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Multidisciplinary Environments: A History of Engineering 
Framework Development 

Sharon L. Padula * and Ronnie E. Gillian† 
NASA Langley Research Center, Hampton, Virginia, 23681 

This paper traces the history of engineering frameworks and their use by 
Multidisciplinary Design Optimization (MDO) practitioners.  The approach is to reference 
papers that have been presented at one of the ten previous Multidisciplinary Analysis and 
Optimization (MA&O) conferences.  By limiting the search to MA&O papers, the authors 
can (1) identify the key ideas that led to general purpose MDO frameworks and (2) uncover 
roadblocks that delayed the development of these ideas.  The authors make no attempt to 
assign credit for revolutionary ideas or to assign blame for missed opportunities.  Rather, 
the goal is to trace the various threads of computer architecture and software framework 
research and to observe how these threads contributed to the commercial framework 
products available today. 

Nomenclature  
CAE = computer aided engineering 
CDS = Conceptual Design Shop 
DOE = Design of experiments 
MA&O = Multidisciplinary Analysis and Optimization 
MD = multiple discipline 
MDO = multidisciplinary design optimization 
MIMD = multiple input multiple data 
OO = object-oriented  
SD = single discipline 
WWW = World Wide Web 

I. Introduction 
HIS paper traces the history of engineering frameworks and their use by MDO practitioners. For the purpose of 
this paper an engineering framework is defined as computer software designed to couple multidisciplinary 

analyses and to expedite the input, output and execution phases  of those analyses. The history of engineering 
frameworks is far too large to be covered in a single conference paper.  Therefore, we limited our study to papers 
that have been presented at one of the ten previous Multidisciplinary Analysis and Optimization conferences.  

Our motivation for this study came from a NASA project called the Conceptual Design Shop (CDS). The CDS 
team surveyed commercial frameworks and compared their capabilities to a list of prioritized requirements‡.  These 
requirements fall into the general categories of multidisciplinary analysis and optimization features, data 
management, user support and computer system compatibility as summarized in Fig 1.  Several engineering 
frameworks including ModelCenter, a product of Phoenix Integration, Inc., iSIGHT and Fiper, products of 
Engineous Software, Inc., AML, a product of Technosoft, and Matlab, a product of The Mathworks, were rated 
against the requirements developed by the CDS team.  All of the commercial frameworks received acceptable scores 
and the final choice of CDS framework was influenced by the prioritization assigned to each of the requirements by 
the disciplinary developers and the system analyst users of the CDS 
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product.

The key features favored by the systems analyst users are described in this section in order to establish the 
current state of the art in MDO frameworks.  These include a “plug and play” user interface, a selection of design 
exploration tools, and variable -fidelity reconfigurable models.  

The term “plug and play” user interface implies that the user may choose from a selection of analysis codes.  
These codes may be easily linked and executed.  The links may be easily broken, repaired and expanded.  The 
execution sequence is adjusted based on input from the user and based on the outputs requested by the user.  The 
codes may be written in a variety of programming languages and run on a distributed set of computers with a variety 
of operating systems.  Popular commercial computer aided engineering (CAE) tools may be used in conjunction 
with research analysis codes.  The tasks of code validation and verification, code maintenance, and code 
documentation can be separated from the task of multidisciplinary analysis and optimization. 

The phrase “design exploration tools” denotes a selection of optimization, approximation, probabilistic analysis 
and data visualization tools.  These tools can be easily selected and linked to a single analysis code or to an 
assembly of analysis codes.  The tools should employ an intuitive set of menus and linking procedures so that the 
whole set of tools are available without extensive user training. 

A variable-fidelity reconfigurable model implies that an assembly of linked codes and design exploration tools 
can be saved and reused at a later time.  Any person reusing the model must be able to understand its configuration 
at a very abstract and at a very detailed level.  The user must be able to delete some elements from the model and 
replace them with other elements that have a higher or a lower fidelity.  The user must be able to replace some 
analysis codes with simple components such as table look-ups and equations which are easy to create inside of the 
MDO framework. 

MDO Framework 

MDO Features Data Management User Support Compatibility 

Variety of optimizers 

Heuristic Search 

Discrete variables  

Parameter Sweeps 

Save all I/O 

Save selected I/O 

User friendly GUI 

Documentation 

Spreadsheets & CAE 

Sensitivity studies 

DOE & approx 

File parsing interface 

Scriptable 

Convergence history 

Stop/restart capability 

Flexible data viz 

Custom data tables 

Data import/ export 

Avoid recomputation 

Tutorials/ examples 

Technical support 

Mature software 

Affordable yearly cost 

High fidelity enabled 

Java, Fortran, C 

Reusable wrappers 

Execution over LAN 

Execution over WWW

Parallel processing 

Unix, Linux, and PC 

Add new components 
 

 
Figure 1. Desirable characteristics of MDO framework 
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This paper begins with a general history of MDO framework research as it was reported at the MA&O conferences.  
This is followed by a history of several key features common in modern MDO frame works. 

II. History of MA&O Framework Research 
Information processing and data management have always been elements of the MA&O conference.  For 

example, Fig. 2 is adapted from a special session on Industry Needs at the 7th MA&O in 1998.  Notice that software 
and computer framework issues are given equal importance with human factors, search algorithms and 
multidisciplinary analysis issues. 

As attendance at the MA&O conference grew, so did the number of papers that emphasized framework issues.  Fig. 
3 shows the number of papers published in the bound volumes of proceedings for the first seven conferences.  At the 

Table 1. Desirable characteristics of MDO framework 

Figure 3. Number of papers published in 
the first seven MA&O Proceedings. 

Figure 4. References to framework-related 
terms found via search of AIAA database. 
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Figure 2.  MDO elements as presented at the 7th MA&O Conference. 



 
American Institute of Aeronautics and Astronautics 

 

4 

first three MA&O conferences, only about 10% of the papers involved information processing and data management 
issues.  For example, 8 of 83 papers published in the 1988 proceedings discussed framework related topics.  Even at 
the first AIAA sponsored MA&O conference in 1992, the number of papers emphasizing framework issues was still 
below 10%. 

One way to observe the growth of framework research is to use the AIAA web-based report server.  For 
example, Fig. 4 was created by searching for papers that included the word “multidisciplinary” in the conference 
name.  That list of papers was filtered using key words such as “framework”, “executive”, and “environment”.  Even 
allowing fo r the fact that key words like framework can be used in contexts unrelated to information processing, Fig. 
4 clearly indicates an increased number of references to framework topics beginning with the 6th MA&O in 
1996.

 
Obviously, the interest in MDO frameworks is correlated with advances in computer hardware and software.  

Fig. 5 captures this relationship in an informal manner.  The figure presents three timelines indicating when the first 
mention of certain computer-related terms occurred in the MA&O proceedings.  Papers published during the first ten 
years (i.e., 1984−1994) tend to mention monolithic codes written in procedural languages such as FORTRAN and C. 
These codes ran on super-computers like Cray−YMP or mini-computers like VAX−11/780 which are accessed via 
text -based terminals.  During these same ten years, MDO frameworks, such as ASTROS1, featured executive 
systems, executive control languages and special purpose databases.  These early frameworks offered a fixed 
selection of specially modified analysis codes.  It was quite difficult for the average researcher to add his own code 
to these frameworks.   Papers published during the second decade (i.e., 1994−2004) mention a wider variety of 
framework architectures. These new options took advantage of hardware developments such as individual 
workstations, massively parallel processors, reliable random-access devices, fast networks and software 
developments such as the World Wide Web (WWW), object-oriented languages, script-based utilities and windows-
based operating systems.  The newer frameworks emphasize modularity and enable the coupling of analysis codes 
with little or no code modification. 

III. Emergence of Key Ideas in Framework Research 
The thesis of this paper is that key concepts arise long before they are truly practical.  This idea is illustrated in 

framework research reported at the first ten MA&O conferences.  Four key ideas are traced and typical references 
are cited.  In many cases, the importance of these concepts is obvious today but was underestimated or 
misunderstood when the papers were presented.  In other cases, ideas that were appropriate at a given time with the 
available hardware and software actually impeded the development of modern frameworks. 
 

Figure 5. Timelines for hardware, software and MDO framework advances. 
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A. Modularity 
Modularity is the first key concept.  The term was originally applied to very complex computer codes that 

evolved from large, monolithic research codes.  Just as individual codes are divided into subroutines to create more 
manageable and understandable software, so complex engineering application codes were architected to divide the 
system into smaller subsystems often referred to as modules.  Modularity is used to isolate machine-dependent parts 
of the code, to improve the readability and to expedite testing.  For example when the NASTRAN system was 
architected in 1965 the architects relied heavily on modularity to design, produce, and maintain their code1.   The 
fact that the NASTRAN system architecture has lasted for decades  with very little change to the original design 
proves this concept to be effective2.   

As MDO frameworks were developed, the concept of modularity meant that optimization tasks could be 
constructed from a library of interchangeable modules. The notion of modularity as applied to MDO frameworks is 
mentioned in each of the proceedings starting with the 1st MA&O.  For example, Johnson and Venkayya observe 
that the MAPOL language ties together engineering analysis codes with a database and utilities library.  This 
eliminates redundant coding and increases the reliability of the results1. In 1988, Campbell describes a system for 
aeroelastic analysis that was developed in a modular fashion so that more than one structures code and more than 
one aerodynamic code can be tested with a minimum of coding changes3.  In both of these early examples, the 
linkage of modules to the executive is hard coded.  An early example of a more flexible system is DYSCO which 
solves second order ODEs  by assembling a model from a set of coupled components4.  As early as 1992, the 
developers of RAMCOMP conclude that previous framework systems consisting of executive control plus a 
database are not effective.  They propose that each engineering group must be responsible for configuration control, 
maintenance, documentation and training required for its own software while RAMCOMP provides the interface 
between software modules5. 

During the decade from 1996 to the present, various modular implementation schemes have been proposed and 
tested.  In 1996, Hopkins and coworkers at NASA Lewis described a FORTRAN code called COMETBOARDS 
that implemented a “soft-coupling” between analysis and optimization routines6.  Hopkins claims that several 
different optimization routines can be linked to any analysis which is tied to COMETBOARDS.  Researchers at 
Sandia had a similar goal of isolating analysis from optimization when they developed a code called DAKOTA7.  In 
this case, DAKOTA is an object-oriented code written in C++ such that each optimizer (e.g., NPSOL) is an instance 
of the optimizer base class which is itself an instance of a more general iterator base class. By using inheritance, 
each new optimization routine must only supply code for those functions that are unique to that method.  In a 1998 
paper, Engineous Software, Inc. announced the iSIGHT framework, the first commercial framework to incorporate 
an object-oriented optimization scheme8.  The iSIGHT framework treated optimization, approximation and 
probabilistic analysis routines as interchangeable objects associated with data and with methods. This means that the 
iSIGHT framework is the first commercial MDO framework that can construct iterative tasks which include several 
levels of nested subtasks9. 

B. Data Handling 
Database or data handling is the second key concept.  Database software was first developed for use in the 

automation of business processes and included many concepts and computer constructs foreign to the engineering 
systems developer.  Early engineering frameworks used card deck input (called runstreams) and output tapes or card 
decks plus a pool tape to collect intermediate data as the analysis progressed.  The term database originally implied 
data storage including memory management and access control.  For example, the Integrated Programs for 
Aerospace-Vehicle Design (IPAD) program developed the Relational Information Management System (RIM) data 
manager to address these problems in 198110.  The RIM code was one of the first systems that applied the principles 
of database management to engineering data.   

Having a global database in standard format was a good way to enable efficient numerical analysis, and to 
encourage runstream reuse and execution restart capabilities. A central database in standard format also encourages 
multidisciplinary analysis because it reduces the number of translation routines needed.  Each new analysis code 
must only be able to retrieve and store data from the database.  Once the idea of a central database became 
conventional wisdom, then extensions to the database capabilities were developed.  For example, data in standard 
format can be checked for consistency, completeness and adherence to user supplied upper and lower limits.  
Furthermore, data can be visualized using general purpose graphics, can be reasoned with using expert systems and 
can be printed using special purpose report generators11. 

Database technology for MDO was a significant research topic starting with the 2nd MA&O Conference.  For 
example, Venkayya describes ASTROS and concludes that the development of software standards and the 
implementation of the CADDB database are some of the most significant contributions of that Air Force program12.  
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In the same conference proceedings, researchers from the University of Iowa describe an object-oriented (OO) 
design methodology for databases.  This OO method promises to deliver a product that performs well for its initial 
purpose and can be easily extended to unforeseen future products 13.  Many subsequent papers, such as one by Briggs 
in 1990, discuss the need for OO databases14.  However, virtually all of these papers assume that the data will be 
organized around physical objects such as the structural components that make up an airplane and emphasize that 
the OO techniques are needed to provide multiple views of this data.  Moreover, all three of the above papers 
assume that all data will be collected in a single central database.   

A second set of database papers consider issues of maintainability and efficiency.  For example, a Georgia Tech 
(GIT) study suggests that a central database approach has drawbacks as well as advantages.  The GIT study favors 
an architecture where each module handles its own data because the specialized interfaces between a central 
database and other modules are a source of software maintenance costs 15.  The GIT study further suggests that only 
the inputs and outputs of each module need to be collected in a central database because these parameters can used 
by a “computational path generator” such as the one developed by Kroo at Stanford to decide which modules need 
to be executed and which can be skipped16.  In 1990, Kroo elaborates on this idea and shows how quasi-procedural 
analysis can greatly reduce the computational effort for MDO by recalculating only the responses that have been 
invalidated by a given design variable permutation17. In 1998, Veley accomplishes a similar feat using the LISP-like 
language that comes with the AML framework18.  Veley demonstrates that one significant advantage of the AML 
framework is this demand-driven execution of analysis modules. 

A third set of database papers discuss the need for industrial strength databases which can enforce consistent 
models and implement company policy.  For example, a 1988 paper by LTV describes the need for integration of all 
company databases.  The LTV paper proposes a combined expert system plus database that can be used to enforce 
company procedures, collect physical and mechanical information, and estimate cost, maintainability and reliability 
of a design11.  In 1994, Daum proposes that all application modules need to be linked to a database, not to each 
other19.  Similarly in 1996, Rahn explains how CAD databases can be used to parametrically change the geometric 
configuration for structural optimization20.  Samareh demonstrates an added advantage when CAD databases are 
used to enable multidisciplinary shape optimization. He recommends that each analysis and optimization module 
should process the NURBS files that are created by CAD software such as the Pro/Engineer software, a product of 
Parametric Technology Corporation21.  Kingley takes this idea one step further by proposing an interpolation library 
so that a wide variety of CFD and FEM based analysis codes can exchange data with one another22.   

In 2004, Phoenix Integration announced a commercial product called CenterLink23.  This paper makes the case 
for a much broader concept of a database.  The CenterLink Analysis Library is a web-based database which 
organizes analysis models, input data and trade study outputs for every user with an account. 

C. Parallel Processing 
A third key concept is distributed computation or parallel processing.  Originally, the idea was to automate 

multidisciplinary tasks even though each task required a special purpose computer processor.  Later, the idea 
evolved to include the use of a large array of similar processors or individual work stations in order to reduce 
turnaround time.  In both of these cases, the assignment of tasks to processors was not particularly flexible.  Today, 
it is not unusual for an MDO framework to include load balancing and task assignment software so that the 
framework can decide where each task and module should be executed. 

An early example of distributed computation is described by Brumbaugh and Duke in 198824.  The NASA 
Dryden Flight Research Facility connected a VAX minicomputer, UNIX workstations, and flight simulators using 
an Ethernet cable and TCP/IP protocol.  This combination was necessary because no single computer had the 
computational speed, disk storage, FORTRAN, LISP and C compilers, high resolution graphics capabilities and 
flight simulation hardware to accomplish the real-time flight control studies.  By 1990, most of the parallel 
processing research was focused on computer architecture and numerical algorithm compatibility issues.  For 
example, the NASA Lewis Research Center (renamed Glenn Research Center) was developing propulsion system 
analysis codes such as NPSS to run on Intel iPSC 8 processor machines.  Lytle and coauthors describe the ideal 
simulation environment as one which will use artificial intelligence to allocate parallel processors to single 
discipline and multidisciplinary analysis tasks as needed25.  Whereas Lytle proposes parallel processing to make 
intractable computations possible, another author at the same conference proposes parallel processing to enable 
integrated product design.  Rangan proposes a blackboard model which allows several designers to work at 
distributed workstations yet share ideas in a central location26.  The parallel processing and AI research in the 1990 
timeframe marks a dramatic shift in the way MDO was described.  Prior to this an optimization process was 
described as a series of steps to be repeated until convergence.  But parallel processing research encouraged 
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engineers to break the habit of serial thinking and to think of MDO as a set of tasks that could be completed in any 
order. 

Although, many of the important parallel processing ideas existed in 1990, the implementation details were not 
reported until 1994 or 1996.  For example, NASA Langley researchers describe a functioning parallel processing 
framework called FIDO that includes an executive control process, centralized data manager, graphical user 
interface and data monitoring capabilities27.   At the same 5th MA&O conference, the important idea that a 
component is an analysis code plus a model that are wrapped together is proposed by Hale and Craig28.  These 
authors explain that wrapped computer codes can contain additional information such as units and limitations and 
communicate with each other via predefined protocols.  The power of this idea is demonstrated by the Boeing 
Support Services distributed software framework called “Access Manager”29 .  Ridlon expla ins that the key 
attributes of the Boeing framework are its OO design, coarse-grained dataflow and parallelization and its graphical 
user interface. 

During the decade from 1996 to the present, both hardware and software advances encouraged the use of 
distributed processing.  For example in 1996, Eldred modified the DAKOTA code to run on a distributed network of 
workstations and on a 256-node Intel Paragon7.  That research compared running the analysis code in parallel on the 
Paragon versus running the gradient calculations in parallel on the workstations.  Eldred reports that several versions 
of DAKOTA exist because some machines require a single program with multiple data while other machines allow 
multiple programs 30.  Rather than changing the code for each new machine, Becker and Bloebaum demonstrated 
distributed processing on a collection of workstations and personal computers using the Java language to create an 
architecture-neutral optimization framework31.  Two years later, Allen and coauthors at NASA Ames describe a 
web-based framework for remote processing of planetary-entry vehicle design32.  Users of the Ames framework can 
request runs and view results from any machine that has a web browser but all of the code remains in the original 
language and runs on the original computer.  The real power of remote processing using Java was not realized for 
several years after the 1996 Becker prototype. By the 8th MA&O in 2000, Dovi describes using packages like 
CORBA and RMI to provide parallel processing utilities33. At the same conference, Alzubbi reviews the state of the 
art and discusses a framework called VADOR34.  The VADOR framework allows wrapping of legacy codes, 
building of execution sequences from available components and execution using Java plus the RMI package.  
However, both Alzubbi and Dovi describe frameworks where the models are created by the system administrators 
and executed by the users.  Truly flexible parallel processing under user control was delivered by commercial 
products such as the iSIGHT framework and the CenterLink framework9,23. 

D. User Interface 
The final key concept is the user interface. Both graphical user interface (GUI) and method for multidisciplinary 

coupling are considered in this section.  The original idea of a user interface was a text -based executive control 
language.  Runstreams written in the executive control language provided a high-level summary of the job.  These 
runstreams gave the user control over execution steps, and they collected input values plus output and execution 
specifications in one place.  Moreover, the runstream could be saved, edited and reused in cases where the same job 
was rerun with minor changes.  The next evolutionary development in user interfaces allowed the user to 
communicate with the executive system via pull-down menus and icons.  Such a windowing system was easy to use 
and included the advantage of real-time data monitoring and execution control.  Often, the underlying executive 
control language was preserved but the runstream was constructed automatically and could be saved and edited as 
before.  More recently, the GUI was extended to provide “drag and drop” reconfiguration of modules, easy to use 
software wrapping facilities and more powerful utilities for optimization, analysis and data reporting.  Typically, the 
newest systems produce executive control files which are not designed to be human readable and which must be 
modified using the GUI. 

Each of the ten MA&O conferences included papers describing user interfaces for multidisciplinary coupling.  
At the early conferences, most MDO studies used monolithic FORTRAN codes with numeric input files.  But many 
people understood the advantage of a control language and called for its development. Other authors added 
multidisciplinary modules to existing structural analysis codes like the Engineering Analysis Language (EAL) 
software, a product of EISI35.  For example, at the 1st MA&O, Giles and Wrenn used the EAL executive and control 
language to enable a multilevel aircraft wing optimization36.  The success of these early trials, led to the 
development of special purpose MDO languages such as SOL described by Lucas and Scotti37 and MAPOL 
described by Neill38. The first example of an MDO language including an interactive user interface appears in 1988, 
when Berman describes linking of user supplied “components” for structural dynamics analysis4.  At the same 
conference, several authors explained the value of windowing systems but most authors used the windows for 
editing command language input and visualizing results11.  The exception to this rule was a paper by Hall and 
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Rogan.  They experimented with HyperCard on a Macintosh computer to model the “design process as a network of 
interrelated decisions.”39  The idea was to construct an object-oriented language in which aircraft parts can be 
assembled and simple sizing and performance relationships can be evaluated.  The beauty of this idea is that the data 
and analysis techniques are automatically associated with the selected object.  Thus, some of the work of creating a 
model has been transferred from the user to the developer.  It is important to note that developers Hall and Rogan 
thought that defining classes and attributes and methods so as to develop an intuitive and flexible user interface was 
a very challenging exercise. 

By 1998, there were many competing ideas for user interfaces.  Rogers and coauthors at Langley summarize the 
state of the art and provide a good reference list40.  According to Rogers, each group that is working on user 
interfaces has a different idea about what the user needs.  For example, Rogers proposes a web-based system for 
selecting multidisciplinary components plus an inference engine for controlling the order of execution.  On the other 
hand, the developers of MDICE prefe r a scripting language for execution control and a GUI to monitor progress and 
to associate codes with remote host machines22.  As a third example, the developers of iSIGHT provide a GUI to 
monitor progress, to choose optimization methods and to build the scripting language8. 

In 2000, the FIPER team put some order into the discussion of user interface41.  The team hypothesized that 
engineers need an adaptive workflow environment.  The FIPER team report explains that the user creates an 
optimization task specification by selecting from available analysis codes, data sets, solution strategies, MDO 
methods, context, and sub-models.  As work progresses, any and all of these selections are likely to change.  Each of 
the twentieth century frameworks described in this paper allowed changes to one or two of these optimization task 
specifications but no framework that existed in 2000 had the flexibility to change all of the specifications.   

The period from 2000 to the present was the most active period for improvement to user interface.  For the first 
time, the average user of the framework had tools to wrap their own analysis codes and configure their optimization 
tasks and subtasks without needing sophisticated computer programming knowledge.  For example, the FIPER team 
developed a Windows-based system for wrapping analysis codes and making them available from a user library42.  
And in Europe, a team from NLR described a similar framework called SPINEware that used Java applets and a web 
browser43.  Both FIPER and SPINEware were especially suited for integrating software and distributing tasks 
between design teams in physically distance locations.  Meanwhile, a team from Lockheed used the AML 
commercial software as a framework for building and optimizing variable fidelity CAD models with parameterized 
geometry44.  This framework used the idea of an object-oriented database to build consistent variable fidelity models 
and used the idea of data dependencies to avoid recalculation of expensive CFD and FEM analysis.  A team from 
GM built a similar capability using iSIGHT plus and an integrated CAD and database package45.   

IV. Concluding Remarks 
It is fascinating to look at the history of MDO framework development and to see how ideas arise, get expanded, 

and eventually get replaced by better ideas.  One purpose of this paper is to recognize and record the many small 
advances that contribute to a major new computing capability.  Another purpose of this paper is to understand how 
conventional wisdom can get in the way of new developments. A final purpose is to enumerate the roadblocks to 
new framework technology. 

This paper shows that several of the key advances in MDO frameworks occurred 15- 20 years ago.  The idea of 
modularity, where engineering codes need to be separated from machine-dependent utilities, is the oldest of the four 
key ideas.  An important enabler of modularity is the identification of computational tasks that can be done by 
general purpose code rather than by special purpose code.  Databases, parallel processing utilities, MDO methods 
and user interfaces are all examples of general purpose modules that have been developed and used by the MDO 
community. 

Several ideas that were popular 20 years ago are seldom mentioned today.  For example, at one time everyone 
assumed that an MDO framework would consist of an executive controller, a central database and a text -based user 
interface on a single supercomputer.  Today, researchers favor a web-based interface with a very limited central 
controller, federated components and greatly restricted data transfer.  In these new frameworks, the user has control 
over the selection of modules, the execution of the process and the post-processing of the data.  Another discredited 
idea is that computationally expensive MDO procedures must use a monolithic code for efficiency.  This idea was 
problematic because the existing analysis codes tend to be written in more than one computer language and the 
process of integrating several codes is time consuming, introduces bugs and leads to a huge number of versions of 
each code. A final discredited idea is that treating an aircraft as a collection of components and using C++ means that 
one is practicing object-oriented programming techniques.  We now understand that OO codes require careful 
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planning and proper allocation of functions to classes.  Only then will good user interfaces and efficient, 
maintainable code result.  

This paper proposes that the key ideas used to create commercial frameworks such as the iSIGHT and 
ModelCenter are found in 15 year old MA&O papers.  It is interesting to speculate why these ideas did not bear fruit 
sooner.  One idea introduced above is that MDO frameworks were delayed because researchers were conditioned to 
think of design and optimization as a step by step process that could be sufficiently captured in a text -based 
runstream.  This mindset made it difficult to think of MDO as a set of client/server tasks which can be activated as 
needed by a user or by an optimization strategy.  Another idea is that general purpose frameworks were delayed 
because no organization was able or willing to pay the development cost.  As observed in Ref. 39 by Hall and 
Rogan, “coming up with a good design process is basically the same as coming up with a good design.”  Over and 
over again, MDO researchers elected to come up with a good point design rather than a good framework. 
Unfortunately, when a good design was produced, the process of producing that design was often lost or discarded 
before it was required by the next design cycle or even the next level of re -work.   

Anyone who looks through all the papers in the References section will surely conclude that the history of 
framework development was greatly influenced by rapid changes in computer hardware and software.  We believe 
that the high cost of computers, memory, storage and networks, plus the large number of unique operating systems 
and the lack of standardized software utilities delayed the development of general purpose MDO frameworks.  
Moreover, we believe that continued improvements in hardware and software will influence future framework 
development and will make the deficiencies in current framework systems even more apparent.  It is interesting to 
speculate what the next generation of MDO frameworks will look like when computers can compute faster than 
engineers can think.  We predict that future frameworks will face challenges in modularity, data handling, parallel 
processing and user interfaces.  For example, one key issue in modularity will be verification and validation of MD 
systems  constructed with federated modules.  And a key issue in data handling will be mining enormous quantities 
of data for design knowledge.  For parallel processing, the issue will always be the speed of data transfer over the 
network and for user interface the issues of configuration management and process visualization will be important. 
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