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Abstract

This paper examines feasibility and performance issues in using Control Moment Gy-
roscopes (CMGs) to control the attitude of a fixed-wing aircraft. The paper describes
a control system structure that permits allocating control authority and bandwidth be-
tween a CMG system and conventional aerodynamic control surfaces to stabilize a vehicle
with neutral aerodynamic stability. A simulation study explores the interplay between
aerodynamic and CMG effects, and indicates desirable physical characteristics for a CMG
system to be used for aircraft attitude control.

1 Introduction

The use of CMGs to control spacecraft through internal angular momentum exchanges has
been established practice for decades. These control effectors operate through internal angular
momentum exchanges between the CMGs and the vehicle that contains them. For each torque
exerted by the CMG on the spacecraft, an equal and opposite one is exerted on the rotating
components of the CMG. As such, CMGs are best suited for providing control when there is
no long-term bias in the torque command. When such a bias does exist, angular momentum
– opposite to that commanded for the vehicle – builds up in the CMG system, ultimately
saturating it as a control effector. This necessitates the occasional application of an external
torque to the system to remove the CMGs’ built-up angular momentum. In spacecraft, this is
often done using reaction jets – a measure that depletes propellant and limits the spacecraft’s
useful life.

For spacecraft, the motivation for using CMGs has been that they are an efficient means
of generating large and precise control torques without using reaction jets (except during de-
saturation operations). What, other than novelty, motivates applying CMGs to the control of
fixed-wing aircraft? The core motivation for using internal momentum transfer devices, such as
CMGs, in aircraft is to improve their attitude stability robustness, mitigating uncertainties such
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as atmospheric disturbances, sudden changes in mass properties, and unsteady aerodynamics
that might be induced, under extreme circumstances, by the vehicle’s aerodynamic control or
propulsion systems. CMGs are conceptually well-suited to providing these benefits:

• CMGs generate their torques independent of ambient flow condition. This is both a
blessing and a curse. In the former role, their independence of flow means that CMG
torques simply are not subject to corruption by atmospheric uncertainties; further, they
are fully available in post-stall flight, and under circumstances when normal aerodynamic
control effectors might be shaded from amient flow.

• CMGs can, from the control designer’s view, be modelled nearly perfectly – A CMG
system is merely a collection of gimballed rotating masses, driven by electric motors. Since
there’s very little uncertainty in a CMG to which a flight control law would have to be
robust, the designer can afford to trade away robustness for performance as the authority
of the CMG is increased to dominate or supplant the aerodynamic control effectors –
assuming that the CMG is physically capable of generating the required torques.

• Atmospheric flight provides “free” opportunities for CMG desaturation. Aircraft are
exposed to a very rich moment disturbance environment arising from nonuniform behavior
of the ambient air. These random disturbances can potentially be exploited to bleed off
momentum. Alternatively, aerodynamic trimming devices can be used for this purpose.

There is also a conceptual challenge:

• CMGs generate their torques independent of ambient flow condition. The forces and
moments operating on an aircraft scale with dynamic pressure, while CMG torques scale
with flywheel mass. If a CMG system is to provide a given level of torque authority at a
high dynamic pressure, it will have to be substantially more massive than one for which
the same torque requirment is imposed only at a lower dynamic pressure. The alternative
to increasing flywheel mass in achieving a given CMG angular momentum vector is to
increase flywheel speed. Technology development for CMG mass reduction will have to
focus both on compact, lightweight, flywheels capable of high speed under maneuvering
loads, and on the development of bearings that support these loads without undue friction
losses.

If CMGs can effectively augment or supplant traditional aerodynamic control effectors, the
performance required of the latter would shrink, helping the CMGs “buy their way” into the
aircraft design.

This work complements and continues the efforts documented in [1], [2], and [3]. Reference
[2] examines using a body-fixed constant-speed flywheel to generate an angular momentum bias
in order to improve attitude stiffness and robustness for atmospheric flight, with particular ap-
plication to near-hovering operation. In particular, the paper describes a closed-form analytic
criterion for sizing the magnitude of the bias momentum necessary to achieve a desired max-
imum level of response to disturbances, for given airframe dynamics. Reference [3] combines
the bias momentum flywheel described in [2] with a CMG array arranged in the pyramidal
geometry frequently seen in spacecraft practice [4], [5]. The paper presented a novel nonlinear
control law that included a Lyapunov-based guarantee of stability.
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Here, we exploit an important qualitative characteristic in the physics of CMGs: For the
CMG arrays considered in this study, each CMG consists of a constant-speed flywheel mounted
in a gimbal that rotates the flywheel normal to its spin axis. The torque output of the device
is the cross product of the flywheel angular momentum vector with the gimbal’s rotational
velocity vector. A CMG produces nothing unless its gimbal is in motion, and the torque output
grows with the magnitude of the gimbal rate. This implies that a given CMG is better able to
produce a large, but rapidly varying torque history than a large, slowly varying one.

With this in mind, this paper explores the attractiveness of a flight control system for
disturbance rejection and stabilization of steady translational flight of a fixed-wing aircraft, in
which aerodynamic and CMG control is partitioned on frequency – with the CMGs realizing
the higher-frequency portion of the control commands, and the aero surfaces realizing the low
frequency part, along with providing desaturation. It will be seen that such an approach to
flight control – at least for this category of flight condition – is feasible using CMGs that do not
pose an excessive mass burden on the aircraft, and that when they are used, the demands made
on the aerodynamic control surfaces diminish to the point where it is reasonable to assume that
they could be significantly reduced in size and actuation power.

The next section of this paper describes the simulation study – vehicle model, CMG physical
assumptions, and an overview of the flight control law. Section 3 describes cases considered and
results, and provides interpretation. Conclusions are given in Section 4. Details of the flight
control law are provided in the appendix.

2 Simulation Study Details

This section presents the numerical experiments performed to assess the conceptual attrac-
tiveness of employing CMGs to stabilize a fixed-wing aircraft trimmed for steady, wings-level
flight, but subjected to substantial atmospheric disturbances. The “substantial” disturbance
employed in this study is Dryden “Severe” turbulence [6] with a mean wind speed of 45 knots
at 20 ft altitude. In each simulation, the aircraft flies through this three-axis disturbance for
40 seconds.

The aircraft considered is an F16, modelled using Appendix A of [7]. The vehicle is trimmed,
using elevator deflection, at two different subsonic flight conditions that are primarily distin-
guished by low and high dynamic pressures (or q̄) – 50 psf and 378 psf, respectively. The
aerodynamic coefficient, CLα = .002 was chosen to reflect an instability in the longitudinal mo-
tion. The vehicle model is nonlinear, with six degrees of freedom, and includes all aerodynamic
phenomena available in [7], including damping coefficients. Actuator dynamics, aero effector
deflection and rate limits were neglected. Table 1 displays the details of the low and high q̄
trim conditions

The CMG array assumed for this study was a set of four single-gimballed CMGs, arranged
in a square pyramidal configuration, in which the axis of gimbal rotation for each CMG is tilted
144◦ from the aircraft’s z-body axis (positive downward.) This configuration was selected be-
cause it provides a nearly spherical momentum envelope [4]. Such configurations are attractive
for controlling spacecraft, in which there is usually little difference in magnitude between the
several principal moments of inertia. For an aircraft such as this F16, in which Izz/Ixx > 5,
it is probable a geometry giving some more ellipsoidal distribution of momentum would make
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Parameter Low q̄ Case High q̄ Case
Dynamic Pressure (psf) 50 378
Altitude (ft) 200 10,000
True Airspeed (knots) 122 389
AOA (deg) 19.2 3.1
Elevator deflection (deg) -1.1 -4.3

Table 1: Trim settings used in simulation of steady level flight.

more efficient use of the flywheels – but this type of design optimization will be treated in a
future paper.

The individual flywheels in the CMG array are assumed identical and were sized to meet
the following criteria:

• Flywheel rotational inertia is 0.1% of (Ixx)F16, where the aircraft’s roll axis was selected
because it was the principal axis having the smallest moment of inertia.

• The total mass of the CMG array – assumed to be four flywheels – is 2% of the aircraft
mass, (m)F16.

These criteria are, obviously, chosen to assure that the CMG system is not an intrusive element
of the vehicle’s total static mass budget. Combining these criteria without any consideration
of materials physics or mechanical design, we infer from (Ixx)F16 = 12846Nm2 and (m)F16 =
10358kg that each flywheel is realizable as a ring having rFLYWHEEL ≈ 0.5m and weighing a
little less than 52kg. These parameters have no value at all beyond providing an informal
“order-of-magnitude” aid to visualing the impact of packaging such a system in an F16. By
baselining these physical flywheel properties, various levels of flywheel angular momentum
could be selected for the simulations by specifying a flywheel rotational speed. In reality, the
flywheel speed would be chosen “as fast as possible” for the available flywheel technology and
the flywheel itself would be shrunken to fit the angular momentum requirement. Before leaving
description of the CMGs, it should be noted that dynamical effects such as back-EMF in the
electric motors and, particularly, flywheel bearing friction have not been modelled in this study.

The flight control law is designed, using feedback linearization, to track a commanded
airframe angular velocity, ωc, expressed in the vehicle’s body frame, such that

ω̇ = −Gω(ω − ωc) (1)

where the gain matrix −Gω is chosen to be Hurwitz. The command ωc is, in turn, chosen to be

ωc = −g(ε)−1Gεε (2)

where ε ∈ R3×1 is the vector of Modified Rodriguez Parameters (MRPs) [8] that appear in the
direction cosine matrix Cbt(ε) that rotates from the “trim” – or “target” – frame to the body
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frame. In (2), g(ε) is the RHS of the MRPs’ governing differential equations, described in the
appendix. The gain matrix −Gε is, again, chosen Hurwitz. This selection of controller ensures

ε → 0
ε̇ → 0
ω → ωc

ωc → 0

 t →∞ (3)

As mentioned in the introduction, this flight control system deliberately takes advantage
of the fact that CMG torque scales directly with gimbal speed. Commanding a CMG gimbal
through swing histories with high rates improves the instantaneous mass efficiency of the CMG
as a producer of torque, but the corresponding rapid rotation of the output vector implies
that such peak efficiency is unavilable for low-frequency torque production. In other words,
while a CMG system can produce control torques throughout the nonzero portion of the air-
craft’s disturbance spectrum, it is most efficient in realizing higher-frequency torque commands.
Consistent with this physical observation, the total control torque command uτ produced by
the control law for realizing (1) is partitioned into high and low-frequency bands. The high-
frequency band is assigned to the CMGs, while the low-frequency part is assigned to the aero
control effectors. Command uτ is divided by

u̇AERO=GAERO (−uAERO + uτ )
uCMG = uτ − uAERO

}
(4)

where GAERO is the inverse time constant of the low pass filter. This time constant can be used
as a design parameter for a given application. For example, a larger participation of CMGs
(when working with aero control surface effectors) during disturbance rejection can be specified
by using a larger time constant. In the simulation results described in the next section, a time
constant of approximately 3 seconds is used to define the case where both CMGs and aero
control surfaces are used.

3 Simulation Cases and Results

This section details the simulation cases that were run, and discusses the results. For each of the
two flight conditions considered, three control configurations were run: CMGs only, aero control
surfaces only, and a combination of CMGs and aero control, using the frequency partitioning
filter in (4). These are named in Table 2.

Note that the final column of Table 2 lists flywheel speed for each of these runs. Are these
flywheel speeds technically aggressive? Yes – but two factors have to be kept in mind: First,
these are imaginary CMGs, and are not the result of a mechanical design. Secondly, they are
very aggressive, but not hopelessly so. The following considerations are important:

• This range of flywheel speed is at the edge of currently-demonstrated technology for high-
speed flywheels. The region of a flywheel that is subjected to the greatest mechanical
loads is the rim, and the perfomance of flywheels is frequently characterized by their “tip
speed” the translational speed at the rim. Steel flywheels are limited to tip speeds of
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Case Name q̄ Control Flywheel Speed
L-C 50 psf CMG-only 25000 rpm
L-A 50 psf aero-only 25000 rpm
L-B 50 psf both 25000 rpm
H-C 378 psf CMG-only 33000 rpm
H-A 378 psf aero-only 25000 rpm
H-B 378 psf both 25000 rpm

Table 2: Simulation Cases

250-375m/s, depending on material properties. Composite energy storage flywheels have
achieved approximately 2000m/s under laboratory conditions. Our tip speed at 25krpm is
roughly 1310m/s, and would be imposed under highly dynamic loads not typical of energy
storage applications. Achieving a CMG flywheel with high tip speed will require, at the
very least, a sophisticated design effort, and probably, additional technology development.

• The friction in conventional hydrostatic bearings scales linearly with the axle speed and
to the fourth power with the journal diameter [9]. This may well present a significant
mechanical issue in a system where support of very high-speed flywheels that are being
rapidly gimballed to generate large torques with the roughly 5Hz bandwidth of the Dryden
spectrum.

All of that said, the combination of CMG mass, size, and performance postulated in this
paper are aggressive, but not likely impossible; moreover, we do not claim that these particular
performance levels are even necessary. The six cases considered below are spot designs, rather
than the result of formal full-system optimizations. It will be seen that the choice of time
constant in (4) for cases L-B and H-B relegated the aero surfaces to an extremely undemanding
role. Much work remains to be done in determining the most practical balance between CMGs
and aero control.

For each of the six cases, a nominally straight and level trajectory was flown for 40 seconds,
subject to disturbances from the Dryden turbulence model, each using an identical sequence of
random numbers. Figures 1 and 2 display the results of these simulations. Note that in both
Figures, circles are datapoint labels for aero-only cases H-A and L-A, squares for cases using
combined aero and CMG control (or “Both”) – H-B and L-B – and diamonds are used for cases
using CMGs only – H-C and L-C. Low-q̄ cases are plotted with dashed lines and high-q̄ cases
with solid lines. Each plot displays the temporal distribution of the variable being plotted by
sorting the absolute value of the variable’s time history into 20 bins and plotting the bin counts,
normalized by the total number of time points in the simuation run. This gives the fraction
of the simulation time during which the variable fell into each bin. Each could be viewed as
having the same flavor as a probability density plot laid on its side.

Examining Figure 1, we see that all of the control scenari did well, and that the each of
the six panels of the Figure tend to split into two clusters; in which one, corresponding to the
“L” cases have significantly smaller errors and angular rates than the other, “H”, cases. That’s
not a surprise, given that the disturbances are smaller. What is surprising is that the attitude
performance appears to be less good when only aero effectors (the “-A” cases) are used.
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This is particularly noticeable in the roll axis, where the angle and rate distributions lie well
above the corresponding values for the -B and -C cases. One possible reason for this would
be that the -A control designs weren’t as good as the others – these are, after all, merely six
point designs without a lot of time spent tuning. On the other hand, however, recall that
we assumed ideal aero control effectors with no dynamics or saturation. We suspect, though
a detailed analysis has not been performed, that the designs with active CMG (-B and -C)
benefit from the angular momentum bias-induced gyric stiffness that was explored in [2] for
the case where the angular momentum vector was stationary with respect to the body axes.
In these cases, there’s also a substantial angular momentum vector, though it’s moving and
changing magnitude; nonetheless, when crossed with the airframe angular vector, an internal
torque is generated that dumps momentum into a direction orthogonal to each. Since the roll
axis has the smallest moment of inertia, this benefit is most visible there. It should be stressed
that this interpretation is merely well-informed speculation, and that the control algorithm was
not structured to take advantage of this effect. The benefit, currently accidental, is significant
enough to merit further study.

We now turn to Figure 2. Note that in this Figure, only the squares, corresponding to
the -B cases, appear in all of the plots. The L-A traces are marked by very noisy use being
made of the control surfaces – While rudder rates of nearly 300deg/s and aileron rates in excess
of 70deg/s are not frequent in this case, they do repeatedly (and unrealistically) occur. The
aero effector behavior in the -B cases, on the other hand, is on a dynamical par with that of
trim devices: Very slow, very small deflections serve to assist the CMGs by gradually dumping
angular momentum to avoid CMG saturation.

The gimbal torque and rate distributions are interesting. While roughly 99% of the H-B
and H-C runs are spent with gimbal rates below 50deg/s, there’s a substantial tail of instances
where rates increase past 100deg/s. Similar behavior is seen in the gimbal torques, necessary for
inducing the gimbal motion. This contrasts with the attitude behavior in the -B and -C cases,
in Figure 1, where those cases produced the attitude rate profiles with the lowest distributions
of angular rates.

An additional, very important, point is to recall from Table 2 that the flywheel speed for
H-C is 33krpm, rather then 25krpm. We were unsuccessful in achieving a design that didn’t
saturate and blow up for the lower value. What’s the significance of this?

• Even though our F16 model has approximately neutral static stability, it is still amazing
that disturbance rejection and stabilization could be achieved, and to a very high degree,
without imposing any external torques on the airframe. It should be noted that we were
also able to obtain a successful L-C design, using a flywheel speed of 9krpm, rather than
25krpm. It provided almost identical distribution of attitude rates as the L-C in Figure 1,
at the cost of more active CMGs, including a maximum gimbal rate excursion of roughly
100deg/s, and max gimbal torque of 150Nm. The gimbal agility was similar to that in
H-C, while the torque output was lower because of the lower flywheel speed.

• The failure of the 25krpm case highlights the importance of the tiny, slow, aero activity
in performing the background desaturation of the CMGs as seen in the -B cases.
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4 Conclusions

This paper documents an anecdotal exploration of two questions: First, is the notion of using
CMGs in fixed-wind aircraft to augment its aerodynamic controls attractive? Second, what
physical issues might arise in implementing such an augmentation? To examine these questions,
we developed a common control system structure that can allocate control authority to aero
effectors, a CMG array, or a frequency-partitioned blend of the two, and we looked at specimens
of each of those three possibilities at two different steady, trimmed flight conditions. In each,
the mission was to reject disturbances from heavy Dryden turbulence.

Regarding the first question, it was seen that, given our very superficial physical assumptions
on the CMGs, they provided superior response to an idealized aerodynamic control system. We
speculate that the superiority may be due to a level of gyric attitude stiffness present only
when the CMGs were in use. The best performance was returned in the case where CMG
and aero control worked together, with the aero effectors playing a very minimal direct role in
the dynamics but, instead, keeping the CMGs desaturated. It should be noted that our CMG
model was much more realistic than our aero model: The extremely precise attitude control
that the CMGs achieved in our simulation is probably achievable with some configuration of
CMG system.

Regarding the second question, the exact CMG system that we chose would have had
minimal impact on the mass of its host aircraft, but would have posed design and technology
difficulties, doubtless solvable. On the other hand, however, the control and CMG configuration
for this study was entirely un-optimized. Further trades need to be conducted that balance
between downsizing the aero machinery, and modulating the mass and technology assumptions
on the CMG to find a more realistic design point for assessing the viability of such a system
with reasonable-term technology. For example, the fact CMGs can generate large transient
torques opens up contemplation of alternate technologies for aero moment generation that are
bandwidth-limited but may have other advantages.

Further controls work needs to be done, particularly on large angular maneuvers. Our
example aircraft was approximately neutral in its static stability. Would we do better with an
airframe in which all three axes were unstable, and where stabilization consisted of dithering
the CMG torques with the aircraft in equilibrium? Answers to these questions are reserved to
future papers.

A Details of Flight Control Law

This appendix provides a detailed definition of the flight control system employed in this study.
Following the notations as used in [10], the rotational equations of motion in the body frame
are

ḣ + ω×h = τAERO(q̄, α, β, δe, δr, δa) (A.1)

where ω×h is the cross product of the airframe rotational velocity with the system angular
momentum h. The δ(.) are the aero control effector deflections, α is angle of attack, and β is
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sideslip angle. The momentum h is

h = J(η)ω + H (A.2)

where J(η) is the inertia of the airframe and CMG array, expressed in the body frame. Note the
dependence on η, the four instantaneous gimbal angles. The quantity H is the CMG angular
momentum due to η̇ and Ω, given by

H = RT
2 Ig

C η̇ + (R1(η))T Ia
W Ω (A.3)

The first term, the contribution of the gimbal motion, transforms the four gimbal momenta Ig
c η̇

from the individual gimbal rotational axes to the body frame via the direction cosine matrix
R2 ∈ R4×3. The second term transforms the four flywheel angular momenta Ia

W Ω, expressed in
their spin axes, to the body frame via R1(η).

Our flight control system treats the CMGs as external torquers so that

J(η)ω̇ = τAERO + uCMG (A.4)

where

uCMG = −Ḣ − ω×(J(η)ω + H)− J̇(η)ω (A.5)

In order to realize uCMG at the current η, differentiate (A.3) to obtain

RT
2 Ig

c η̈ +
(
ω×RT

2 Ig
c + A(η) + B(η, ω)

)
η̇ = −uCMG − ω×(R1(η))T Ia

W Ω− ω×J(η)ω (A.6)

where

A(η) = [a1 : · · · : a4], ai =
∂RT

1

∂ηi

Ia
W Ω AND B(η, ω) = [b1 : · : b4], bi =

∂JT

∂ηi

ω (A.7)

A steering law based on a pseudoinverse solution is given as

η̇∗ = −[ω×RT
2 Ig

c + A(η) + B(η, ω)]+
(
uCMG + ω×(R1(η))T Ia

W Ω + ω×J(η)ω −RT
2 Ig

c η̈
)

(A.8)

In order to avoid internal singularities in this type of pseudoinverse steering solution, a “singu-
larity robust inverse” algorithm [11], [12], [13], is implemented. This modified algorithm adds a
small positive increment to the pseudoinverse solution if it is detected that it is close to losing
rank. The references cited are several of a larger number of versions of this general notion.
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The following expression provides a tracking control law for gimbal torques τg that steer the
CMGs toward the commanded η̇∗ from (A.8). The absolute angular momenta of the CMGs
along their gimbal axes is

hc2 = Ig
c (ωη

2 + η̇) (A.9)

where ωη
2 is the vector of projections of ω onto the gimbal axes of the individual CMGs in the

array,

ωη
2 =

 ωη1

2
...

ωη4

2

 where

 ωηi
1
...

ωηi
3

 = CGi
(ηi)C

0
Gi

ω, i = 1, . . . , 4 (A.10)

and C0
Gi

is the direction cosine matrix transforming body frame to CMG orientation at η = 0,
and CGi

(ηi) transforms to current gimbal orientation. The dynamical equations for this portion
of the CMG are

ḣc2 = τg − diag {ωη
3} [(Is

c − Io
c )ω

η
1 + Ia

W Ω]
= τg − τω

}
(A.11)

where the definition of τω is obvious from context, and where Is
c is the moment of inertia of the

entire flywheel/gimbal assembly along the spin axis, and Io
c is the moment of inertia along the

output axis. Define the torque command to the gimbal motors as

τg = Ig
c [ω̇η

2 − 20π(η̇ − η̇∗)]− τω (A.12)

The uAERO command was translated into control surface deflections via the following logic:

 δe

δr

δa

 =

 δ̂e

δ̂r

δ̂a

+
1

q̄S
C−1

[
uAERO −

(
τAERO(q̄, α, β, 0, 0, 0)− q̄

ˆ̄q
τAERO(ˆ̄q, α̂, β̂, 0, 0, 0)

)]
(A.13)

where (̂.) denotes trim quantities and

C =

 0 bCLδr
bCLδa

c̄CMδe
0 0

0 bC
N δr bCNδa

 (A.14)

As a final note, the MRP parameters from (2) obey the following governing equations:

ε̇ = g(ε)ω (A.15)

where

g(ε) =
1

4
[(1− εT ε)I + 2ε× + 2εεT ] (A.16)
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Figure 1: Distribution of Attitude Errors and Rates in Six Cases
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Figure 2: Distribution of Controls Commands and Rates in Six Cases
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