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Abstract 
 

Induction of cataracts by occupational exposure in flight crew has been an important 
topic of interest in aerospace medicine in the past five years, in association with 
numerous reports of flight-associated disease incidences. Due to numerous confounding 
variables, it has been difficult to determine if there is increased cataract risk directly 
caused by interaction with the flight environment, specifically associated with added 
radiation exposure during flight. Military aviator records from the United States Air 
Force (USAF) and Navy (USN) and US astronauts at the National Aeronautics and Space 
Administration (NASA) /Lyndon B. Johnson Space Center (JSC) were evaluated for the 
presence, location and age of diagnosis of cataracts. Military aviators were found to have 
a statistically significant younger average age of onset of their cataracts compared with 
astronauts, however the incidence density of cataracts was found to be statistically higher 
in astronauts than in military aviators. USAF and USN aviator’s cataracts were most 
commonly located in the posterior subcapsular region of the lens while astronauts’ 
cataracts were most likely to originate generally in the cortical zone. A prospective 
clinical trial which controls for confounding variables in examination technique, cataract 
classification, diet, exposure, and pharmacological intervention is needed to determine 
what percentage of the risk for cataracts are due to radiation, and how to best develop 
countermeasures to protect flight crews from radiation bioeffects in the future.
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Introduction 
In the past five years, an increased scrutiny of the occupational health risks of flight 
crews has been observed, and the evaluation of ocular health risks has been no exception. 
Cataracts, if found in the visual axis can produce diminution in visual acuity, and are 
disqualifying for pilots. However they are usually only slowly progressive and can be 
detected with routine screening, usually before significant visual acuity loss. They can be 
surgically excised and the affected lens artificially replaced, making them usually a 
source of healthcare cost and morbidity in the United States, but not mortality in the 
flight crew population.  Cataracts surgery is the most frequently reimbursed procedure by 
Medicare, and accounts for 12% of Medicare budget. 1.18 million lens implanted /year in 
the U.S. Studies of the incidence and prevalence of cataracts in the U.S. is summarized in 
Table 1. 
 [Table 1 here] 
 
However worldwide, cataracts are a major cause of blindness. There is an increased 
incidence of cataracts in equatorial(45)and high altitude locations, presumably associated 
with increased UV exposure. (21, 28, 75, 94, 121, 122, 126, 128, 136, 138-140, 142, 153, 
155) The risk of cataracts has many associated risk factors including age(104, 108, 127), 
diabetes, nutrition(137), genetic factors, cigarette smoking, drug use (30, 43, 103, 125), 
e.g. psoralen(61, 62, 141), steroids and alcohol, obesity, occupational exposures (117, 
151, 152), e.g. welding(37), elevated temperatures (95, 134) or radiofrequency 
energy(31, 68-71, 87, 88, 102), including microwaves(32, 33, 54-57, 66, 89, 112, 120), 
ultraviolet (UV)(2, 5, 6, 8, 47, 96) and ionizing radiation exposure. (14, 40, 48-50, 52, 53, 
64, 65, 76, 77, 82-84, 92, 109, 110, 133, 143-150).  Research to date seems to indicate 
that multiple mechanisms may cause the lens to degenerate (29, 30) thereby making 
assignment of causative blame to the principle risk factors which may account for an 
increased rate of cataract formation in flight crew, a rather complex task.(125) 
Nevertheless, since 2000, there have been multiple reports of increased rates of cataract 
formation in specific flight populations, e.g. airline pilots (86, 97-99) and astronauts (23, 
24, 100), however a comparison of the aerospace-induced cataract risk across flight 
populations has not previously been reported.  Understanding the correlation of the 
degree of occupational environmental exposure and the subsequent rate and severity of 
biological outcome is essential to quantifying the risk to flight crews for carrying out 
their missions(34, 35). 
 
Several etiologies for the increased rate of cataracts in astronauts and pilots have been 
discussed, however since there are potentially a number of confounders, pinpointing the 
precise causative agent is difficult and most likely multi-factorial. A key question still 
unanswered, is how much did the spaceflight-specific radiation exposure contribute to the 
cataracts rate and degree of formation? The methodology for the clinical detection of 
cataracts has also varied over the years and amongst different screening examination 
facilities, thereby rendering the validity of the comparisons questionable. The objectives 
of the current evaluation are 1) to compare the cataract formation rate across several 
flight and non-flight groups, to determine if any light can be shed on the etiologic factors 
contributing to this organ-specific disease, and 2) to review the pathogenic mechanisms 
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for cataract formation, in order to suggest candidates for countermeasure development for 
prevention of ocular diseases in flight crews. 
 
Methods 
A retrospective review of US Air Force, Navy, FAA and NASA flight crew databases 
was conducted to determine the incidence of cataract formation in the relevant flight 
populations. The information in the databases was verified by reviewing individual 
aviator records within each of the databases, to ensure accurate characterization of each 
cataract occurrence was correctly cataloged.   
 
Description of Examination procedures for ocular examinations:  
NASA: A complete ocular history and medical history was accomplished with particular 
emphasis on the exclusion items of active ocular disease, dilating drug sensitivity, 
pseudophakia, glaucoma, diabetes, use of history of use of steroids, visually significant 
corneal opacities or visually significant retinal/ocular pathology.   
 
Bilateral ocular examinations were conducted annually to include standard visual acuity, 
color and depth perception evaluations. Intraocular pressure was measured by 
applanation tonometry. Gross evaluation of adnexal tissues was evaluated; to include lids, 
lashes, extraocular muscle function and pupillary function (size, symmetry and light 
response), All anterior segment tissues were evaluated by slit lamp methods to include 
lashes, lids, conjunctiva, cornea, iris, lens and media.  Closeable angles were ruled out.  
 
Refraction was derived by standard optometric methodologies utilizing monitor derived 
eye charts positioned and calibrated at a 6 meter test distance.  Upon completion of the 
manifest refraction (non-cycloplegic) the measurement of best correctable LogMAR 
visual acuity was documented via Precision Vision ETDRS back-illuminated charts at 4 
meters.  The acuity was measured while viewing through the refractor with the derived 
best correction.  Each eye was tested independently and both high and low contrast 
acuities were recorded. 
 
Proparicaine 0.5% was utilized for the measurement of intra-ocular pressure by 
applanation (Goldmann). Pupillary responses were evaluated, and if normal, pupils were 
dilated with a combination of tropicamide 1% and neosynephrine 2.5%.   Dilation 
allowed evaluation of the posterior segment tissues to include lens, vitreous, retina, optic 
nerve and associated vasculature.  The lens was evaluated in great detail utilizing both 
subjective and objective methodologies.   Subjective methods involved estimating 
nuclear color and opacity, area of cortical and posterior sub-capsular using the LOCS III 
(Lens Opacities Classification System – Version III) point system.  Objective methods 
involved imaging the lens using a Nidek EAS1000 digital camera to capture both 
Scheimflug slit and retroilluminated images of each eye.  The retroilluminated images 
were captured at two repeated anterior and posterion lens points of reference.  
 
Each subject was requested to fill out a detailed standardized food frequency survey and 
smoking questionnaire annually.  A standardized questionnaire regarding life-style issues 
such as the amount of time spent in the sun, time spent in water activities,   flight 
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activities and locations lived for the past thirty years was administered during the first 
year visit only. 
 
DOD- USAF/USN The majority of testing points and methods are the same as NASA 
with some significant and notable exceptions.  

1. Test Distance: Testing in DOD facilities may vary in test distance in that some 
facilities may have 6 meter testing lanes while others are much shorter but utilize 
mirrors to create the 6 meter test distance.    

2. Pupil Dilation:  Dilation may not be accomplished each year as it is at the 
discretion of the examining doctor. 

3. Detail of lens evaluation accomplished at NASA is far more detailed than is 
standard in DOD facilities.  DOD facilities will evaluate lens opacities as present 
or absent, or possibly use a grading system, which is generally a 0 to 4 method 
and not standardized from facility to facility or doctor to doctor. 

 
Data collection and Statistical methods:  
Standard epidemiological methods were applied to cataract case logging and 
determination of follow-up for each case as well as for the entire cohort. For 206 subjects 
with recorded cataracts before age 65 yrs. (27 astronauts, 144 AF, 35 Navy), a Cox 
proportional hazards model was used to compare the distributions of age at cataract 
diagnosis, adjusting for time since beginning of service and age at entry. As long as the 
diagnosis was made before age 65 yrs., subjects were included in this analysis even if 
they had retired from astronaut or military service. Since this analysis was made only on 
recorded cases of cataracts, no censoring was involved and by definition, all three groups 
had 100% cataract cases by age 65. After fitting the model, the method of Grambsch and 
Therneau was used to see if the proportional hazards assumption was reasonable. 
Differences between astronauts and the military groups are reflected in estimates of 
hazard ratios for AF and Navy relative to astronauts. 
 
 
 
Results 

[Figure 1 here] 
Figure 1 shows a graph of prevalence of cataracts comparing 4 populations: U.S. males 
general populace, commercial airline pilots, and previously flown astronauts who 
received low dose or high dose space radiation, influenced by duration, altitude and 
destination of the mission. (Dose rate is generally higher for missions beyond low earth 
orbit (LEO), although high altitude and high inclination LEO missions can also see 
higher dose rates due to interaction with trapped particulate radiation within the Van 
Allen belts). This data would suggest that space radiation is an independent and stronger 
risk factor than either commercial flight altitude and polar aviation route radiation, or 
surface UV. However most of the early spaceflight crews during Mercury, Gemini, 
Apollo, Skylab and Apollo-Soyuz, who are now of likely cataract age, came from a 
military aviation background. So it seems that the military aviator cohort is the most 
relevant for comparisons that would confirm if space radiation is the likely causative 
factor in the increased prevalence of cataracts in space crewmembers. There are several 
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reasons for this assertion: 1) the prior occupational exposures are similar, 2) the physical, 
educational, and medical screening selection processes are similar, and 3) the annual 
examinations are conducted in a similar standardized manner, as seen in the methods 
description. The latter factor is in contrast to the comparisons the authors made earlier to 
the LSAH control population. (24) 
Review of the Department of Defense aircrew ocular health information, from USAF and 
USN aircrew health records revealed 13,560,303 person-years of cumulative follow-up. 
This is compared with 5086 person-years of follow-up obtained from review of NASA 
astronauts and matched controls.  
The prevalence of cataracts in astronauts by age is shown in Figure 2. When grouped 
together, the shape of the curve does not look dissimilar to what would be expected in an 
aging predominantly male population, and from what was previously reported in Table 1. 
 

[Figure 2 here] 
 
Figure 3 depicts the cumulative prevalence of cataract cases according to age amongst the 
analogous flight groups. Inspection of this data reveals an earlier age of onset of cataracts 
in the military aviator populations compared to astronauts, especially astronauts with 
higher grade cataracts. It should be noted here that follow-up data for USN aviators was 
not complete beyond age 65 and is therefore not shown in this graph.    
 

[Figure 3 here] 
 

The finding of earlier age of onset for cataracts in USAF and USN aviators compared to 
astronauts is reinforced in figure 4 which shows the average age of onset of cataract per 
eye, including those that developed cataracts in both eyes. Since follow-up was not 
complete in the USN aviators, the means were not compared statistically with the other 
groups, although the trend would suggest at earlier age of onset in that cohort as well.  
 

[Figure 4 here] 
 

The most telling information in comparing these 3 cohorts may come from evaluating 
incidence density of cataracts, as shown in figure 5. The total number of cataracts in 
astronauts is almost an order of magnitude greater incidence density than in military 
aviators, especially those occurring in both eyes. Even the number of grade 3 and 4 
cataracts has a higher incidence density than total cataracts in aviators.   
 

[Figure 5 here] 
 

Finally, figure 6 shows the incidence of cataracts by anatomic location, comparing the 3 
groups. Prior studies have found that UV and other sources of ionizing radiation-induced 
cataracts are commonly found in the subcapsular location.(11, 13, 16, 17, 19, 22, 26, 27, 
42, 75, 124) The most common anatomic location for military aviator cataracts in this 
study was in the posterior subcapsular location, as is commonly observed in ionizing 
radiation induction, however the astronaut cataracts were mostly found in the lens 
cortical region, as previously reported.(24) 
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[Figure 6 here] 

 
The Grambsch and Therneau test showed no significant departure from the proportional 
hazards assumption (P = 0.63). Estimates of hazard ratios (AF/astronauts and 
Navy/astronauts were 2.6 (1.5, 4.8) and 4.1 (2.1, 8.0) respectively, where numbers in 
parentheses are 95% confidence limits. In other words, AF and Navy pilots had 
significantly higher hazards than astronauts (P < 0.005, P < 0.001, respectively), thus 
given that they had a cataract,  the distribution of age of occurrence for the military pilots 
tended to be shifted significantly towards younger ages than for astronauts, even after 
adjusting for age of entry and time since beginning of service. Within the two military 
groups, Navy pilots had a significantly higher hazard (P = 0.018), hence an earlier 
adjusted age distribution at cataract diagnosis than did Air Force pilots. 
 

[Figure 7 here] 
 
 
 
Discussion 
 
Pathophysiology of Cataracts Formation: 
The formation of cataract in the ocular lens is a complex, multi-factorial, and 
incompletely understood set of processes. (123) Cataracts may form due to genetic and 
other dietary and disease–associated factors, which are independent of the environmental 
exposures of the individual. (12) Yet it is the environmental exposure risk associated with 
the flight crew occupation that is under scrutiny in this study.  Possible mechanisms for 
observed changes in the lens associated with external factors can by classified into the 
following categories: biophysical(59, 115, 116), biochemical(8, 15, 59, 60, 106, 127), 
physiological(5, 115, 116), and cellular(25, 36, 79, 81, 106, 114, 118, 123, 143). 

• Some important biophysical considerations include: 90% of UV which hits lens is 
UVA (315-400 nm), tryptophan absorbs 95% of photon energy absorbed by 
amino acids in the lens, tryptophan + UV produces 3-HKG (hydroxykynurenine) 
and other products, 3-HKG- attaches to proteins and turns from clear to brown in 
color (46, 78, 118). 

• Some key biochemical considerations related to lenticular cataracts, are tied to 
potential oxidative injury with aging: defense enzymes’ G-3-PD, G-6-PD, 
aldolase, enolase, and PG kinase activity decrease with age. Aging is associated 
with decreased antioxidant concentration which leads to increased vulnerability to 
oxidative damage, and lipid peroxidation, e.g. decreased glutathione, ascorbate, 
Aging is also associated with decreased protein solubility and number of soluble 
proteins (protein denaturation by free radicals), increased disulfide bonds in 
proteins, oxidation of protein thiols, and changes in  membrane permeability, all 
of which can lead to dehydration of the lenticular cells (osmotic change) 
especially with radiation exposure. In addition, formation of crystallins, which are 
high molecular weight aggregates that accumulate with aging, along with 
degraded polypeptides and amino acid changes e.g., loss of sulfhydryl groups, 
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deamination of glutamine and aspragine, are commonly observed with typical 
senile cataracts. 
 
Typical physiological changes observed in the lens over time include: loss of gap 
junction proteins(15, 20, 22 kDa) with age, loss of cellular membrane potential, 
increased intracellular sodium concentration (25 mEq/l to 40 mEq/l), as well as 
changes in Na+, K+-ATPase activity, secondary to loss of the γ-isoform of ATP 
ase with advancing age. 

 
Changes in lenticular cells depend on the mechanism and location of the cataract process. 
Anterior subcapsular cataracts most commonly associated with UV light exposure, show 
lenticular metaplasia, i.e. the cells become spindle-shaped, (myofibroblast-like) in the 
central lens epithelium. Posterior subcapsular cataracts, which are commonly associated 
with ionizing radiation and also with UV, show germinal epithelium dysplasia and 
posterior migration along suture lines.(38, 154) Whereas nuclear cataracts, most 
commonly associated with aging (senile) show few cellular changes, as it seems the light 
scatter is produced by high molecular weight proteins in the cytoplasm. (135) 
  
The observations regarding radiation induction of cataracts are not uniform, mainly due 
to the differences in cellular and biophysical and biochemical effects of various forms of 
radiation. There is not a universal bioeffect and cellular response across the spectrum of 
electromagnetic and particulate radiation energy. Prior common thinking on radiation-
induced cataracts was posterior subcapsular (11, 13, 26) as the most common location, 
however they had potential to progress to full cortical, and even nuclear (mixed) cataracts 
with time(16, 19, 27, 42, 75, 103, 124, 126). 
Energy deposition from cosmic, gamma rays, and neutrons causes ionization of lens 
constituents (mainly water) producing free radicals (primarily hydroxyl radicals) which 
can easily react and alter function of DNA and cell membranes.(83, 91, 98, 101) Cells 
with higher mitotic rate, such as the lens equatorial fibers, are differentially affected by 
these processes. 
Typically a 9-12 month latent period from time of exposure to onset of lenticular opacity 
has been observed. The radiation-induced cataract has been typified by multiple vacuoles, 
feathery appearance, and even web-like fringes. Glare is a common initial complaint from 
patients with PSC cataracts. 
 
Although it was the first clinical study to quantify cataracts in astronauts in association 
with their specific spaceflight radiation exposures(24), there were some issues with the 
authors previous study in trying to determine if the incidence of cataracts was higher than 
would be expected in the aging cohort evaluated. These issues include:  

• Inequality in screening examination between the LSAH controls and astronauts, 
in that the controls typically had indirect, non-dilated ophthalmoscopy and no slit 
lamp examination vs. direct dilated ophthalmoscopy and slit-lamp in the astronaut 
exams. 

• The influence of non-space flight radiation- UV, blue light exposure during high 
altitude flights; LASER, toxin (e.g. metals, anticholinesterases, antimalarials) 
exposure was not controlled in the astronauts 
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• The influence of space-acquired UV and blue light, independent of the cosmic 
and trapped particulate radiation, determined by the number of spacewalks (EVA- 
extravehicular activity) time spent with spacesuit visor up, amount of time 
looking through space windows with sun in the filed of view, etc. was not 
controlled in astronauts. 

• There was a lack of photographic documentation for post-hoc review of 
categorization/stage of cataracts, Instead there was subjective assignment of each 
diagnosed cataract by a single examiner, resulting in a clinical grading. 

• Other risk factors for cataracts were not controlled in either group. 
 
Although the data was highly suggestive of a dose-dependent increase in cataracts in the 
astronauts relative to age-matched controls, it is still difficult to attribute the risk 
specifically to the spaceflight radiation exposure, without controlling for the confounders.  
 
In striving to answer the question, does spaceflight radiation produce an independent risk 
of cataracts in astronauts, we compared the incidence of astronaut cataracts to a 
population with a background similar to the typical astronaut between 1962 and 1985 – 
the military aviator. That comparison reveals some important findings: 1) astronauts do 
not acquire lenticular opacities at a younger age versus their military aviator counterparts, 
2) the incidence density of cataracts is much higher in astronauts than in military aviators, 
3) the location of cataracts in astronauts is not typical of either what is observed in 
aviators or what is commonly associated with ionizing radiation exposure. 
 
Perhaps the first two findings can be explained by the fact that while the aviation flight 
exposure to radiation is common to both groups and occurs relatively early in their 
career, the exposure to space radiation usually occurs later in the astronaut career. 
However, given the above fact, the latency from age of exposure, as cited in Cucinotta et 
al(24), to the age of diagnosis, is longer than would be commonly observed with 
radiation-induction. This finding may be due to the reduced rate and total dose of 
exposure than is typically given during research studies on radiation bioeffects. However, 
the location of the cataracts in astronauts may be the most difficult to explain, if our 
current mechanistic understanding is correct.(38, 39, 46, 47) Perhaps space radiation, 
both cosmic and trapped particulate, produce cataract-like changes in the lens via a 
different mechanism than does ultraviolet, gamma and other ionizing radiation sources. 
Clearly the location of cataracts in the lens cortex in astronauts is not typical of the 
nuclear cataracts seen with aging alone. 
 
What is needed: 
A prospective study is underway, being led by one of the nation’s experts in the field, Dr. 
Leo Chylack. This study may go a long way to determining if astronauts are truly at 
increased risk associated with their occupational exposures, although the numbers of 
individuals with significant space radiation exposure is quite small and the numerous 
confounders discussed above will still be at play. The study by Chylack, et al employs 
lenticular imaging with photographic records that will allow independent assessment of 
the classification/grade of the cataract in both astronauts and controls thereby eliminating 
the bias in grading of opacities, potentially affecting the earlier reported results. 
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Since the majority of cataracts detected in astronauts did not result in visual axis 
impairment thereby limiting the usefulness of acuity as an outcomes measure, the current 
prospective study would benefit from a more sensitive means of detecting cataract 
formation prior to the development of clinical seqeulae. This would facilitate reducing 
the length of follow-up required to determine if a statistical and clinical difference exists 
between the study groups. Such a device has been recently developed at the NASA, John 
Glen Research Center, under a NASA-NEI interagency agreement and employs a 
dynamic light scattering device. It appears to be the most sensitive method of detecting 
early lens abnormalities, currently available for clinical use (3). 
 
For future space missions, taking astronauts again beyond low earth orbit (LEO) and onto 
other planetary bodies within the solar system, an effective countermeasure to reduce the 
risk of biological effects in the crew needs to be developed. Countermeasures for 
exploration spaceflight should protect not only ocular tissue (18, 73, 119, 129, 132): such 
as the cornea, lens, retina, but also other tissues vulnerable to ionizing radiation-induced 
direct cellular injury and secondary oxidative damage. Understanding the mechanism of 
the cataract formation in space radiation-induced forms of the disease, may be pivotal in 
producing an effective countermeasure.(9, 129) Recent studies suggest that agents which 
limit the propagation of peroxidation and the interaction of reactive oxygen species(72) 
with cellular organelles (1, 107) and membranes(44, 73, 93, 131) may protect the 
lens(105) and retina(85, 90, 111) from damage. (4, 7, 10, 41, 74, 103, 105, 113, 125, 129, 
137) Measuring the state of oxidative damage in the 2 study groups may improve 
characterization of the contributing factors. While understanding the role of spaceflight 
shielding(20, 67, 130), dietary and pharmacological interventions which may augment 
the inherent cellular repair mechanisms; (80) are likely to be helpful in developing an 
effective defense for exploration-class spaceflight.  
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Tables and Figures 
 
Tables 
 
Table 1: U.S. study data on cataracts prevalence and incidence- (51, 58, 63) 
 

Framingham  n=2477  

Age group % with lens changes 
(opacities prevalence) 

% with visually 
significant cataracts 

52-64 42 5 
65-74 73 18 
75-85 91 46 
   
NHANES n=10,000  
65-74 60 18 
   
  5-year Incidence  
55 10  
60 16  
65 23  
70 31  
75 37  

 
Table 2: Incidence; Incidence Density and Age at Diagnosis for military pilots and 
astronauts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number of Person-years  
(Time of Observation)

Incidence Density  
/100 Person-years

Right Eye Only Left Eye Only Both Eyes Both Eyes Both Eyes Right Eye Left Eye Both Eyes

Astronaut Corps 51 51 102 5,103 1.999 61.2 60.8 61.0

(54) (1971 - June 2003)

Astronaut Corps 4 4 8 5,103 0.1568 65.8 68.5 67.1

(Grades 3 & 4 
only) (5) (1971 - June 2003)

U.S. Air Force 
Aviators 133 137 270 1,356,303 0.0199 44.1 44.7 44.4

(179) (1955 - 2000)*

U.S. Navy 
Aviators

20 29 49 446,130 0.0110 41.0 39.5 40.1

(37) (1973 - 1999)

Number of Cases                             
( Number of Individuals)

Average Age at Diagnosis
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(*The year 1999 was used twice to serve as a proxy for year 2000, which was not included in the data 
provided by the USAF.  The difference in incidence density for 1955-1999 as compared with 1955-2000 
with the year 1999 used twice as a proxy is less than  0.001cases/100 person years.) 
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Figures 
 
Figure 1 
Prevalence of cataracts as a function of age in astronauts, pilots and healthy U.S. males. 
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Figure 2 
Cataract prevalence by age in U.S. astronauts 
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Figure 3: Cumulative Prevalence of Cataract Cases by Age Category among Analogous 
Populations: Astronaut Corps, Air Force Aviators, Naval Aviators 
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Figure 4; Average Age at Diagnosis of Cataracts among Analogous Populations: 
Astronaut Corps, Air Force Aviators, Naval Aviators 
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Figure  5: Incidence Density of Cataract Cases among Analogous Populations: Astronaut 
Corps, Air Force Aviators, Naval Aviators 
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Figure 6: Ratio of Cataract Cases by anatomic location among Analogous Populations: 
Astronaut Corps, Air Force Aviators, Naval Aviators 
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* ASC =   Anterior Subcapsular Cataract 
   NS =      Nuclear Sclerosis 
   PSC =    Posterior Subcapsular Cataract 
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Figure 7: Cox Porportional Hazards comparison of cataract cases in DOD pilots to 
astronauts, by years since entry into occupation. 
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