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The Instrument Remote Control (IRC) architecture is a flexible, platform-independent 
application framework that is well suited for the control and monitoring of remote devices 
and sensors. IRC enables significant savings in development costs by utilizing extensible 
Markup Language (XML) descriptions to configure the framework for a specific 
application. The Instrument Markup Language @UL) is used to describe the commands 
used by an instrument, the data streams produced, the rules for formatting commands and 
parsing the data, and the method of communication. Often no custom code is needed to 
communicate with a new instrument or device. An IRC instance can advertise and publish a 
description about a device or subscribe to another device's description on a network. This 
simple capability of dynamically publishing and subscribing to interfaces enables a very 
flexible, self-adapting architecture for monitoring and control of complex instruments in 
diverse environments. 

Nomenclature 
Italicized text represent names of interfaces or classes from the framework (e.g., EventBus). 

I. Introduction 
ASA Goddard Space Flight Center, led by the Advanced Architectures and Automation Branch (Code 588), N has developed an extensible application framework for instrument command and control, known as Instrument 

Remote Control (IRC). The IRC architecture is a flexible, platform-independent application framework that is well 
suited for the control and monitoring of remote devices and sensors. Workmg with instrument engineers and 
scientists as well as past experience with distributed systems we have tried to come up with an architecture that 
balances simplicity and flexibility. The architecture has to be simple enough to use and maintain as well as flexible 
enough to be useful in a wide variety of applications and domains. The architecture emphasizes the capability to 
configure itself based on extensible Markup Language (XML) descriptions. There are descriptions to tell the 
framework which application components to plug in, what the Graphical User Interface (GUI) should look like, 
what devices to connect to and how to communicate with them, what algorithms to include in the application, and 
what interface to present to other peers. To enable a dynamic discovery and configuration capability for a collection 
of devices, each IRC instance can advertise and publish a description of itself on a virtual network. This simple 
capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture 
for monitoring and control of complex instruments in diverse environments. 

IRC enables significant savings in development costs by utilizing the XML descriptions to configure the 
fiamework for a specific application. Each of the descriptions will be outlined in greater detail in the following 
sections as we present the structure of the framework as well as the structure of a typical application using the 
framework. 

11. Application Architecture 
The IRC framework is implemented in Java for cross-platform portability. It is currently being used on 

Windows, Mac OS, Solaris, and several variants of Linux operating systems. The framework includes a growing 
library of components, algorithms, and visualizations making it possible to construct an application entirely from 
existing components. The framework also consists of several managers and factories which collectively are 
responsible for creating an application instance configured for a specific. application. Each manager or factory is 
implemented by an interface, an abstract implementation, and a concrete default class. This common pattern in the 
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fiamework allows developers to easily create variants of built-in functionality or create new implementations and 
plug them into the framework The existing managers and factories are designed to be general purpose and typically 
will work as is for most target applications. Example managers include, but are not limited to, a ResourceManager 
responsible for locating needed resources, a PreferenceManager that maintains user preferences, a 
ComponentManager for maintaining a list of current components in the application, and a GuiFactory that is 
responsible for constructing the GUI fiom an X M L  description. The IrcManager is the application manager 
responsible for initializing the application on startup and creating the other managers and factories as needed. 

The high-level architecture of 
an application using the IRC 
fiamework consists of one or 
more components communicating 
information or data using the 
Publish-Subscribel pattern. At this 
level there are two primary 
methods that components can 
communicate with each other, 
either through an EventBus or, for 
high data rates, through a 
DatuSpace (Fig 1). The default 
EventBus implementation allows 
components to subscribe to all 
events or to those matching 
specified criteria facilitating a 
dynamic and flexible flow of 
information. This also isolates 
components from the transient 
nature Of some Figure 1. Representative Application Architecture. 
Device proxies subscribe to 
receive message events fiom the 
bus that are directed to their external device and publish message events or data fiom their external device. GUIs can 
come and go based on user demands and may publish and subscribe to events on the bus. 

The Dataspace is a catalog of published data products, called BasisBundZes in IRC, available fiom data sources. 
A BasisBundle is a collection of one or more data buffers that share a common BasisBuger. The common basis 
values in a BasisBundle typically represent time associated with the elements of each data buffer; however the basis 
can be any type such as a counter or frequency. The structure of a BasisBundZe can be described with XML or 
dynamically constructed or changed. A BasisBundZe publishes data written to it, by a data source, to all registered 
subscribers. The BasisBundZe architecture is optimized for hgher rate data with end-to-end throughput of hundreds 
of Megabytes per second achievable in some configurations. 

Since the configuration of the fiamework for a specific application is centered on XML descriptions, we have 
developed corresponding XML schema definitions that enable an XML parser to validate the files, thereby 
guaranteeing that the descriptions are complete and correct. The following sections describe the XML based 
descriptions including the Type Map and Component descriptions, the Instrument description, and the GUI 
description. 

GUI 

A. Type Map Description 
The Type Map description contains several tables of key-value pairs that map type identifiers to actual 

implementation classes. A default Type Map description is read by the fiamework on startup that defines the default 
implementations as well as a library of available components. This file is central to the fiamework in that many of 
the default implementations can be replaced by simply overriding entries in this file. The user can create an 
application specific Type Map that will ovemde identical keys in the default or augment the map with new key 
value pairs. Listing 1 is a partial example of a type map file. 
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Listing 1. Example Type Map Description 

<LookupTable name=" GlobalTypeMap" > 

<NamespaceTable name="DeViceType"> 
<Mapping name="Default" value="gov.nasa.gsfc.irc.devices.DeltDeviceProxy"/> 
<Mapping name="Stateful" value="gov.nasa.gsfc.irc.devices.StatefulDeviceProxy"/> 

</NamespaceTable 
<NamespaceTable name="ManagerType"> 

<Mapping name="TaskManager" value="gov.nasa.gsfc.commons.processing.~ks.Default~askM~ager"/> 
<Mapping name="DataSpaceManager" value="gov.nasa.gsfc. irc.data.DefaultDataSpace"/> 
<Mapping name="ScriptEvaluator" value="gov.nasa.gsfc.irc.scripts.DefaultScriptEvaluator"/> 
... 

</NarnespaceTabW 
<NamespaceTable name="ComponentType"> 

<Mapping name="SkySubtraction" value="gov.nasa.gsfc.hawc.algorithms.SkySubtraction"/> 
<Mapping name="RawDataArchiver" value="gov.nasa.gsfc. hawc.archiving.RawDataFitsArchiver"/> 
<Mapping name="Demuxer" value="gov.nasa.gsfc.hawc.algorithms.Demultiple~lgorithm"~ 
<Mapping name="Phaser" value="gov.nasa.gsfc.hawc.algorithms.Phaser"/> 
<Mapping name="LevelOFitsArchiver" value="gov.nasa.gsfc.hawc.archiving.ChopRateFitsArchiver"/> 
<Mapping name="ClientMessageHandler" value="gov.nasa.gsfc.hawc.app.ClientMessageHandler"/> 

</NamespaceTable 
... 

</LookupTable 

B. Component Description 
A Component Description file defines a set of components for the framework to create and configure on startup. 

An example description is given in Listing 2. The framework uses the Type Map description to resolve the 
component types specified in a Component Description. For example the "Message Handler" component with type 
"ClientMessageHandler" will result in an instance of the class "gov.nasa.gsfc.hawc.app.ClientMessageHand1er" 
being created. 

Listing 2. Example Component Description 

<?xml version=" 1 .O" encoding="UTF-b"?> 
<ComponentSet xmlns:xsi="http://www.w3 .org/200 1 /XMLSchema-instance" 

xsi:schemaLocation="http://aaa.gsfc.nasa.gov/cml cml.xsd" 

<Component name="SkySubtraction" type="SkySubtraction" start="tme"/> 
<Component name="Message Handler" type="ClientMessageHandler" start="true"/> 
<Component name="Raw Data Archiver" type="RawDataArchiver"/> 
<Component name="Demuxer" type="Demuxer" starl="true"/> 
<Component name="Phaser" type="Phaser" start-"true"/> 
<Component name="Chop Rate FITS Archiver" type="LevelOFitsArchiver"/> 

</Componen tSee 

The content of a component description is used by the framework to configure the new component. The "start" 
attribute in the "SkySubtraction" component description tells the framework to start this component after it is 
created. The framework also passes the complete Component description to the created component allowing the 
component to configure itself in some component-specific way if desired. 

Typically all components, including algorithms and custom components needed for an application, are specified 
in the Component Description, with the exception of Device Proxies which are handled by a Device description 
described in the next section. If the application has a GUI the user can addremove or configure components 
dynamically. This is accomplished through Java's ability to dynamically load classes at run-time. Optionally this can 
also be done remotely by sending messages. 

* 
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C. Instrument Description and Device Proxy Architecture 
We developed the Instrument Markup Language2 (IML) as a means to describe an instrument or device. IML is a 

vocabulary of XML dating back before XML became a W3C standard and has gone through much iteration over the 
years based on lessons learned. The attributes of a &vice that can be described by IML include: 

. . . . . . 

. 
* . 
* 

Device Proxy component to use 
Device subsystems 
State model component to use 
Logical message or command set 
Message arguments (including data types, valid values/ranges, and units) 
Message formats 
Logical script set 
Script arguments (including data types, valid values/ranges, and units) 
Logical data streams (e.g., science data, housekeeping, message responses) 
Data fields (including data types, valid valuedranges, and units) 
Data formats 
Communication mechanisms 

The IML can describe a hierarchy of sub-devices, and each subsystem (sub-device) may use a different 
communication mechanism or protocol. For example, one subsystem may have a TCPiIP interface with binary 
messages and another subsystem may have an RS232 interface with ASCII messages, Each subsystem in the IML 
description is represented by its own DeviceProv, which receives message objects, formats them according to the 
rules specified in the IML file, and then sends them to the actual instrument. 

Although at this stage in the evolution of IML it is primarily the software engineers who are writing the 
descriptions, we envision the hardware engineers taking on this task. Not only do hardware engineers know the 
instrument details best, but they traditionally provide significant contributions to a formal Interface Control 
Document (ICD). The IML documents can serve a similar role - that is, communicating the intricate details of an 
instrument's interface - in a much more structured, formal, and easily manipulated way. An example IML file for an 
existing rover is given in Listing 3. 

Listing 3. Example IML file 

<?xml version=" 1 .O" encoding="UTF-8"?> 
<Device xmlns:xsi="http://www. w3 .org/200 1 IXMLSchema-instance" 

xsi:schemaLocation="http://aaa.gsfc.nasa.gov/iml iml.xsd" 
name="PgRover" displayName="PG Rover" type="Default"> 

<MessageInterface name="Rover Messages" > 
<Port name="Port" type="Simple" > 

<Message name="?C" displayName="Toggle Camera"> 
<Field name="cameraMode" displayName="Camera Mode" type=" Integer" default=" 1 'I> 

< Listconstraint name="mode"> 
< Choice name="on" displayName="On" value=" 1 "I> 
< Choice name="off' displayName="Off value="O"/> 

d ListConstrainp 
</Field> 

</Message> 
<Message name=" !F" displayName="Forwardrd"> 

<Field name="Value" displayName="Value" type="Integer" default=" 1 Of'> 

</Field>/> 
<Rangeconstraint name="" low="O" high="47"/> 

</Message> 
. . . <!-- Other messages not shown --> 

</MessageInterface> 

<OutputAdapter name="messageFonnatter" displayName="Message Formatter" type="MessageFormatter"> 

</OutputAdapter> 
. . . <!-- Output message format description goes here (see Listing 4) --> 
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<InputAdapter name="messageParserI' disp1ayNameF"Message Parser" type=" S ystemOut"/> 

<Connection name="TCP" type="TCP Client5 
<Parameter name="hostname" valueF"PgRover1 .gsfc.nasa.gov"/> 
<Parameter name="port" value="23"/> 

</Connection> 
<Connection name="Standard Out" type="STDOUT" /> 

</POW 
</Device> 
The framework reads the IML for a specific device, in this case a "PG Rover", and based on this description 

creates the necessary Deviceproxy component. The "<Device>" root element in the example specifies a device of 
type "Default". The m e w o r k  looks up the device type in the Type Map and an instance of the DefaultDeviceProxy 
class is created as the Deviceproxy 
component. This proxy component 
will then be passed the device 
description to configure itself. The 
DefaultDeviceProxy is a Composite 
component in the W e w o r k  library 
that does not implement any device 
specific knowledge, rather it creates, 
manages, and delegates device 
specifics to subcomponents based on 
the IML description (see Fig. 2). 

The DefaultDeviceProxy class 
constructs one Port component for 
each c6<P~ro77  element in the IML 
description, one ' DeviceProxy 
component for each nested 
"<Device>" element (if any), and a 
StateModeZ component if specified. 
Each component is connected as 

4- 

w 
Figure 2. Default Device Proxy Component Structure. 

needed to listen for message events from the DefaultDeviceProxy class. The Deviceproxy receives messages from 
the EventBus and passes them onto all listening managed components. The StateModel can be configured to listen 
for messages going to the device as well as messages received fiom the device. Figure 3. shows the resulting 
component structure created for the "PG Rover" description. 

r- 

Message 
I 1 FormattedBytes r 

'Objects 7 

I 
I - RawBytes Message Objects 
I 

Figure 3. Rover Device Proxy Component Structure. 

Local 
Console 
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In the example shown in Fig. 3, the Deviceproxy receives rover messages from the EventBus and passes them 
onto the Port component. A Port component's primary responsibility is to manage the transition between internal 
Message objects to and from a device-specific representation of the message. The Port implementations available in 
the framework all accomplish this by creating and managing OutputAdapter, InputAdapter, and Connection 
components. A Port can also do some message filtering or validation based on the message descriptions, however 
since there is only one port defined in the rover description and it specifies a "Simple" type, all outgoing messages 
are simply passed onto the OutputAdapter. The OutputAdapter is responsible for converting a Message object into a 
buffer of bytes. The method for doing this depends on the implementation type of the OutputAdapter. Listing 4 
shows the OutputAdapter description for the rover expanded to include the transformation rules for converting a 
Message into the ASCII bytes expected by the rover. 

Listing 4. Output Adapter Example Description. 

<OutputAdapter name="messageFormatter" displayName="Message Formatter" type="MessageFormatter"> 
(Transformation> 

<Formap 
<!-- 

We simply write out the message name followed by the 
value of each field in the input message as ascii values, 
terminated by a CR. 

--> 
<Record useDataNameAsInitiatol-"true"> 

<Field applyToRemainingFields=%ue"> 

</Field> 
Germinator value="&#l3;"/> 

<Value type="printf' pattem="%02d"/> 

</Record> 
</Format> 

</Transformation> 
</OutputAdapter> 

The OutputAdapter type specified in the IML for the rover is "MessageFormatter" which resolves from the Type 
Map to the concrete class MessageFonnatter from the framework component library. The MessageFonnatter class 
uses the transformations given in the IML description to transform each message into bytes. In this case the 
transformation will result in sbort, four-character commands such as "!F23" for a "Forward" command or "?COl" to 
turn the camera on. The formatted bytes from the OutputAdapter are sent to all listeners. 

In the case of the rover the listeners are two Connections. One connection simply writes out the bytes to the 
console for debugging purposes and the other writes all bytes received to a TCP socket connection. This decoupling 
of output format and connection medium allows the user to easily change either without impacting the other. To 
change the connection from TCP to a serial connection the type in the Connection description simply has to be 
changed from "TCP Client" to "Serial". 

The responsibility of the InputAdapter is to do the reverse of the OutputAdapter and transform the bytes received 
by a Connection into a Message object or, in the case where the bytes represent a data stream, into the Dataspace. 
The IML description for the InputAdapter may contain parsing rules for doing this transformation. An alternative for 
both the OutputAdapter and InputAdapter is to plug in an implementation that performs the transformation in code. 

Although the IML description of a device does not represent visual information, a message editor component 
does utilize the IML description to present the available messages or commands, and scripts for a device. The visual 
view of the PG Rover IML description from Listing 3 is presented in the message editor as in Fig.4. 
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Figure 4. Message Editor representing the “PG Rover” IML description. 
Although the rover example is fairly simple it does represent a real application of IML and is a common pattern 

seen for controhg a device. It only took 10 minutes to create the complete IML description and use it within the 
framework to control the PG Rover without any additional coding. 

Since the instrument description is read at runtime, IML enables rapid iterative development and prototyping. 
For example, suppose the hardware engineer decides that he wants to make available a new rover command. He can 
simply define his new command in the IML and load the revised IML file, and the new command will appear in the 
GUI. No new code must be written, nor is recompilation necessary. 

While there are many advantages to using IML, one of the most sigdicant is the ability to defer some of the 
hardware implementation details as long as necessary during the development period. Soha re  ofien needs to be 
developed in parallel with the hardware it is to control. Since hardware engineers may need to change various details 
as their subsystems are integrated, or as new hardware components with different characteristics are manufactured, it 
is crucial that the s o h a r e  architecture provide a degree of separation between the objects that represent the system 
and the hardware nuts-and-bolts. 

D. User Interface Description 
The IRC w e w o r k  supports specifying the layout and content of the Graphical User Interface (GUI) using 

XML. While describing a User Interface is not new, many implementations take a minimalist approach by only 
mapping a few components that are common to several platfonns or GUI libraries. This limits the flexibility and 
scope of user interfaces that can be created. The XML dialect that the IRC M e w o r k  uses is an expanded version of 
SwiXML$. A GUI generating engine parses the XML representation at runtime and instantiates the necessary classes 
to render the GUI. The GUI description can be loaded dynamically from a file packaged with the code, from a 
remote server, or Erom a remote device that has published a specialized GUI. 

The XML dialect of SwiXML is closely tied to the Java Swing components contained in the Java Foundation 
Classes (JFC). For example the XML element “<frame>” corresponds to the JFrume Swing component and the 
“<panel>” element to the JPunel Swing component, etc. In addition an XML attribute of an element corresponds to 
a method call on the Swing component. For example in Listing 5 the attribute “title” in the element “<frame>” 
corresponds to the “setTitle” method in the JFrame class. 

http://www.swixml.orgl 
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Listing 5. Simple SwiXML description. 

qxml  version=" 1 .O" encoding="UTF-l" 7> 
<frame size="640,480" title="Hello SWIXML World" DefaultCloseOperation="JFrame.EXIT-ON-CLOSE5 

<panel constraints="Borderlayout.CENTER"> 
<label LabelFo~W" Font="Comic Sans QS-BOLD-12" Foreground="blue" text="Hello World!" /> 
<textfield id="tf" Columns="20" Text="Swixml" /> 
<button Text="Click Here" Action="submit" /> 

4paneb 
4frame 

Figure 5. Swing JFrame rendering of SwiXML description. 
SwiXML addresses the View in the common Model-View-Controlle? (MVC) software pattern. The MVC 

pattern divides the user i n k r f "  into three parts, the model represents the context, the view is one representation of 
that context, and the controller &fines how the view reacts to user interaction. Since SwiXML is limited with 
respect to the models and controllem, we have extended the syntax to support instantiating models and controllers 
and associating them with one or more views. In Listing 6 a "<ControlClass/>" element instantiates a controller that 
is then associated with a panel and popup menu by a "controlclass" attribute. The controller identified in this 
example as "Tree-Controller" wil l  be registered to user events from the tree view component and popup menu. 

Listing 6. GUI description using the ControlClass Element. 

<frame id="Bmwser-Frame" uame="frBme" size="600,400" title="Component Browser" layout-"Borderlayout"> 

<splitpane orientation-" 1 I' Dividahtion="250" 
BottomComponent="~-T~le-Panel" TopComponent="Tree-Panel"> 

<panel id="Tree-Panel" Layout=%ordtxlayout"> 
<scrollpane> 

<tree id=Component-Tree" SelectionRoWz"0" 
initclass="gov.nasa.gsfc.irc.gui. browser.ComponentTreeMode1" 
controlclas~"Tree-Controller" constraints="BorderLayout.NORTH'*> 

<menuitem text="Start" controlclass=l'Tree_Controller" actionCommand="START"/> 
<menuitem text="Stop" controlcIass="Tr~-Controller" actionCommand=" STOP 'I/> 

<separator/> 
. . . e!- Other menu items not shown --> 

<popupmenu controlclass="Component-Tree_Controller"> 

</popupmenu> 
</tree, 

4scrol lpane  
</panel> 
. . . e!-- Other items not shown --> 

4splitpane 
</frame> 
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The rendering of Listing 6 is shown below in Fig. 6 with the popup menu displayed. There is a similar 
mechanism for instantiating a model for a view. A GUI description can spec@ multiple models and controllers 
linked to GUI objects. These simple extensions enables a self contained MVC description that can be instantiated, or 
included in a larger GUI description, or even published to remote clients. 

! Component Browser ut 

Figure 6. Swing JFrame rendering of the “Component Browser” GUI description. 

We have also extemkd the description syntax to support the frameworks library of visualization components. A 
visualization can be described in XML and constructed using one or more light-weight renderers that are combined 
or overlaid to create a complete custom visualization. A visualization can also reference a Scalable Vector Graphics 
(SVG) description to create a dynamic data 
driven interface. Figures 7 and 8 are 
examples of these types of visualizations 
that can be described in XML and 
constructed with the IRC fiamework. 

The IRC fiamework has several 
predefined GUI descriptions for view 
components such as the “Component 
Browser” previously shown in Fig. 6, and 
the “Message Editor” in Fig. 4 that can be 
customized or used as is. 

E. Distributed Architecture 
The previous sections described the 

internals of the IRC Framework and how 
an IML description is used to communicate 
with an instrument. With a distributed 
environment we need to take a broader 
view of an IRC architecture based on 
multiple instances of the IRC fiamework. 
A single IRC instance can use IML 
descriptions in two different contexts. The 
first, as outlined in section C, is a 
description of the private interface to an 
instrument that a device will be 
communicating with. The second context is 

:sN 

5,000.0 5,000.0 

‘ I  I I I I I , 
14.650 14.700 14.750 14.800 14.850 14.800 14.850 
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a description-of a device’s own public 
interfaces that other external clients can 
use to communicate with it. Figure 7. Example visualizations. 

9 
American Institute of Aeronautics and Astronautics 



. _  . ..- The lKC m e w o r k  proudes the ability to 
dynamically discover and communicate with 
other devices anywhere on a network in a peer- 
to-peer manner. To enable a dynamic discovery 
and configuration capability for a collection of 
devices, each IRC instance (referred to as an IRC 
Device) can advertise and publish information 
about itself on a virtual network@. A virtual 
network allows devices to communicate and 
organize independently from the physical 
network. For scoping and security the virtual 
network can be divided into virtual peer groups. 
Devices can join or leave a virtual peer group 
and thus join or leave the instrument control 
environment of IRC. 

An IRC Device can advertise and publish 
several public IML interface descriptions. A 
device may want to split up its public 
descriptions (commanding vs. data) or publish 
more than one version (novice vs. expert). An 
IRC Device can also publish a GUI description 
for a customized command panel or visualization 
of the device. 

I .  Example Distributed IRC Architecture 
The High-resolution Airborne Widebed 

r e SVG Dynamic Example 0mQ 
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Figure 8. Example SVG visualization. 

mission, a Boeing 747SP aircraft modified to accommodate a 2.5m reflecting telescope. The HAWC control and 
monitor software will be configured in a distributed hlerarchal peer architecture as illustrated in Fig. 9. 

Each of the subsystem (AJIR, Thermal, Optics, etc.) will have dedicated IRC devices to control them and 
function as subsystem proxies. The proxies will primarily encapsulate and perform subsystem-specific functions and 
advertise the subsystem on the network to a “HAWC Subsystem” peer group. The type of specific functions that 
each proxy may perform includes but is not limited to closed loop control, data translation or calibration, and 
command translation. The “HAWC” IRC Device will join the “HAWC Subsystem” peer group as a trusted peer and 
request the published IML interface for all subsystems. The “HAWC” device will also join a “HAWC Instrument” 
peer group and publish its IML interface to the group. Astronomers and engineers will be able to start client IRC 
Devices anywhere on the network, join the “HAWC Instrument” group, and request the public IML description from 
the “HAWC” device. The “HAWC” device may publish more than one version of the interface depending on the 
type or authorization of the user. 

2. Distributed IhfL Example 
Using the distributed architecture of IRC, IML descriptions can be much more independent of the physical 

location of the devices. Listing 7 shows a complete description that the HAWC device will use to connect with each 
subsystem. 

9: IRC transitioned from an in-house developed peer-to-peer framework called WorkPlace to JXTA (see 
http://www.ixta.org). JXTA defines a set of open XML protocols for finding and organizing a virtual network of 
p,eers. 

tt http://www.sofia.usra.edu/ 
http://astro.uchicago.edu/hawc/hawc.htm 
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Peer Gmup HAWC Subsystem Peer Gmup 

Figure 9. HAWC IRC Device Architecture. 
The dynamic discovery mechanisms of IRC are used to find the IML associated with each subsystem. With this 

approach, the HAWC instrument can be unaware of the physical location of the other peers on the network. It 
simply knows the names of the peers. Other variants of this allow for IRC to search for all peers in a particular 
group or for al l  peers of a particular name, regardless of the group. 

For the HAWC instrument the environment changes as do the control needs when the instrument is rolled on the 
airplane versus a test lab before flight. For example, the description of the telescope that the s o h a r e  will receive on 
the airplane will describe how to communicate with the actual telescope, while on the ground in the lab the 
description could be for a telescope simulator or some other piece of test equipment. 

Listing 7. IML Description of HAWC Device and Subsystems. 

<Device name="HAWC*> 
<Devicepeer group="HAWC Subsystem" description="Optics"b 
<Devicepeer group="HAWC Subsystem" description=" ADR"b 
<Devicepeer group=' W W C  Subsystem" description="Thermal"/> 
<Devicepeer group="HAWC Subsystem" description="Calibrator"b 
<DevicePeer group="HAWC Subsystem" description="Detector"b 
<Devicepeer group="HAWC Subsystem" description="Telescpe"/> 

</Device> 

F. Algorithms 
IRC provides several general-purpose algorithms, and aims to make it easy to develop instrument-specific 

algorithms. Takmg advantage of Java's dynamic class loading, the IRC framework does not have to know about the 
algorithm implementation class until runtime; by referencing the location of the Java byte code, the framework is 
able to create instances of algorithms as needed. Also, by using the Java Native Interface (JNI), algorithms can be 
implemented in any native language such as C, C++, or FORTRAN. 

To simplify the implementation of custom algorithms the framework has class implementations and interfaces 
that provide the algorithm architecture shown in Fig. 10. Algorithm is a composite object that manages a set of 
Input, Output, and Processor Objects. The Input and Output components know how to interact with the Dataspace. 
The Input component can filter, down-sample, or queue the data for the algorithm if needed. The Processor 
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component is the algorithm implementation and is typically 
the only component from the algorithm architecture that 
needs to be developed for a custom algorithm. 

G. Scripting 
The ability to write scripts to embed in the instrument 

control software is an important feature of the IRC 
framework. It provides the user with a way to sequence 
common tasks. Currently, scripts must be written in Jythonss 
or JavaScript; however, the IRC architecture allows for 
support of any scripting language that supports the Bean 
Scripting Framework8*. Jython is a Java implementation of 
Python, an intexpreted, object-oriented programming 
language 

A script that configures or commands an instrument can 
be written easily. Such a script is shown in Listing 8. This 
script sends two messages to a device. The 
"getMessageDescriptor'Oi) call returns the IML descriptor of 
the "setRegister" method for the "Detector" device. The 
descriptor uniquely identifies a specific message including 
any specification of arguments and constraints. This 
descriptor is used by the "publishMessage" call to validate 

Figure 10. Algorithm Architecture. 

the arbents  before actually publishing the message to the EventBus. 
A script can also prompt the user for input, and can add, remove, and configure Algorithms. Support for looping 

and control flow is included Using more advanced capabilities of Jython and JavaScript, a script can extend the IRC 
framework in interesting ways, since they have access to all Java packages and can extend Java classes. These 
features have been used to create scripts that implement algorithms that connect themselves to the EventBus, issue 
commands based on the analysis of incoming data, and then remove themselves from the framework. 

Listing 8. Sample Jython Script. 

REG-TM-RST-FIBR = 257 
REG-TMJXK = 263 

descriptor = getMessageDescriptor("setRegister.SI1.Detector") 

# Reset fiber interface 
publishMessage(descriptor, REG-TM-RST-FIBR, 0) 
I# Set clock to 15 KHz 
publishMessage(descriptor, REG-TM-CLK, 15) 

To make a script available to the system, a fiagment of IML must be created that describes the script, its arguments 
(including data types and valid values), and any documentation for the script. The IML fragment shown in Listing 9 
can be added to a library of scripts or to the description of a subsystem to make the script appear as a primitive 
command to the user. 

Listing 9. Sample IML Script Element. 

<Script name="resetFiberOpticLinkn 
displayName="Reset Fiber Optic Link" 
description="Resets the fiber optic link." 
file=*detector/resetFiberLink.py" 
language="Jython"/> 

tt  http://www.jython.org! 
Bs http://jakarta.apache.orghsE/ 
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III. Role in Missions 
IRC is well suited for the control of instruments and devices and is typically used as the primary means of 

remotely controlling a device; however it can also be used within the context of a larger mission system or 
framework. The most common roles for IRC in a mission framework are the following: 

As an adapter between the mission framework and devices. In many cases it is not feasible to m o d e  an 
existing device, sensor, or application to be compatible with a mission framework. IRC and an IML 
description can facilitate the integration of a wide variety of devices and applications. 
As a customizable user interface to the mission framework or to devices and applications attached to the 
system. IRC provides a flexible architecture for describing a user interface using XML as well as a library 
of visualization components. 
As an application framework for building customized client or service applications connected to the 
mission framework. The X M L  based component description in the IRC framework allows an application to 
be assembled and codigured from a library of plug-in components. IRC has been used in this way for 
creating device simulators, autopilots, environmental monitors, and smarter devices. 
As a standalone controller for test equipment or subsystems supporting lab tests and validation. 

1) 

2)  

3) 

4) 

IV. Future 
The IRC framework has evolved based on lessons learned applying it to device control to minimize the amount 

of custom, device-specific development that must be completed. One area that still requires custom code for 
complex devices is representing and operating on device state. IML does have a “<StateModel>” element that 
allows the developer to plug in and connect a device state model component, however the framework and IML 
provide only limited help in implementing or describing a device’s state. Currently this is done by coding custom 
models either as algorithms or components. An important enhancement to the IRC framework will be to enable 
behavior state models described by XML to be assembled and synthesized into the framework. This will also 
provide the ability to quickly develop models that can be used for simulating device operations with whatever 
degree of fidelity is deemed necessary. Simulations also allow many activities to be performed long before 
instrument development has been completed. Instrument designers can develop, validate, and modify designs 
quickly and efficiently. Scientists can begin science planning and data analysis algorithm development; data 
archival, retrieval, and publication scenarios can be worked out; and support staff can begin training for instrument 
operations very early in the program. These state or simulation models can also be used operationally for detecting 
fault conditions and recovery. 

V. Summary 
The IRC framework design supports a high degree of codigurability, allowing it to be tuned for specific 

domains. Processes can be run on a single computer or on multiple heterogeneous computers, ranging from small, 
low cost hardware components to high-end workstations. Processes can be run either locally, at an observatory for 
example, or remotely over the Internet (or both). This provides an instrument development team the flexibility to use 
the hardware components that best fit the operating environment and instrument requirements. The framework 
supports the cross-platform migration of fimctions and necessary reconfiguration if these requirements change. This 
flexibility enables a design in which small, embedded software components are placed at the point of origin of the 
generated data (smart sensors) and at the point of device control (smart actuators). The configurable IRC framework 
enables these software solutions to be easily developed, enhanced, maintained, and reused for different devices, 
different instruments, and different domains. 

The IRC framework, utilizing descriptions in XML, supports instrument development from early design through 
operations and maintenance to minimize software development time, minimize development costs, maximize reuse 
of software components, and maximize flexibility of instrument archtectures. The plug-in nature of the framework 
maximizes the ability to incorporate emerging technologies. Thus, as new instruments are added to a system, or as 
specifications for existing instruments are modified, or as new requirements are added, the effort to adapt the 
software to these changes will be incremental rather than major. 

IRC has been successfully used to control, monitor, or simulate instruments from simple sensors, lab equipment, 
sensor webs, autonomous boats, to large telescopes. 

13 
American Institute of Aeronautics and Astronautics 



References 

’ Gamma, E., Helm, R., Johnson, R., and Vliddides, J, Design Patterns: E!ements of Reusable Object-Oriented SoJtware, 
Addison-Wesley, Reading, Mass. 1995. 

Ames, T. J., Sall, K. B., & Warsaw, C. E.,” NASA’s Instrument Control Markup Language,” Astronomical Data Analysis 
Software and Systems VIII, eds. D. M. Mehringer, R. L. Plante, & D. A. Roberts, ASP Conf. Ser., Vol. 172, Astronomical Society 
of the Pacific, San Francisco, California, 1999, p103. 

Krasner, G. E., and Pope, S. T., “A cookbook for using the model-view controller user interface paradigm in Smalltalk-80,’’ 
Journal of Object-Oriented Programming, AugustJSeptember 1988, pp. 26-49. 

14 
American hti tute of Aeronautics and Astronautics 


