploration and simulation, or for fiight/production
code

c to determine the verification issues with code generators relating, in
particular, t o qualification and certification in safety-critical domains

0 to determine perceived gaps in functionality of existing tools

In order to obtain this information, we designed the questionnaire2 around
the following major topics:

1. What are the characteristics of the project where an ACG has been
used? This includes application domain and area (e.g., control, sig-
nal processing, user interfaces, glue code), level of criticality, size of
the model and generated code, and the relative percentage of auto-
generated code within the entire project.

2. Which tools have been used to generate the code and which other
artifacts have been auto-generated (e.g., documentation, test cases)?

3. What was the experience of using ACG? In this section, we asked about
benefits of using ACG (in terms of effort and reliability), where the
major problems were, and how the use of ACG influenced the software
development process.

4. How did you address V&V and certification? Safety-critical code must
pass tests, reviews, and certification (depending on the application)
in order to demonstrate its quality and reliability. In this part of the

2The full questionnaire is shown in Appendix A.

questionnaire, we asked how the quality of the generated code was
assured, how the use of ACG impacted verification and validation, and
what safety properties are most important.

5. What would the features of an ideal ACG be? In this section we asked
about a “wish-list” of features for an ACG.

In the following, we will present statistics on the application domains and
participants, paraphrasing participants responses there they permitted this,
and then present the detailed results. The charts in this report were produced
by the report generator of h t t p : //www . f ormsite . com. Most questions al-
!owed the participant to seiect more than ne answer. I’hus, uniess st2ted
otherwise, percent figures refer to the total number of times, the specific
answer was selected.

-_

3 Application Areas and Respondents
The majority of the results in our survey were obtained from participants
working in the area of aviation and space (see Figure l), followed by other
safety-critical industries. Other domains included high-integrity distributed
real-time systems, design/analysis/visualization tools, conipilers/checkers,
encoders/decoders, and educational/research.

Most of the participants who responded were from the US, followed by the
EU and Japan. Based upon the contact information (where given), roughly
60% of the participants were from industry, 20% from research institutes,
and 20% from US government institutions. Figure 2 shows the roles of the
respondents within their organizations.

4 ACG application characteristics

This section discusses the survey results on the characteristics projects where
code generators have been used, including application area (e.g., control,
signal processing, user interfaces, glue code), level of criticality, size of the
model and generated code, and the relative percentage of auto-generated
code within the entire project.

The vast majority of ACG applications in safety-critical areas are in the
area of control (Figure 3 . This result is not surprising, because (a) digital

6

Responses
0 5 10 15

I

Figure 1: Target domains for code generation

controls comprise a major portion of highly critical code in aircraft, spacecraft
or cars, and (b) major commercial modeling tools, like Simulink, MatrixX or
SCADE, are traditionally used in the controls domain.

Other applications included mission management, distributed on-board
systems, embedded systems, distributed systems, and user interfaces.

A code generator can also be used for various purposes (Figure 4). The
most common are to generate production code that is deployed (74%), to
quickly produce prototypes (during the design phase, 52%), simulation and
modeling (48%), i.e., to speed up modeling and simulation runs, testing
(30%); and the generation of glue or interface code (30%). Other, “non-
standard” uses of ACG cited were formal verification (generation of verifica-
tion tasks from models), generation of artifacts for testing of the specification,
and for integration and visualization purposes.

In highly critical applications (10 out of 23 responses) , the focus on gen-
eration of production code was even stronger. 80% of these projects used
ACG to generate production code, 70% for design and prototyping, and 60%
for simulation and modeling.

Figure 5 shows the level of safety-criticality (mean is 2.5) of the appli-
cation on a scale from 1 (highly safety-critical) to 5 (not safety-critical).
As expected, many applications were highly safety-critical, most originat-
ing from Aviation and Space. Some applications, such as the flight-control
software for the NASA F-15 ACTrVE within the IFCS project even concern

7

testing

cg technolc

Responses
0 5 10 15

A
15

/qa/verif

project

igy provide!

Figure 2: Roles of survey respondents

man-rated systems.
For the most safety-critical projects (level l), MatrixX, closely followed

by Real-Time Workshop and in-house tools were the most common. The
most common domain was aviation, and then space, while control was over-
whelmingly listed as the most common application. The most common target
languages were C and then Ada (see also Section 5.2). Perhaps surprisingly,
code generators are reported as being used for production code almost as
much as for prototyping.

5 ACG tools
This section of the questionnaire concerns the code generation tools that
have been used in the projects and the characteristics of the models and the
generated code (e.g., sizes of the model, target systems, generated artifacts).

5.1 Most Common Tools
The most commonly cited commercial code generators (see Figure 6) were:

Real-Time Workshop: This tool3 is a part of the Mathworks too1 suite,

3ht tp : //ww . mathworks. corn

8

liagnosis)

Responses
0 5 10 15 20

control

signal processing

m odeling/srm ulation

data analysis

inem health monnorin

p I an n i n g

other (please describe)

5

Figure 3: Application areas

based on Matlab and Simulink. Models are developed using the graph-
ical Simulink and Stateflow representation and can be automatically
compiled into C code that can be executed on the target platform

- (e.g., the flight hardware). This tool combines techniques for modeling
and simulating continuous components (e.g., PID controllers or signal-
processing functions) with discrete mode logic and is usually used for
the development of digital control and avionics software.

MatrixX: MatrixX is a tool suite by National Instruments* for the model-
based design, simulation and code generation, specifically targeting the
area of control. Models are developed using a graphical (block-based)
modeling environment. The models can be simulated interactively and
analyzed. The MatrixX code generator (Autocode) generates opti-
mized C or Ada code. with automatic code generation.

SCADE: Though not listed specifically in Figure 6, this tool was the third
most commonly cited tool, used in 15% of the projects. SCADE5 is a
graphical modeling and design tool suite. Developed by Esterel Tech-
nologies, it has been applied to numerous applications in automotive

'http : //www . ni . corn
5http://www. esterel-technologies. corn

9

Respanses
0 5 10 15
I

simulal

generalii

generalir

testing

io n f modeling (e g , to

design [prototyping

producrron Code (i e

glue or configuration

! g , generating test dr

other (please describe)

7

Figure 4: Purpose of ACG

and aerospace6 industries, mainly in Europe (e.g., Airbus, Eurocopter).

Rose/RT: This tool is a code generator for the Rational Rose UML mod-
eling tool7. The software system is designed and modeled using a
graphical UML notation (e.g., class diagrams, statecharts, sequence
diagrams), from which object-oriented code (C++ or Java) can be gen-
erated automatically.

Other tools and tool generators mentioned were Vanderbilt GME8, Tele-
logic Taug, Semantic Design's DMS Toolkit'', as well as CASE tools like
Iloglx'sll, Rhapsody and Statemate, as well as STOOD/Sildex12. Further-
more, generic environments and languages like Eclipse13, Alloy14, or Mathe-
matica15 have also been used in this area.

As the responses showed, a significant number of projects used in-house
tools, or combined commercial tools with in-house tools. Often these tools

6Although a qualified version (DO-1783, Level A) of this tool is available, it has not

'http : / / w w . ibm. com/software/rational
'http://www .isis .vanderbilt .edu/projects/gme/
ghttp://www.te~elogic.com

been used by the participants of our survey.

"http://www . semdesigns . com/Products/DMS/index. htm
'lhttp : //www . ilogix. com
"http://ww. tni-software.€r
I3http: //www. eclipse. org .
'*http://alloy.mit . edu
15http://~.wolfram.com

10

48%

5%

Figure 5: Levels of safety-criticality: % of responses for criticality levels 1 (=
most critical) to 5 (= non-critical).

were implemented as scripts (e.g., using Perl) to address specific issues. In-
house tools have been used t o extract specific model information, to address
specific target issues (e.g., to generate assembly code from Simulink models),
or to generate non-standard artifacts. An example of this is the generation
of code for analysis and verification tools (e.g., model checkers and theorem
provers) from Simulink/Stateflow and SCADE models. Also, more elaborate
in-house code generators (e.g., from MagicDraw UML diagrams to C, JPL)
are being used in safety-critical applications.

5.2 v,, Idi get Languages, Target Systems, and Generated
Art ifact s

In the majority of cases, ACG tools generated C, followed by C++ and Ada
(Figure 7). Other languages mentioned: OCaml/MetaOCaml/FORTRAN,
Relay ladder logic, Mathematica, XML, PARLANSE, as well as various logic-
based languages.

For highly safety-critical applications, the most common target languages
were C (70%) and Ada (30%).

Resparises
0 5 10 15

real-time workshop

matrixx

rational rose

1-house (company or project-spec

Other

Figure 6: Tools used for ACG

Figure 7: Target Ianguages

The survey shows that code has been generated for a multitude of plat-
form. Quite often, the same models are used for different platforms (e.g., a
desktop machine for simulation and flight hardware for the production code).

Desktop systems used as targets were running under Solaris, Linux, Vx-
Works, or Windows NT. Dedicated hardware systems are often project- or
mission-specific. M68K and PPC processors were most often mentioned for
embedded systems, in particular for highly safety-criticaI projects; the soft-
ware running on those systems varies, but VxWorks is the most popular
choice.

An ACG obviously needs to generate code in the desired target language.
Most tools, however, are capable of automatically producing additional arti-
facts, like documentation, test cases, or installation scripts. Figure 8 shows
the results. No specific responses were given for “Other”.

12

Responses
0 5 10 15

test cases

documentation J manual

jog files

akefiles or other installation s

derivation /design information

tracing information

other (please describe)

m I
Figure 8: Additional artifacts produced by ACG

5.3 Sizes
The sizes of the models and the generated code varies widely between the
different projects. For block-based graphical models (eg., Sirnulink or Ma-
trixX), the given sizes ranged from 5 to more than 16,000; for state-based
specifications (e.g., statecharts), the number of states ranged from 5 to 1000;
text-based specifications had up to 35,000 lines. This is a strong indication
that ACG is used not just for very specific components or toy examples, but
is used for large and complex models. Therefore, the number of generated
lines of code ranges from 300 to 1.6MLoC. No tool-specific model to code
ratio could be detected in the survey responses.

5.4
in a software project, usually only a part of the code is generated auto-
matically. The answers in the survey ranged from 15% to 95% of the total
software (with a mean of 50%).

Figure 9 shows which parts of the system in particular were auto-generated.
Telemetry, instrumentation code, and user interfaces were other targets listed
for automatic code generation.

Generated Components within the Project

13

Responses

6

0 5

continuous control

control (mode) logic

component interfaces

glue code

(graphical) user interfaces

device drivers

safety-critical components

other (please describe)

Figure 9: Software parts generated by ACG.

Experience with AC,G

3

In this section, we asked the survey participants about the experience with
using ACG in safety-critical applications, major benefits and problems en-
countered.

6.1 Overall Experience and Benefits
As might perhaps be expected, given the targeted nature of the survey, the
reported experiences with using ACG were generally very good, even (and
particular) for safety-critical projects. An average response of 1.5 (where 1
is the best on a scale of 1 to 5) was obtained.

It appears that those early adopters who are willing to digest weighty
product manuals and deal with occasional quality issues to adapt the tools
to their project are quite satisfied. Indeed, several users reported that they
simply could not carry out some activities without autocoding, such as rm-
ning simulations or maintaining huge amounts of (auto-generated) code.

The acceptance of autocoding is assisted by an increasing trend towards
the use of models in the software development process, and the increasing
feasibility of automated verification technology.

14

Specific benefits listed included quantifiable improvements to the devel-
opment process (schedule, cost, productivity). Specific aspects of this were
a reduced need for testing and a rapid turnaround from design to code.

Improvements in software quality were also reported (reliability, perfor-
mance, reduced redundancy, and adherence to standards).

A number of advantages mentioned hold more generally for a model-
oriented approach, namely a reduced maintenance burden through smaller
specifications, ease .of understanding, graphical programming, and the ability
to detect faults earlier in the development process.

Major benefits for using ACG are productivity gain over manual development,
reduction Er, defects, and faster time-to-market for the project.

Although most participants qualitatively agreed to these benefits, no con-
sistent qualitative answers could be extracted, and some of the data were not
revealed due to proprietary concerns. Where actual numbers were given, the
productivity gain ranged from 15% to 1000%, where values around 100%
seemed to be most common.

Reduction of defects ranged from 5% to 95%. Some participants reported
a significant reduction in defect rate or the benefit that no new errors were
introduced by ACG use. One participant claimed a reduction of error from
1E-3 (manual) to 1 E 5 (ACG) bugs per LOC.

Benefits in schedule and time to market can be substantial; 15% benefits
in schedule and 6 month reduction in development time was reported. Al-
though most participants agreed that there are benefits in schedule and time
to market, it seems to be very application/project specific and hard to quan-
tify. For some projects, no benefits could be measured due to considerable
inherent domain complexity, for others, it would have been “impossible to
get to market without ACG”.

6.3 Learning to Use ACG
Though code generation is often touted as a push-button technology, in re-
ality there is often a substantial learning cmve for a project team to adapt
and efficiently use a tool.

We assessed this by asking about difficulties in learning to use generators
and in adapting existing processes. With a rating of 2.5 on a scale from

15

1-5, the use of ACG was not impossible to learn, but there is a substantial
learning curve and effort has to be spent on introducing ACG.

Also the software process must change to accommodate ACG use. The
impact of this change was rated 1.8, which means that ACG uses causes a
substantial impact.

Most difficulties in learning and introducing the ACG technology were
caused by the following issues:

0 The major problem is using them seems to be the need to adapt existing
software development processes to accommodate code generation. This
can be an enormous task and is exacerbated when certification must
be considered. One respondent stated that iterative customization of
the generator should be seen as an integral part of the development
process.

0 The generators, themselves, typically need to be adapted, both in order
to generate acceptable code which existing models often have to be
adapted so they will be accepted by the generator. Indeed, actually
understanding what can be adapted and what is a fixed “bias” in a
tool was mentioned as a specific hurdle.

e Several respondents highlighted the overly complex nature of code gen-
erators, and that it is not always clear to which problems the generators
are applicable to. In particular, its many features, the necessity to use
the modeling/specification language in the right way, to understand
the ACG software architecture, and poor documentation makes things
difficult.

0 There is an implied methodology which can be quite difficult to under-
stand.

e Finding the “right” tool that matches a given problem and customizing
it for special needs (e.g., special interfaces, architectures) can require
high effort.

0 Finding bugs and applying bug-fixes and bug-workaxounds in the ACG
(especially for new or in-house tools) and dealing with semantic ambi-
guities of the modeling language can pose major problems.

0 The lack of round-trip engineering was also mentioned as a problem.

16

6.4 ACG Custornization and Reliability
In many applications, the ACG could be directly used “out of the box”. In
roughly a third of the cases, the ACG had to be customized. In 60% of these
cases, these bug-fixes and custornizations were performed by the tool vendor.
Thus, a good relationship with the tool vendor seems to be important.

7 Certification and V&V
Safety-critical code must pass tests, reviews, and certification (depending on
the application) in order to demonstrate its cpality and reliability. in this
part of the questionnaire, we asked how the quality of the generated code
was assured, how the use of ACG impacted verification and validation, and
what safety properties are most important.

7.1 Bugs in ACG
Automated code generators are complex pieces of software, so it is not sur-
prising that more than 60% of respondents reported that bugs were found in
the ACG.

7.2 Validation of generated code
The survey asked if the code generator had been qualified - no respon-
dents claimed that this had been done, though this was mentioned as de-
sirable. Without a qualified code generator, each individual piece of auto-
generated code must be validated. Obviously, testing of the generated code
plays a major role (90.4%), followed by static analysis16 (58%). Further trust
could be obtained by running the generated code in simulations and com-
paring the results with those obtained by the mode! (52%), and (m a n d)
reviews of the generated code (48%). Formal verification and validation or
reviews/validation of the innards of the ACG (e.g., templates, transformation
rules) is another possibility that, however, seems to be used very seldomly.

It seems that most s w e y participants understood the term “static analysis” as
manually performing analyses (e.g., transient behavior, numerical accuracy, run-time) and
manual code inspection, rather than using automated static analysis tools like PolySpace
http://www.polyspace, corn or coverity http://www.coverity. corn.

17

-
Imp -
1.3
1.4
1.4
1.4
1.5
1.9
1.9
2.0
2.1
2.2
2.3
2.5
2.5
2.6
2.9

-

-
-

-

-

-
__ -

Safety Property
Numerical exceptions (e.g. divide-by-zero)
Overflow/underflow
Memory safety (array bounds memory allocation)
Correctness of code with respect to model
Variable initialization before use
Correct use of physical units
Deadlocks, race conditions
Correct use of coordinate systems
Numerical accuracy round-off errors
iransient behavior (i.e. correct and smooth switching of modes)
Convergence
Timing, order of execution
Flight rules (e.g. minimal/maximal values or rates sign rules)
Termination
Mathematical invariants (e.g. symmetry of matrices)
no extraneous functionality (not called for in the model)
fault handling (DFIR, fault tolerance, etc.)
compliance/compatibility (e.g., with architecture principles, coding
rules, semantics)
independently checkable correctness proofs

m

Table 1: Importance of safety properties

7.3 Important Safety Properties
When analyzing or testing the generated code, testers have to make sure
that the code obeys a number of safety properties. Typical safety properties
and their relative importance (on a scale of 1 to 5, 1 = most important) are
shown in Table 1. The last four features in Table 1 are not rated, because
they were given as a response by individual survey participants.

7.4 Software Process and ACG
The use of ACG obviously has a large impact in the overall software de-
velopment process. Participants of the survey also indicated that ACGs
significantly impact the verification and validation (V&V) and certification
process (1.9). As expected, highly safety-critical applications had a stronger

18

influence on the V&V and certification process, than on the overall sokware
development process.

In safety-critical applications, usually standardized software processes
have to be followed. Our survey revealed that for the aerospace domain,
DO-178B was followed to various levels of criticality and formality. It seems
that the use of ACG fits in relatively easy In several applications, in-house
processes (e.g., Boeing) are being used. Roughly 30% of the respondents did
not use a specific V&V process. ~

The software processes used did only impose few constraints on the use
of ACG. Examples include the restriction of the modeling language (types
of modeling blocks) to eiisiii-e coj^iip:imce with EG-1785, direct mode! to
source mapping and traceability, and complexity/performance and interface-
compatibility of the generated code. Otherwise, the processes “do not differ-
entiate between automatically and manually generated code”.

Despite the fact that software processes seem to be able to handle the
use of ACG, a number of problems and obstacles were reported in getting
auto-generated code accepted by safety/flight-readiness/certification reviews.

Novelty of the technology and readability of the code are important issues
(although one user remarked that ACG-generated code “[.. .] was preferred
over hand-written code used in prior projects”. A proven track record and
demonstrated improvements of the ACG tools (e.g., bug-fixes, code with
smaller footprints, improved traceability, features for demanding users) seem
to be suitable to improve acceptance of ACG technology in safety and certi-
fication reviews.

8 An ACG “Wishlist”
Current ACGs proede a number of benefits, but they also have shortcomings.
In order to identify gaps, which need to be closed to facilitate a widespread
use of ACG in safety-critical applications, we asked about a “wish-list” of
features for an ideal ACG.

8.1 Important Features
Questions in the sections concerned additional features of an ACG that would
improve its usability. Table 2 shows the relative importance (range of 1 to
5, 1 is most important) of a given set of features. The last three features in

19

Imp -
1.2
1.6
1.6
1.8
1.9
1.9
1.9
2.1
2.1
2.2
2.2

2.3
2.3
2.5
2.6
3.2

-

-

-
-
-

-
- -

Feature
Reliability of generated code
Traceability between code and model
Support for generating code in desired target platform
Instrumentation of generated code (e.g. error handling data logging)
Interface to software libraries
Support for safety certification and safety cases
User interface to code generator
Efficiency of generated code
Control over algorithms in generated code
Error handling and feedbcck during code generation
Ease of modifying generator target (e.g., for specific processors and
operating systems)
Quality of generated documentation
Extensibility of generator
Conformance of generated code to given coding standards
Readability and clarity of the generated code
Synchronization between model and manual modifications in gener-
ated code
Support form model-level debugging
User-friendly tool configuration
Advanced user interfaces

..-,

Table 2: Importance of ACG features

Table 2 are not rated, because they were given as a response by individual
users.

Extensibility of an ACG is clearly important and there is a whole spec-
trum of possibilities, as the answers revealed. Of particular importance seems
to be the ability of the ACG tool to be able to integrate legacy code or code
produced by other tools. The extension of ACG (and the modeling tools)
to increase power and expressiveness of the models have been mentioned by
severai participants: extensions to incorporate libraries of design knowledge
and provide special purpose blocks.

However, as one participant noted, “uncontrolled extensions should be
prohibited”, as they can lead to severe problems (e.g., with verification, val-
idation, or compatibility).

20

8.2 Tool Integration
As mentioned earlier, ACGs are often used in combination with other tools,
and the survey sought to determine which groups were the most important
to integrate with. Figure 10 shows the results.

Tools to simulate or analyze the execution of the generated code and
regarded as being the most important. It is also obvious that code generators
need to work closely together with regular software engineering tools, like
version control and testing environments (e.g., test case generation and test
execution).

Other tools in this category include workflow and software process tools,
and toois for code integration (e.g., of code generated by other tools or legacy
code). The importance of integration of the ACG with project management
tools is not as important as expected, though perhaps this reflects the pre-
ponderance of software designers and developers among survey respondents.

Responses
0 5 10 15 20

I

version control

testing environment

simulation environment

project management tools

other @lease describe)

Figure 10: Integration with other tools

8.3

Design wizards are program generation aids which allow the user to interac-
tively set up a “specification” of a problem and then automatically derive or
step through a derivation of a solution. For example, Simulink features con-
trol design ’kizard. In contrast to generic ACGs, which can be seen a s trans-
lators between a high-level specification language and the target language,
such wizards can contain knowledge-based systems to actually generate and

Design Wizards and Analysis ‘Tools

21

instantiate a problem-specific architecture and algorithm. Their importance
was ranked as medium (2.7).

The genegtion of complex components (e.g., filters or control laws) can
require the designer (or system) to perform a number of complex mathemat-
ical operations. Typical examples include: equation solving, linearization
of a non-linear model, discretization, or the symbolic calculation of Jaco-
bians and Hessians, stability analysis (e.g. root-locus, Lyapunov). Some
advanced ACG can produce such mathematical operations and deviations in
a symbolic manner and document each step. The importance of presenting
mathematical derivations was rated very high (1.9).

e.g., on stability, robustness, or convergence, was even rated slightly more
important (1.7).

T h n lGIG nT7n vance of hc t thzt the ACG can perf~rm d=mai,:r,speciEc analyses,

8.4 Documentation and Traceability
For the practical applicability of ACG, the generation of a complete and
comprehensive set of documentation is very important. Figure 11 shows the
responses on what autogenerated documentation should contain. The most
important is design and traceability information (between model and code;
see details on traceability below), followed closely by interface descriptions.

Other important information that should be present in the generated doc-
umentation includes results of tests and performance analyses (e.g., resource
utilization, exceptions, coverage), data from configuration management (in
order to be able to “replay” the code generation in exactly the same way).
Also, the ability to customize the generated documentation by providing
transformation hooks was reported as a desirable feature.

Traceability between artifacts is a major requirement in most software
processes, as it allows designers and reviewers to easily switch between the
various stages of the software lifecycle. The traditional traceability between
requirements and implementation can be generalized to a number of different
development artifacts. ACG can and should provide detailed traceability
information between each of these. Figure 12 shows a traceability graph
between the most important artifacts. Numbers on the edges indicate the
relative importance of the links, as given by the survey respondents. Other
links are certainly possible but were not mentioned.

22

R~SPO~S-ZS
0 5 10 15 20

design Information

code denvatton

safety information

traces to model

interface definitions

other (please descnbe)

Figure 1 I: Important ingredients of generated documentation

9 Conclusions
While the targeted nature of this survey should be borne in mind when in-
terpreting its results, it is clear that the use of automated code generation
is now widespread and being actively used by industry. Moreover, there are
many safety-critical applications where it has been applied, even for produc-
tion/flight code, in addition to during simulation and prototyping.

The most commonly used tools are the integrated modeling, analysis and
simulation tool suites provided by commercial vendors (primarily Real-Time
Workshop, MatrixX, and SCADE) with autocoding extensions.

In most cases, respondents were generally satisfied with the tools, al-
though substantial effort is typically spent both in learning to use the tools,
and in modifying existing development and V&V processes. Although most
V&V processes do not distinguish be_tw_een -manually developed and auto-
generated code, actual V&V tasks can differ substantially, so the V&V pro-
cess needs to be planned carefully. Fhally, although Eone of the took were
qualified, auto-generated code has itself been successfully certified to meet

Interestingly, in-house extensions of these tools are common, particularly
to address modeling and verification issues. Indeed, there appears to be a
natural synergy with extensions to support certification activities, namely the
production of V&V artifacts, documentation, and traceability information.

DO-178B.

23

Figure 12: Traceability graph

24

A Questionnaire

25

I

26

27

B Change Control

Version#

1.0 (RSE
1.24)

This document is released subject to a change management process. Revi-
sions are reviewed, approved and logged. The change management log is
available at the project website.

Date Change Rationale Approved

03/31/2006 inital version N/A
Description by

28

