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Estimation of Longitudinal Unsteady Aerodynamics of a 
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This paper presents an initial step toward model identification from wind tunnel data for 
an airliner configuration. Two approaches to modeling a transport configuration are 
considered and applied to both steady and large-amplitude forced-oscillation wind tunnel 
data taken over a wide range of angles of attack. Only limited conclusions could be drawn 
from this initial data set. Although model estimated time histories of normal force and 
pitching moment agree reasonably well with the corresponding measured values, model 
damping parameters did not, for some cases, have values consistent with small amplitude 
oscillatory data. In addition, large parameter standard errors implied poor information 
content for model structure determination and parameter estimation. Further investigation 
of the modeling problem for more general aerodynamic models is recommended with close 
attention to experiment design for obtaining parameters with high accuracy.  

Nomenclature 
a,b = parameters in deficiency function 
Ca = non-dimensional aerodynamic coefficient where a = (N or m) 
Cm = non-dimensional pitching moment coefficient 
CN = non-dimensional normal force coefficient 
c  = mean aerodynamic chord, m 
f = frequency, Hz 
F = deficiency function 
h = position of aerodynamic center, % c  
k = nondimensional frequency 

tl  = tail arm, m 
q = pitch rate, rad/sec 
S = reference area, m2 
t = time, sec 
V = velocity, m/s 
xW = wing center-of-pressure position, % c  
α = angle of attack, rad 
αd = dynamic angle of attack, rad 
α0 = initial (average) angle of attack, rad 
αA = amplitude of angle of attack, rad 
ε = downwash angle, rad 
φ = tail setting angle, rad 
τ = integration variable, sec 
τΝ, τx, τε = time constants for normal force, center of pressure, and downwash angle 
v = measurement noise 
ω = angular frequency, rad/sec 
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I. Introduction 
ECENTLY there has been increased interest in identification of aircraft aerodynamic models for transport 
configurations that include unsteady aerodynamic terms. One problem identified under the Aviation Safety 

Program of NASA is that of developing mathematical models that allow prediction of aircraft response over a large 
flight envelope including upset conditions. This leads to the problem of developing adequate mathematical models, 
and methods for their identification, in flight regimes with nonlinear and unsteady aerodynamic behaviors. The 
majority of models identified to date have been developed for the longitudinal motion of tailless aircraft, (see Refs. 
1-3), where the aerodynamic models had relatively simple form. In formulating aerodynamic model equations for a 
wing-tail combination, however, more complicated model forms can be expected. This problem was first addressed 
in the early twenties by Cowley and Glauert4. They realized that there was a time lag before an aerodynamic 
disturbance over the wing reaches the tail. They assumed that the downwash associated with a change in lift is equal 
to the corresponding steady value but the effect at the tail is delayed by the time for the airplane to travel a distance 
equal to the tail arm. The change of the lift on the tail due to downwash was included in the damping-in-pitch 
derivative. Now this change is interpreted as a tail contribution to the acceleration derivatives, i.e., the derivative of 
the lift and pitching moment with respect to rate of change in the angle of attack. 

The investigation of the downwash angle was extended by R. T. Jones and Fehlner5 by considering both the 
growth of wing circulation and the delay in the development of lift by the tail. They presented an expression for the 
downwash indicial function associated with a change of the lift on the wing. Considerable effort to the rigorous 
explanation of the downwash both qualitatively and analytically was given by Tobak6. He developed indicial 
functions for the lift and pitching moment of a wing-tail combination and presented numerical results for several 
representative cases in supersonic flight regimes. The theoretical results were then applied to the longitudinal 
stability analysis of an aircraft.  

The linear aerodynamic equations for a planar motion of an aircraft with horizontal tail were developed by 
Klein7. Unsteady effects in these equations were expressed by linear indicial functions for wing and tail 
aerodynamics, and for the downwash angle. The emphasis was given on model structure which would explain the 
aerodynamics of wing-tail combination with sufficient accuracy and, at the same time, should be simple enough to 
provide good conditions for parameter identifiability from experimental data. 

A different model of the wing-tail combination was proposed by Khrabrov8 et al, from the Central Aero-
Hydrodynamic Institute (TsAGI). They assume that the aircraft model can be represented by body, wing, and tail 
components, and that the aerodynamics are, in general, nonlinear and unsteady. The resulting model included 
algebraic and differential equations with parameters dependent upon the angle of attack. The model was used in the 
analysis of steady and unsteady wind tunnel data and the identified model was presented in several graphs 
comparing measured and estimated data. Unfortunately, no numerical values of estimated parameters and their 
accuracies are given. 

The purpose of this paper is to use wind tunnel data from Ref. 8 and aerodynamic model equations based on 
those of Ref. 7 and 8 for model identification, i.e., model structure determination and parameter estimation. The 
paper is a product of ongoing research into modeling of an airliner with two lifting surfaces, wing and tail. Results 
presented in this paper are limited and should be considered preliminary.  

R 

subscripts 
A = amplitude 
E =  measurement 
t = tail 
αw = wing angle of attack 
 
 
superscripts 
B,T,W =  body, tail, wing components 
BT, BW = body-tail, body-wing components 
$  = estimate 

Aerodynamic Derivatives 
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abbreviations 
a.c. =  aerodynamic center 
d.o.f =   degrees of freedom 
c.g.  =  center of gravity 
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II. Measured Data 
The measured data were obtained from static and dynamic testing of an airliner in the TsAGI low subsonic wind 

tunnel. The steady data included the normal force and the pitching moment of four different configurations, i.e., 
body alone (B), body-tail (BT), body-wing (BW) and the complete model (BWT). These measurements cover the 
angles of attack from -10° up to 30°.  

The dynamic data were obtained from a forced oscillatory motion of the same model in the same tunnel using the 
same test rig. The experiment was executed at different initial values of angle of attack, α0, frequencies, and 
amplitudes, αA. For aircraft model identification, large amplitude (αA > 5°) time histories of CN and Cm for three 
configurations BT, BW, and BWT, at frequencies approximately equal to 0.4Hz, 0.8Hz, and 1.3Hz, were used. For 
large oscillation amplitudes of 15°, α0 was equal to 5° and 15° and for oscillation amplitudes of 10°, α0 was equal to 
5°, 10°, and 20°. Only one cycle of oscillation was given in each time history.  

The small amplitude oscillatory data were obtained for αA = 3°, α0 from -10° to 30°, frequencies of 0.5 Hz, 1.0 
Hz, and 1.5 Hz, and two configurations, BW and BWT. The results are available in the form of the in-phase and out-
of-phase components NC α , NqC , mC α , and mqC (see Ref. 1 or 2) and were used for a comparison with identified 
models. The normal force components are defined as 

 2
N N NqC C k Cα α= − &  (1) 

 N N Nq qC C C α= + &  (2) 

and a similar expression can be written for mC α , mqC . Because of the limited number of frequencies, the data 

cannot be used for parameter estimation of CNα, Cmα, CNq, and Cmq. A more detailed description of the test facility, 
test conditions, and results are given in Ref. 8.  

III. Analysis of Steady Data 
Modeling the steady data of Ref. 8 took into account the form of measured data. It is assumed that the 

aerodynamics of the complete aircraft can be formulated as the sum of three contributions due to the body, the tail, 
and the wing.  Then the corresponding models have the form 

 ( ) ( ) ( ) ( )B W T
N N N t N tC t C C S Cα α α= + +  (3) 

 0( ) ( ) ( ) ( ) ( )B W W W T
m m m N t t N tC t C C C x S Cα α α α= + + − l  (4) 

where 

 ( )tα α φ ε α= + −  (5) 

/t tS S S= , /t t c=l l , and Wx  is the distance between the wing center of pressure and aircraft c.g. as a fraction of 
mean aerodynamic chord. Eqns. (3) and (4) are taken from Ref. 8 with slightly different notation.  
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The values of CN and Cm for a complete model and its components are reported from Ref. 8 in Fig. 1 and 2. In 

these plots B, BW, BT, and BWT indicate the values for the body, body-wing, body-tail, and the complete model. 
The values of W

NC  and T
NC  in Eqs. (3) and (4) were obtained from the relations 

 W BW B
N N NC C C= −  (6) 

 T BT B
N N NC C C= −  (7) 

Furthermore in Eqns. (3-5), 0
W
mC is equal to the wing pitching moment when W

NC is equal to zero. φ is the tail 

plane setting and ε is the downwash angle at the tail. From the geometry of the model tS = 0.26, tl = 4.62 and φ = -

10° and from W
mC  the value of 0

W
mC = -0.13. The variable ( )Wx α can be computed by removing terms associated 

with the tail in Eq. (4) and using the corresponding BW measurements. The downwash angle follows from solving 
Eqs. (3-5) for αt at selected α. The two variables ( )Wx α  and ( )ε α  are plotted in Figs. 3 and 4 and compared with 
results of Ref. 8. The difference between the two pairs is noticeable for α < 5°. The reason for these differences has 
not been found.  

 
Figure 3. Distance xw estimated from steady wind tunnel data.  

-10 0 10 20 30
-0.2

0

0.2

α0, deg

xw

 

 xw

xw Ref. 8

Figure 1.  Normal-force coefficient for four 
configurations (reproduced from Ref. 8).

Figure 2. Pitching-moment coefficient for four 
configurations (reproduced from Ref. 8). 
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IV. Model Postulation 
Two model forms will be used in model identification from oscillatory wind tunnel data. The first model, taken 

from Ref. 8 after minor changes in the notation, will be called the TsAGI model. It has been developed under the 
following assumptions: 

a) For the one d.o.f. harmonic motion in pitch, ( , )N NC C qα=  and ( , )m mC C qα= , where q α= & . 
b) Aircraft aerodynamics characteristics are obtained by contributions of the body, tail, and the wing. 
c) The unsteady effects in the aerodynamic model equations are included in W

NC , Wx , and ε.  
Then the model equations can be formed as 

 
0

( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( )
2

B W T
N N N t N t Nq

cC t C C t S C t C t
V

α α α α α α= ∞ + + + ∞ &  (8) 

 0( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( )
2

B W W W T
m m m N t t N t mq

cC t C C C t x t S C t C t
V

α α α α α α α= ∞ + + − + ∞ &l  (9) 

where 

 ( ; )t d tα α φ α ε α= + + −  (10) 

 t
d V

α
α =

&l
 (11) 

 ( ) ( ; )W W W
N NS NS NSC C Cτ α α+ = ∞&  (12) 

 ( ) ( ; )W W W
x x x xτ α α+ = ∞&  (13) 

 ( ) ( ; )ετ α ε ε ε α+ = ∞&  (14) 

The normal force coefficient due to the wing is partitioned as 

Figure 4. Downwash angle at the tail estimated from steady wind tunnel data.  
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 W W W
N NA NSC C C= +  (15) 

where W
NAC  is the linear part (attached flow) and W

NSC  is the nonlinear part (separated flow). Symbol ∞ indicates a 
variable evaluated in steady flow. Unknown parameters in the TsAGI model are the time constants, 

,  ,  , N x ετ τ τ and two damping terms, ( ; )NqC α∞ and ( ; )mqC α∞ . In general, each of these parameters can be a 

function of α.  
The second model, referred to as the LaRC model, was taken from Ref. 7 as  

 0 0( ) (0) ( ; ( )) ( ) ( ; ( )) ( )
2

t t
a a a aq

cC t C C t d C t q d
Vα τ α τ α τ τ τ α τ τ τ= + − + −∫ ∫& &  (16) 

where a = N or m, (0)aC  is the value of the coefficient during steady conditions, and ( )aC tα  and ( )aqC t  are the 

indicial functions describing the response of ( )aC t  to a sudden change in α and q.   
Sometimes it is more convenient to use the deficiency functions, ( )aF tα , ( )aqF t , rather than the indicial 

functions. Then the two functions are related as 

 ( ) ( ; ) ( )a a aF t C C tα α αα= ∞ −  (17) 

 ( ) ( ; ) ( )a a aq q qF t C C tα= ∞ −  (18) 

where a = N or m. Substituting Eqs. (17) and (18) into Eq. (16) and replacing ( )aqF t  by its steady value results in 

 0( ) ( ; ) ( ; ) ( ; ( )) ( )
2

t
a a a aq

cC t C C q F t d
V αα α τ α τ α τ τ= ∞ + ∞ − −∫ &  (19) 

The indicial function ( )NC tα , and consequently the deficiency function ( )NF tα , includes combined responses 
of the wing and the tail, and interference effects between those two lifting surfaces. It is therefore assumed that the 
resulting indicial functions are given as a sum of these four components: 

 
(1) response of W

NC  to a unit step in αw, while αt = 0. (2) response of T
NC  to a unit step in αw, while αt = 0. 

(3) response of W
NC  to a unit step in αt, while αw = 0. (4) response of T

NC  to a unit step in αt, while αw = 0. 
 
For this study, however, it is assumed that the tail does not exhibit an unsteady response and that it does not affect 
wing response, therefore the third and fourth components (bottom row) are neglected. The first component 
represents the response of an isolated wing, and the second expresses the lift on the tail due to a change in the 
downwash induced by the lift of the wing.  

As pointed out in Ref. 7, the contribution of the wing and the tail to their indicial functions can be written as 

 ( ) ( ) ( )W BT
N N t N tC t C t S C α= +  (20) 

 . .( ) ( ) ( )W BT
m m N t t Na cC t C hC t S C t= + − l  (21) 

Where . .ma cC  is the pitching moment about the aerodynamic center of the wing and h is the non-dimensional 

distance between the aerodynamic center and the aircraft center of gravity. For the LaRC model, W
NC  is located at 

the aerodynamic center. Combining Eqs. (19-21) yields  
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 0

0

( ) ( ; ) ( ; ) ( )
2

            ( ; ( )) ( ; ( )) ( )

N N Nq

t W BT
N t Nw w

cC t C C q t
V

F t S F t dα α

α α

τ α τ τ α τ α τ τ

= ∞ + ∞

⎡ ⎤− − + −∫ ⎣ ⎦ &
 (22) 

 0

0

( ) ( ; ) ( ; ) ( )
2

            ( ; ( )) ( ; ( )) ( )

m m mq

t W BT
N t t Nw w

cC t C C q t
V

hF t S F t dα α

α α

τ α τ τ α τ α τ τ

= ∞ + ∞

⎡ ⎤− − − −∫ ⎣ ⎦ &l

 (23) 

For model identification the deficiency functions in Eqs. (22-23) must be specified. Experience with identification of 
tailless aircraft indicates that a simple exponential function 

 W bt
N wF aeα

−=  (24) 

can be a good approximation. Formulation of the deficiency function BT
N wF α , however, is more complicated. A 

model for the corresponding indicial function, ( )BT
N wC tα , is presented in Ref. 7 for linear aerodynamics combining 

three effects: (1) change of W
NC followed by a change in αw, (2) change in ε at the tail following a change in W

NC , 

and (3) a change in BT
NC  due to a change in ε. The resulting expression for the indicial function is  

 0( ) ( ) (0) ( ) ( )tBT BT BT
N N Nw g gC t C t C t dα ε τ ε τ τ= − − −∫ &  (25) 

The function ( )BT
NgC t  represents the lift on the tail during passage of the tail through a step change in downwash that 

is equivalent to the passage through a sharp-edge gust5.  
The model for the indicial function, ( )BT

N wC tα , is too complicated for model identification. It can be substantially 
simplified by using the Cowley-Glauert explanation of downwash delay. According to their assumptions the 
downwash from the wing is delayed from reaching the tail by the time /tt VΔ = l . With this assumption, the 
indicial function can be simplified as 

 ( ) ( )( )BT BT
N Nw wC t C t tα α= ∞ − Δ  (26) 

V. Model Identification 
In preparation for application of the identification algorithms to measured data, all identification algorithms were 

validated against simulated data with various signal-noise levels, numbers of cycles of harmonic data, initial 
parameter error, and number of different frequencies. This analysis indicated that single-cycle harmonic data for 
each of three frequencies and modest measurement noise levels may contain limited information for identification 
and prevent convergence of the output error algorithm. In this paper the TsAGI model, given by Eqs. (8-15), was 
used in model identification. The LaRC model, represented by Eqs. (22-23), was utilized only in its simplified form 
for the BT configuration. The LaRC model has less pre-defined model structure and therefore requires more 
information content for identification.  

A. BT Model Identification 
The BT model equations were obtained by a simplification of the general equations resulting in  

 ( ) ( ) ( ) ( )
2

B T T
N N t N t Nq

cC t C S C C
V

αα α α= + +
&

 (27) 
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 ( ) ( ) ( ) ( )
2

B T T
m m t t N t mq

cC t C S C C
V

αα α α= − +
&

l  (28) 

for the TsAGI model and 

 ( ) ( ) ( )
2

BT BT
N t N t Nq

cC t S C C
V

αα α= +
&

 (29) 

 ( ) ( ) ( )
2

BT BT
m t t N t mq

cC t S C C
V

αα α= − +
&

l  (30) 

for the LaRC model. For both sets of equations 

 .t dα α φ α= + +  (31) 

Eqns. (27-30) were further simplified by assuming that the damping parameters, BT
NqC and BT

mqC , do not change with 

α. After substituting measured values into the model equations, the least squares method in time domain was used 
for parameter estimation.  

The most consistent results were obtained from Eqs. (29-30) after replacing the term ( )BT
t t N tS C α−l  by the 

directly measured pitching moment ( )BT
m tC α . The resulting parameter estimates are summarized in Table I which 

includes their mean values, θ̂ , and standard errors, σ̂ . 
The mean values shown were obtained by averaging 
estimates over 3 different frequencies for given α0 and 
αA. The last term in Table I shows values of BT

mqC  

computed from BT BT
m t NqqC C= − l . These values are in 

agreement with direct estimates of BT
mqC . All parameters 

were estimated with large standard errors, i.e., low 
accuracy, suggesting limited information content in the 
data.  

Estimated parameters are also compared with 
derivatives NqC  and mqC  in Figs. 5 and 6. These derivatives were estimated from small amplitude oscillatory data 

at the frequency of 1.5Hz. For a comparison of different parameters it is assumed that the difference between NqC  

and BT
NqC , and mqC  and BT

mqC  are caused mainly by parameters NC α&  and mC α&  or their nonsteady counterparts (see 

Eq. (19) and Ref. 9). The direct comparison of parameters in both figures is not possible but at least some trends in 
the results can be observed. The parameters in Fig. 5 indicate compatibility between BT

NqC  and anticipated values of 

NqC  using the relationship Nq Nq NC C C α= −
&

. A similar argument can be made for the differences between BT
mqC  

and mqC  in Fig. 6.  

Table I. Estimated damping parameters from  
large-amplitude oscillatory data, BT configuration. 

α0, deg αA, deg BT
NqC  BT

mqC  BT
t NqC−l  

  ˆ ˆ      ( )θ σ  ˆ ˆ      ( )θ σ  ˆ ˆ     ( )θ σ  
5 15 3.1   (0.82) -15   (1.7) -15   (3.3) 

15 15 2.9   (0.99) -15   (2.1) -13   (4.6) 
5 10 3.0   (0.98) -12   (2.5) -14   (4.5) 

10 10 2.7   (1.40) -12   (1.4) -12   (6.5) 
20 10 1.5   (0.49) -17   (2.6) -  7   (2.3) 
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B. BW Model Identification 
The BW model equations used in data analysis were taken from the TsAGI model. These equations are 

 ( ) ( ; ) ( ) ( ; )
2

B W BW
N N N t Nq

cC t C C C
V

αα α α= ∞ + + ∞
&

 (32) 

 0( ) ( ; ) ( ) ( ) ( ; )
2

B W W W BW
m m m N mq

cC t C C C x C
V

αα α α α= ∞ + + + ∞
&

 (33) 

As in the complete model, the normal force coefficient was partitioned as 

 W W W
N NA NSC C C= +  (34) 

then a time delay due to flow separation can be estimated from 

 ( ) ( ; )W W W
N NS NS NSC C Cτ α α+ = ∞&  (35) 

Similarly, for identification of the pitching-moment model, the coordinate of the wing center of pressure can be 
estimated from 

 ( ) ( ; )W W W
x x x xτ α α+ = ∞&  (36) 

Now the estimation problem for the NC  model parameters can be formulated as follows: given time histories of 

( )NC t , ( )tα , and ( )tα& , and analytical functions ( ; )W
NSC α∞ , ( ; )W

NAC α∞ , and ( ; )B
NC α∞ , estimate unknown 

constants Nτ  and BW
NqC . To simplify notation, introduce W

NSCη = , 1 Nθ τ= , 2 2
BW
Nq

c C
V

θ = , ( ; )W
NSu C α= ∞ , 

( ) ( ; ) ( ; )B W
N N NAy C t C Cα α= − ∞ − ∞ , then 
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Figure 5. Estimated normal-force damping 
coefficients due to pitch rate from oscillatory 
data for BT and BWT configurations. 

Figure 6. Estimated pitch damping coefficients 
from oscillatory data for BT and BWT 
configurations. 

BWT
NqC
BT
NqC

BWT
mqC
BT
mqC



 
American Institute of Aeronautics and Astronautics 

 

10

 1 uθ η η+ =&  (37) 

 2y η θ α= + &  (38) 

A similar formulation can be made for mC  where the unknown parameters to be estimated are xτ  and BW
mqC . The 

unknown parameters in the state-space models were estimated by an output error method explained in Ref. 10.  
Parameter estimates and their 

standard errors are given in Table II. 
Both time constant and damping 
parameters were considered independent 
of α for each data set analyzed. The 
average value of Nτ  ≈ 13 for all five 
cases agrees with limited previous 
experience. The estimates of the second 
time constant exhibit large scatter around 
the average value of xτ  ≈ 41. This value 
could not be verified. Also the effect of 

xτ  on estimated ( )mC t  was not 
investigated. Large variability of mean values and large standard errors indicates the low accuracy of parameter 
estimates and limited information content of the measured data. 

Damping parameters in Table II were compared in Figs. 7 and 8 with the estimates from small amplitude 
oscillatory data. Using the same assumptions discussed with Figs. 5 and 6 for comparing the damping estimates with 
out-of-phase measurements, an agreement between NqC  parameters can be argued for α from -5° to 5°, and for α 

near 25°. A large discrepancy in NqC  near α=15° has not been explained. Small amplitude oscillatory data in Fig. 8 

suggests very small negative values would be appropriate for mqC  and confirms that the positive values estimated 

for mqC  are incorrect.  

 
Measured and computed time histories of CN and Cm using parameter values from Table II are plotted in Figs. 9 

and 10. Although forced-oscillation experiments were performed separately for each frequency, time history plots 

Table II. Estimated damping parameters and time constants  
from large-amplitude oscillatory data, BW configuration. 

α0, deg αA, deg Nτ  BW
NqC  xτ  BW

mqC  

  ˆ ˆ      ( )θ σ  ˆ ˆ      ( )θ σ  ˆ ˆ     ( )θ σ  ˆ ˆ     ( )θ σ  
5 15 12.5   (1.2)  4.8   (2.2) 50.0   (3.2)   5.1  (.63) 

15 15   9.6   (1.4)  8.8   (3.7) 40.6   (2.6)   7.4  (.78) 
5 10 14.4   (1.9)  5.8   (2.9) 25.6   (1.7)   3.8  (.71) 

10 10 12.7   (1.6) 10.5   (4.0) 34.0   (1.6) 10.5  (.69) 
20 10 16.6   (1.4) 13.7   (4.4) 56.2   (.67)   0.2  (.67) 
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Figure 7. Estimated normal-force damping 
coefficients due to pitch rate from oscillatory 
data for BW configuration. 

Figure 8. Estimated pitch damping coefficients 
from oscillatory data for BW configuration. 
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show all 3 frequency cases stacked into one plot for analysis. In general, there is good agreement between these 
plots. Some effect of uncorrected model error in Cm is visible in part of the data with f = 0.4Hz. Figs. 11 and 12 
show both coefficients plotted against α with f = 0.8 Hz. Included in both figures are also steady values of both 
coefficients. Part of the ( )NC α  curve for 10° < α < 20° with pronounced unsteady effect is captured quite well by 
identified model despite inaccuracies in both damping parameters. Unexplained differences, however, are apparent 
in the linear part of ( )NC α . The correlation between measured and computed ( )mC α is poor. Finding an 
explanation for this requires additional study.  

 

 

Figure 9. Measured and estimated time histories 
of normal force for BW configuration, α0=5°, 
and αA = 15°. 

Figure 10. Measured and estimated time 
histories of pitching moment for BW 
configuration, α0=5°, and αA = 15°. 
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Figure 11. Variation of measured and estimated 
normal force with α for BW configuration, 
α0=5°, and αA = 15°. 

Figure 12. Variation of measured and estimated 
pitching moment with α for BW configuration, 
α0=5°, and αA = 15°. 
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C. BWT Model Identification 
For BWT model identification only the TsAGI model was considered. It is represented by Eqs. (8-15). The 

unknown parameters in these equations are the two damping derivatives and the time constant, ετ , characterizing 
time dependency of downwash at the tail. The remaining terms in the model equations were obtained from steady 
data and estimates from BT and BW model identification. As in the previous cases, it was assumed that for each 
data set the unknown parameters are independent of α.  

Unknown parameters were estimated using three cycles of oscillatory data combined into one set for a given α0 
and αA. Each cycle in the set was measured at a different oscillation frequency. Estimates of ετ  were consistent with 
an average value of 26. The parameter estimates for NqC  varied from -5 to 4 and for mqC  from 14 to 24. The 

negative values for NqC  and positive values for mqC  can’t be substantiated. They are also in disagreement with 
estimates from BT model identification as seen in Table II.  

Figures 13 and 14 compare measured and computed coefficients ( )NC t  and ( )mC t . The measured data were 
taken from three cycles at 0α  = 20° and Aα  = 10°. The computed coefficients were based on parameter estimates 

ετ  = 26, NqC  = -5, and mqC  = 14. The agreement between measured and computed coefficients is very good. To 

investigate the contribution of the damping terms in this case, time histories of NC  and mC  were recomputed for 
the same magnitude of damping parameters but with opposite sign, i.e., NqC  = 5 and NqC  = -14. The resulting 

values of  ( )NC t  and ( )mC t  were almost the same as in the preceding computation. These results indicate very low 
sensitivity of both coefficients, NC  and mC , to damping parameters for this model and data set. At present, this 
problem has not been explained. It is expected that further investigation of this problem will continue together with 
experimental design for obtaining parameters with high accuracy.  

 

VI. Concluding Remarks 
This paper presents aircraft model identification from wind tunnel data of an airliner and its components: body, 

body-tail, body-wing, and the complete model. The measurement data included results from static and oscillatory 
tests over a wide range of angle of attack. Two mathematical models of an aircraft with one degree-of-freedom in 
pitch were postulated. These models differ mainly in the formulation of unsteady aerodynamics. 

Figure 13. Measured and estimated time 
histories of normal force for BWT configuration, 
α0=20°, and αA = 10°. 

Figure 14. Measured and estimated time 
histories of pitching moment for BWT 
configuration, α0=20°, and αA = 10°. 
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The measured steady data were fitted by high order polynomials in angle of attack. From these polynomials 
contributions of the tail and wing alone to normal force and pitching moment were computed followed by 
determination of downwash angle at the tail and center of pressure position of the wing.  

Parameter estimation started with the analysis of the body-tail oscillatory data. After substituting measured data 
into the model equations for the normal force and pitching moment coefficient, damping parameters in these 
equations were estimated by a least squares method. The model for the body-wing configuration included four 
unknowns: two damping parameters and two time constants. These time constants characterize the dynamics defined 
by differential equations for the unsteady normal force and center of pressure position. After reformulating model 
equations into a state-space form, the parameters were estimated by an output error method. In the complete model 
the two time constants from the body-wing analysis were treated as known parameters. The number of unknowns for 
the complete model analysis was thus reduced to two damping parameters and one time constant for the downwash 
angle dynamics.  

All models with estimated parameters fit the measured data quite well. The estimated time constants for the 
normal force and downwash were consistent with small deviations from their average values. On the other hand, 
estimates of the time constant for center of pressure position exhibited large scatter. The value of all three time 
constants couldn’t be verified because there are no references dealing with the same estimation problem.  

The estimates of damping parameters of the body-tail and body-wing configurations were compared with the 
out-of-phase components estimated from small amplitude oscillatory data. The damping parameters agreed with a 
trend in the out-of-phase results with the exception of the wing contribution to the damping in pitch parameter where 
those values were positive.  

The estimates of both damping parameters in the complete model were mostly unexpected values with positive 
signs. This is, of course, unacceptable for an aircraft with wing-tail combination operating in the post-stall 
conditions. It was demonstrated by simulation that both normal force and pitching moment models were insensitive 
to both damping terms and this was reflected in the identification problem for this test data. Insensitivity of model 
parameters and large standard errors suggest low information content in the data. It is expected that the ongoing 
research will explain the problems that occurred in this study and also address the experiment design problem for 
obtaining parameters with high accuracy in more general aerodynamic models.  
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