Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data: Part I

Sunil L. Kukreja and Martin J. Brenner

NASA Dryden Flight Research Center, Structural Dynamics Group, Edwards, California, USA

- Introduction Objectives
- The NARMAX Structure
- NARMAX Identification Problem
- Order, parameter estimation & structure detection
- Structure Detection: Current Methods
- Results
- Application to simulated pitch-plunge model
- Conclusions

- Investigate applicability of NARMAX structure detection to aeroelastic systems
- Simulated model of aircraft freeplay
- Evaluate performance
- Experimental aeroelastic flight test data

• Input-output relationship:

$$y(n) = F^{l}[y(n-1), \cdots, y(n-n_{y}), u(n), \cdots, u(n-n_{u}), e(n-1), \cdots, e(n-n_{e})] + e(n)$$

• Variety of nonlinear terms:

$$u^{2}(n-3)$$
 $u(n)u(n-1)$ $y(n-1)y(n-2)$ $u^{2}(n-1)y(n-2)$

- $-F^{l}$, can also be described by hard nonlinearities such as a half-wave rectifier
- Linear-in-the-parameters
- Linear regression techniques

- Model order selection
- Determine number of input, output and error lags and nonlinearity order
- Parameter estimation
- Determine values of unknown parameters
- Structure detection
- Select parameters to include in model

$$\Longrightarrow O = [n_u \, n_y \, l]$$

• Output additive noise:
$$n_y = n_e$$

$$D = [n_u \ n_y \ n_e \ l_e]$$

tmut additive noise: n = n

 $y(n) = F^{l}[y(n-1), \cdots, y(n-n_{y}), u(n), \cdots, u(n-n_{u}), e(n-1), \cdots, e(n-n_{e})] + e(n)$

System Order

• System order represented as:

Parameter Estima	tion
• Need an estimate of θ :	
$\min_{\boldsymbol{\theta}} \frac{1}{2} \left (\mathbf{Z} - \boldsymbol{\Psi} \boldsymbol{\theta}) \right $	2
and statistics	
 NARMAX models provide concise system 	representation
- noise on the output enters the model as product 1 - "Ordinary" least-squares \rightarrow biased: does not action of the set of	cerms with the system input and output count for noise
 Solution extended least-squares: 	
$\hat{oldsymbol{ heta}} = (oldsymbol{\Psi}^T oldsymbol{\Psi})^{-1} oldsymbol{\Psi}^T oldsymbol{Z};$ where $oldsymbol{\Psi}$	$\mathbf{r} = [\mathbf{\Psi}_{zu}\mathbf{\Psi}_{zu\hat{\epsilon}}\mathbf{\Psi}_{\hat{\epsilon}}].$
- Bias addressed by modelling lagged errors	
- NARMAX formulation redefined into predictio	n error model, ϵ replacing e and z re-
placing y	
– Deterministic	
ICAHA 2006 – Beijing, China	Dryden Flight Research Center

– Example: model of order: $O = [4 4 4 2] \Rightarrow p = 105$ candidate terms.

$$egin{array}{rcl} p &=& \sum_{i=1}^l p_i + 1; \ p_i &=& rac{p_{i-1}(n_y+n_u+n_e+i)}{i}, & p_0=1 \end{array}$$

Possible Terms

NARMAX models described by few terms

• Maximum number of candidate terms:

$$p_i = rac{p_{i-1}(n_y+n_u+n_e+i)}{i}$$

$$p_i = rac{\sum_{i=1}^{r} r_i + r_j}{i}$$

Model example:

$$y(n) = y(n - 1) + u(n - 1) + u^{2}(n - 1) + e(n - 1) + e(n)$$

- Described by: $O = [n_u = 1 n_y = 1 l = 2] \Rightarrow p = 15$
- Candidate terms:

$$\begin{split} y(n) &= \ \theta_0 + \theta_1 u(n) + \theta_2 u(n-1) + \theta_3 u^2(n) + \theta_4 u(n) u(n-1) + \theta_5 u^2(n-1) + \theta_6 y(n-1) \\ &+ \ \theta_7 u(n) y(n-1) + \theta_8 u(n-1) y(n-1) + \theta_9 y^2(n-1) + \theta_{10} u(n) e(n-1) \\ &+ \ \theta_{11} u(n-1) e(n-1) + \theta_{12} y(n-1) e(n-1) + \theta_{13} e(n-1) + \theta_{14} e^2(n-1) + e(n) \end{split}$$

$$+ \frac{\theta_{11}u(n-1)e(n-1) + \theta_{8}u(n-1)g(n-1) + \theta_{9}g(n-1) + \theta_{9}g(n-1) + \theta_{13}e(n-1) + \theta_{14}e^{2}(n-1) + e}{\theta_{11}u(n-1)e(n-1) + \theta_{13}e(n-1) + \theta_{14}e^{2}(n-1) + e}$$

• Select a subset of candidate terms

Best describes output

- Covariance matrix, P_{θ}
- Stepwise Regression
- Bootstrap method

θ
Ъ
matrix,
variance
Co

- T-test with regression analysis referred to as hypothesis testing: computing differences between means
- Suppose $E(\mathbf{Z}) = \hat{ heta}_1 + \hat{ heta}_2 \psi_2 + \hat{ heta}_3 \psi_3 + \dots + \hat{ heta}_p \psi_p$ was fit
- $\hat{\boldsymbol{\theta}}$'s tested against null hypothesis, $\hat{\theta}_i = 0, i = 1, 2, \dots, p$
- Confidence interval for $\hat{\theta}_i$:

$$\hat{ heta}_i \pm t(lpha/2, N-p)\hat{P}_{ii}$$

where $\mathbf{P} = \sigma^2 (\boldsymbol{\Psi}^T \boldsymbol{\Psi})^{-1}$ and \hat{P}_{ii} *i*th diagonal element

- t tabulated t ratio at $\alpha/2$ level of significance ($0 \le \alpha \le 1$) with N p d.o.f.
- Significance assessed with $(1 \alpha)\%$ confidence that the parameter lies within this range
- Interval includes zero, indicates $\hat{\theta}_i$ is not significantly different from zero at the α level and can be removed from the model

• Relies on the incremental change in RSS from adding or removing a parameter	 Two F distribution levels, F_{out} and F_{in}, formed to determine whether parameters) should be removed from the model (F_{out}) or included in the model (F_{in}) Fin) F-levels are based on N - p d.o.f. for predetermined ath level of significance 	• Statistics F_{in} and F_{out} estimated from RSS for model with p parameters as: $F_{in} = \frac{RSS_p - RSS_{p+1}}{RSS_{p+1}/(N-p-1)} \text{ and } F_{out} = \frac{RSS_{p-1} - RSS_p}{RSS_p/(N-p)}.$	• For good model parameterisations, $F_{\rm out}$ must not be greater than $F_{\rm in}$	
---	---	--	---	--

Stepwise Regression

Bootstrap Method
 Numerical Procedure for Estimating Parameter Statistics
 Mild Conditions on Sample Errors
- Errors independent and identically distributed (i.i.d.)
– Zero-mean
• Application of ℓ_2 minimisation: $\rightarrow \hat{Z}, \hat{\epsilon}$ and $\hat{\theta}$
• Assume: $\hat{\boldsymbol{\epsilon}} = [\hat{\epsilon}_1, \hat{\epsilon}_2, \dots, \hat{\epsilon}_N]$, from Unknown Distribution, \mathcal{F}
- Random resampling <i>with replacement</i> : $\hat{\boldsymbol{\epsilon}}^* = [\hat{\epsilon}_1^*, \hat{\epsilon}_2^*, \dots, \hat{\epsilon}_N^*]$: estimates distribution \mathcal{F} ; \Longrightarrow Example: $N = 8$, $\hat{\boldsymbol{\epsilon}}^* = [\hat{\epsilon}_6, \hat{\epsilon}_8, \hat{\epsilon}_7, \hat{\epsilon}_3, \hat{\epsilon}_4, \hat{\epsilon}_7, \hat{\epsilon}_5, \hat{\epsilon}_1]$
$\bullet \ \mathbf{Z}^* = \mathbf{\Psi} \hat{\boldsymbol{\theta}} + \hat{\boldsymbol{\epsilon}}^*$
– Bootstrap ℓ_2 minimisation estimate $\hat{oldsymbol{ heta}}^*$ computed from \mathbf{Z}^*
• Repeated <i>B</i> Times: $\hat{\Theta}^* = \left[\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\right]$
• Statistics Computed from $\hat{\Theta}^*$ at a Chosen Level of Significance, α
ICAHA 2006 – Beijing, China

e	
a]	
OD	
Ē	
Sa	

- Structure detection provide useful process insights that can be used in subsequent development or refinement of physical models
- sion and bootstrap method on a simulated NARMAX model of aeroelastic • Investigate performance of the covariance matrix (t-test), stepwise regresstructural stiffness
- Assess performance of these techniques for applicability to experimental aircraft data.

- Simulated in continuous-time
- NARMAX representation aeroelastic structural stiffness model:

$$\begin{aligned} z(n \) &= \ \theta_1 z(n-1) + \theta_2 z(n-2) + \theta_3 z(n-3) + \theta_4 z(n-4) + \theta_5 u(n-1) \\ &+ \ \theta_6 u(n-2) + \theta_7 u(n-3) + \theta_8 u(n-4) + \theta_9 \tanh(u(n-1)) \\ &+ \ \theta_{10} \tanh(u(n-2)) + \theta_{11} \tanh(u(n-3)) + \theta_{12} \tanh(u(n-4)) \end{aligned}$$

+
$$\theta_{13}e(n-1) + \theta_{14}e(n-2) + \theta_{15}e(n-3) + \theta_{16}e(n-4) + e(n)$$

	ltS	
	Jer	
•	II	
	pei	
	ex]	
•	IN	
٣	0	
	ID	
e	<u>o</u>	
	ē	
	OS	
	th	
	to	
-	D	
	on	
	_	
	q	
	SSp	
	resp	
	orresp	
	corresp	
	es corresp	
	ues corresp	
-	alues corresp	
-	e values corresp	
-	me values corresp	
•	-time values corresp	
•	us-time values corresp	
•	ious-time values corresp	
•	nuous-time values corresp	
•	tinuous-time values corresp	
•	intinuous-time values corresp	
•	Continuous-time values corresp	
	Continuous-time values corresp	

Continuous-Time System Coefficients

Value	18.0 m/s	-0.600 m	0.135 m	$0.065 \text{ m}^2 \text{Kg}$	2844 N/m	2.82 Nm/rad	$0.247 \mathrm{m}$	27.4 Kg/s	$0.180 \text{ m}^2 \text{Kg/s}$	1.23 kg/m^3	3.28	3.36	-0.628	-0.635	2
CT Coefficient	U	a	q	I_{lpha}	k_h	k_{lpha}	x_a	c_h	c_{lpha}	θ	$c_{l_{lpha}}$	c_{l_A}	$c_{m_{lpha}}$	c_{m_B}	$k_{ m c}$

Simulation Pro	tocol
 One hundred Monte-Carlo simulations 	
 Each input/output realization unique Inputs uniform, white, zero-mean, with varian 	ices of 8 rad ²
 Unique Gaussian, white, zero-mean, nois Output additive noise amplitude increased in j 	e sequence added to output ncrements of 5 dB, from 20 to 5 dB SNR
• Identification data length: $N = [10, 000]$ ments of 10, 000	80, 000] points increased in incre-
• Bootstrap method $B = 100$ bootstrap rejutibution of each parameter	olications generated to assess dis-
ICAHA 2006 – Beijing, China	Dryden Flight Research Center

ted for significance at 95% confidence	tion, additive nonlinear model: $wf(\psi(n)) + e(n); \ q + r = p.$	ction response limited due to structural stiffness	Dryden Flight Research Center
• All three techniques parameters tes level	• Model posed for structure computat $z(n) = \sum_{v=1}^{q} \theta_v \psi(n) + \sum_{w=1}^{r} \theta_v$	 Model order: O = [4 4 4 tanh] tanh selected as basis because a wing se and appears to saturate smoothly Full model description 27 candidate ter 	ICAHA 2006 – Beijing, China

....Simulation Protocol Cont.

- 1. Exact Model: A model which contains only true system terms,
- 2. Over-modelled: A model with all its true system terms plus spurious parameters and
- 3. Under-modelled: A model without all its true system terms. An undermodelled model may contain spurious terms as well

Findings	
Simulation	
Summary of	

- For this over-parameterised model describing aeroelastic dynamics the bootstrap method clearly outperformed the t-test and stepwise regression
- For analysis of flight test data only implemented bootstrap structure detection method

• System identified applying bootstrap approach: linear & $O = [4 \ 4 \ 4 \ \text{tanh}]$	model form additive non-
• Scaled hyperbolic tangent functions used becaless than ± 1	use the input amplitude is
- Scale factors used for the input, output and error signand increased in increments of 0.1	als in the range of $\nu = [0.1 \ 1.0]$
– A scaled hyperbolic tangent is denoted as $tanh(\cdot, \nu)$	
 Models with every possible combination of scale facto computation performed on 1,000 models) 	rs were considered (i.e. structure
- Full model description 27 candidate terms	
 Model which yielded highest cross-validation pemodel 	rcent fit deemed the best-fit
– Estimation $N_e = 5,200$: right wing & cross-validation	$N_v = 5,200$: left wing
ICAHA 2006 – Beijing, China	Dryden Flight Research Center

Experimental Aircraft Data

Identification Data

• Contains 14 terms

$$\begin{split} z(n) &= \hat{\theta}_0 + \theta_1 z(n-1) + \hat{\theta}_2 z(n-3) + \hat{\theta}_3 z(n-4) + \hat{\theta}_4 u(n) + \hat{\theta}_5 u(n-2) \\ &+ \hat{\theta}_6 u(n-4) + \hat{\theta}_7 \tanh(u(n), 0.3) + \hat{\theta}_8 \tanh(u(n-1), 0.3) \\ &+ \hat{\theta}_9 \tanh(u(n-3), 0.3) + \hat{\theta}_{10} \tanh(u(n-4), 0.3) + \hat{\theta}_{11} e(n-1) \\ &+ \hat{\theta}_{12} e(n-3) + \hat{\theta}_{13} e(n-4) + e(n). \end{split}$$

Dryden Flight Research Center

Summary of Findings	
• Simulated model of aeroelastic structural stiffness dynamics showed:	
– Given sufficient data length ($N_e = 60,000 - 80,000$), the bootstrap method had a low rate of selecting an under-modelled model (2–0%) and a high rate of selecting the exact model (60–95%) for all SNR levels	ct ct
 Both t-test and stepwise regression had difficulty computing the correct structure, with selection range of 3–70% and 2–85% respectively, for equivalent data lengths and SNR levels 	R
• Experimental results demonstrate:	
- Bootstrap successfully reduced number of regressors posed to aircraft aeroelastic data yielding a parsimonious model structure	ta
 The computed parsimonious structure capable of predicting a large portion of the cross- validation data, collected on adjacent wing with different sensor 	S
- Suggests identified structure and parameters explain the data well	
ICAHA 2006 – Beijing, China	

- Simulation results demonstrate bootstrap approach for structure computation of aircraft structural stiffness provided a high rate of true model selection
- T-test and stepwise regression methods had difficulty providing accurate results
- Work contributes to understanding of the use of structure detection for modelling and identification of aerospace systems.
- Limitation of model complexity that can be studied with these structure computation techniques
- Result of the large number of candidate terms, for a given model order, and the data length required to guarantee convergence
- Another approach to structure computation problem uses a least absolute shrinkage and selection operator (LASSO) T

Supported by the National Academy of Sciences and the National Aeronautics and Space Administration (NASA), Dryden Flight Research Center, Aerostructures Branch (Grant Number: NASA-NASW-99027).

