
Source of Acquisition
NASA Goddard Space Flight Center

Instrument Remote Control Application Framework

Troy J. Ame; and Carl F. Hostetter'
NASA Goddard Space Flight Center, Greenbelt, MD, 20771

The Instrument Remote Control (IRC) architecture is a flexible, platform-independent
application framework that is well suited for the control and monitoring of remote devices
and sensors. IRC enables significant savings in development costs by utilizing extensible
Markup Language (XML) descriptions to configure the framework for a specific
application. The Instrument Markup Language @UL) is used to describe the commands
used by an instrument, the data streams produced, the rules for formatting commands and
parsing the data, and the method of communication. Often no custom code is needed to
communicate with a new instrument or device. An IRC instance can advertise and publish a
description about a device or subscribe to another device's description on a network. This
simple capability of dynamically publishing and subscribing to interfaces enables a very
flexible, self-adapting architecture for monitoring and control of complex instruments in
diverse environments.

Nomenclature
Italicized text represent names of interfaces or classes from the framework (e.g., EventBus).

I. Introduction
ASA Goddard Space Flight Center, led by the Advanced Architectures and Automation Branch (Code 588), N has developed an extensible application framework for instrument command and control, known as Instrument

Remote Control (IRC). The IRC architecture is a flexible, platform-independent application framework that is well
suited for the control and monitoring of remote devices and sensors. Workmg with instrument engineers and
scientists as well as past experience with distributed systems we have tried to come up with an architecture that
balances simplicity and flexibility. The architecture has to be simple enough to use and maintain as well as flexible
enough to be useful in a wide variety of applications and domains. The architecture emphasizes the capability to
configure itself based on extensible Markup Language (XML) descriptions. There are descriptions to tell the
framework which application components to plug in, what the Graphical User Interface (GUI) should look like,
what devices to connect to and how to communicate with them, what algorithms to include in the application, and
what interface to present to other peers. To enable a dynamic discovery and configuration capability for a collection
of devices, each IRC instance can advertise and publish a description of itself on a virtual network. This simple
capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture
for monitoring and control of complex instruments in diverse environments.

IRC enables significant savings in development costs by utilizing the XML descriptions to configure the
fiamework for a specific application. Each of the descriptions will be outlined in greater detail in the following
sections as we present the structure of the framework as well as the structure of a typical application using the
framework.

11. Application Architecture
The IRC framework is implemented in Java for cross-platform portability. It is currently being used on

Windows, Mac OS, Solaris, and several variants of Linux operating systems. The framework includes a growing
library of components, algorithms, and visualizations making it possible to construct an application entirely from
existing components. The framework also consists of several managers and factories which collectively are
responsible for creating an application instance configured for a specific. application. Each manager or factory is
implemented by an interface, an abstract implementation, and a concrete default class. This common pattern in the

* Computer Engineer, Advanced Architectures and Automation Branch, Code 588. ' Computer Engineer, Advanced Architectures and Automation Branch, Code 588.

1
American Institute of Aeronautics and Astronautics

https://ntrs.nasa.gov/search.jsp?R=20060026282 2019-08-29T22:07:08+00:00Z

I 1

fiamework allows developers to easily create variants of built-in functionality or create new implementations and
plug them into the framework The existing managers and factories are designed to be general purpose and typically
will work as is for most target applications. Example managers include, but are not limited to, a ResourceManager
responsible for locating needed resources, a PreferenceManager that maintains user preferences, a
ComponentManager for maintaining a list of current components in the application, and a GuiFactory that is
responsible for constructing the GUI fiom an X M L description. The IrcManager is the application manager
responsible for initializing the application on startup and creating the other managers and factories as needed.

The high-level architecture of
an application using the IRC
fiamework consists of one or
more components communicating
information or data using the
Publish-Subscribel pattern. At this
level there are two primary
methods that components can
communicate with each other,
either through an EventBus or, for
high data rates, through a
DatuSpace (Fig 1). The default
EventBus implementation allows
components to subscribe to all
events or to those matching
specified criteria facilitating a
dynamic and flexible flow of
information. This also isolates
components from the transient
nature Of some Figure 1. Representative Application Architecture.
Device proxies subscribe to
receive message events fiom the
bus that are directed to their external device and publish message events or data fiom their external device. GUIs can
come and go based on user demands and may publish and subscribe to events on the bus.

The Dataspace is a catalog of published data products, called BasisBundZes in IRC, available fiom data sources.
A BasisBundle is a collection of one or more data buffers that share a common BasisBuger. The common basis
values in a BasisBundle typically represent time associated with the elements of each data buffer; however the basis
can be any type such as a counter or frequency. The structure of a BasisBundZe can be described with XML or
dynamically constructed or changed. A BasisBundZe publishes data written to it, by a data source, to all registered
subscribers. The BasisBundZe architecture is optimized for hgher rate data with end-to-end throughput of hundreds
of Megabytes per second achievable in some configurations.

Since the configuration of the fiamework for a specific application is centered on XML descriptions, we have
developed corresponding XML schema definitions that enable an XML parser to validate the files, thereby
guaranteeing that the descriptions are complete and correct. The following sections describe the XML based
descriptions including the Type Map and Component descriptions, the Instrument description, and the GUI
description.

GUI

A. Type Map Description
The Type Map description contains several tables of key-value pairs that map type identifiers to actual

implementation classes. A default Type Map description is read by the fiamework on startup that defines the default
implementations as well as a library of available components. This file is central to the fiamework in that many of
the default implementations can be replaced by simply overriding entries in this file. The user can create an
application specific Type Map that will ovemde identical keys in the default or augment the map with new key
value pairs. Listing 1 is a partial example of a type map file.

2
American Institute of Aeronautics and Astronautics

Listing 1. Example Type Map Description

<LookupTable name=" GlobalTypeMap" >

<NamespaceTable name="DeViceType">
<Mapping name="Default" value="gov.nasa.gsfc.irc.devices.DeltDeviceProxy"/>
<Mapping name="Stateful" value="gov.nasa.gsfc.irc.devices.StatefulDeviceProxy"/>

</NamespaceTable
<NamespaceTable name="ManagerType">

<Mapping name="TaskManager" value="gov.nasa.gsfc.commons.processing.~ks.Default~askM~ager"/>
<Mapping name="DataSpaceManager" value="gov.nasa.gsfc. irc.data.DefaultDataSpace"/>
<Mapping name="ScriptEvaluator" value="gov.nasa.gsfc.irc.scripts.DefaultScriptEvaluator"/>
...

</NarnespaceTabW
<NamespaceTable name="ComponentType">

<Mapping name="SkySubtraction" value="gov.nasa.gsfc.hawc.algorithms.SkySubtraction"/>
<Mapping name="RawDataArchiver" value="gov.nasa.gsfc. hawc.archiving.RawDataFitsArchiver"/>
<Mapping name="Demuxer" value="gov.nasa.gsfc.hawc.algorithms.Demultiple~lgorithm"~
<Mapping name="Phaser" value="gov.nasa.gsfc.hawc.algorithms.Phaser"/>
<Mapping name="LevelOFitsArchiver" value="gov.nasa.gsfc.hawc.archiving.ChopRateFitsArchiver"/>
<Mapping name="ClientMessageHandler" value="gov.nasa.gsfc.hawc.app.ClientMessageHandler"/>

</NamespaceTable
...

</LookupTable

B. Component Description
A Component Description file defines a set of components for the framework to create and configure on startup.

An example description is given in Listing 2. The framework uses the Type Map description to resolve the
component types specified in a Component Description. For example the "Message Handler" component with type
"ClientMessageHandler" will result in an instance of the class "gov.nasa.gsfc.hawc.app.ClientMessageHand1er"
being created.

Listing 2. Example Component Description

<?xml version=" 1 .O" encoding="UTF-b"?>
<ComponentSet xmlns:xsi="http://www.w3 .org/200 1 /XMLSchema-instance"

xsi:schemaLocation="http://aaa.gsfc.nasa.gov/cml cml.xsd"

<Component name="SkySubtraction" type="SkySubtraction" start="tme"/>
<Component name="Message Handler" type="ClientMessageHandler" start="true"/>
<Component name="Raw Data Archiver" type="RawDataArchiver"/>
<Component name="Demuxer" type="Demuxer" starl="true"/>
<Component name="Phaser" type="Phaser" start-"true"/>
<Component name="Chop Rate FITS Archiver" type="LevelOFitsArchiver"/>

</Componen tSee

The content of a component description is used by the framework to configure the new component. The "start"
attribute in the "SkySubtraction" component description tells the framework to start this component after it is
created. The framework also passes the complete Component description to the created component allowing the
component to configure itself in some component-specific way if desired.

Typically all components, including algorithms and custom components needed for an application, are specified
in the Component Description, with the exception of Device Proxies which are handled by a Device description
described in the next section. If the application has a GUI the user can addremove or configure components
dynamically. This is accomplished through Java's ability to dynamically load classes at run-time. Optionally this can
also be done remotely by sending messages.

*

3
American Institute of Aeronautics and Astronautics

C. Instrument Description and Device Proxy Architecture
We developed the Instrument Markup Language2 (IML) as a means to describe an instrument or device. IML is a

vocabulary of XML dating back before XML became a W3C standard and has gone through much iteration over the
years based on lessons learned. The attributes of a &vice that can be described by IML include:

.

.
* .
*

Device Proxy component to use
Device subsystems
State model component to use
Logical message or command set
Message arguments (including data types, valid values/ranges, and units)
Message formats
Logical script set
Script arguments (including data types, valid values/ranges, and units)
Logical data streams (e.g., science data, housekeeping, message responses)
Data fields (including data types, valid valuedranges, and units)
Data formats
Communication mechanisms

The IML can describe a hierarchy of sub-devices, and each subsystem (sub-device) may use a different
communication mechanism or protocol. For example, one subsystem may have a TCPiIP interface with binary
messages and another subsystem may have an RS232 interface with ASCII messages, Each subsystem in the IML
description is represented by its own DeviceProv, which receives message objects, formats them according to the
rules specified in the IML file, and then sends them to the actual instrument.

Although at this stage in the evolution of IML it is primarily the software engineers who are writing the
descriptions, we envision the hardware engineers taking on this task. Not only do hardware engineers know the
instrument details best, but they traditionally provide significant contributions to a formal Interface Control
Document (ICD). The IML documents can serve a similar role - that is, communicating the intricate details of an
instrument's interface - in a much more structured, formal, and easily manipulated way. An example IML file for an
existing rover is given in Listing 3.

Listing 3. Example IML file

<?xml version=" 1 .O" encoding="UTF-8"?>
<Device xmlns:xsi="http://www. w3 .org/200 1 IXMLSchema-instance"

xsi:schemaLocation="http://aaa.gsfc.nasa.gov/iml iml.xsd"
name="PgRover" displayName="PG Rover" type="Default">

<MessageInterface name="Rover Messages" >
<Port name="Port" type="Simple" >

<Message name="?C" displayName="Toggle Camera">
<Field name="cameraMode" displayName="Camera Mode" type=" Integer" default=" 1 'I>

< Listconstraint name="mode">
< Choice name="on" displayName="On" value=" 1 "I>
< Choice name="off' displayName="Off value="O"/>

d ListConstrainp
</Field>

</Message>
<Message name=" !F" displayName="Forwardrd">

<Field name="Value" displayName="Value" type="Integer" default=" 1 Of'>

</Field>/>
<Rangeconstraint name="" low="O" high="47"/>

</Message>
. . . <!-- Other messages not shown -->

</MessageInterface>

<OutputAdapter name="messageFonnatter" displayName="Message Formatter" type="MessageFormatter">

</OutputAdapter>
. . . <!-- Output message format description goes here (see Listing 4) -->

4
American Institute of Aeronautics and Astronautics

<InputAdapter name="messageParserI' disp1ayNameF"Message Parser" type=" S ystemOut"/>

<Connection name="TCP" type="TCP Client5
<Parameter name="hostname" valueF"PgRover1 .gsfc.nasa.gov"/>
<Parameter name="port" value="23"/>

</Connection>
<Connection name="Standard Out" type="STDOUT" />

</POW
</Device>
The framework reads the IML for a specific device, in this case a "PG Rover", and based on this description

creates the necessary Deviceproxy component. The "<Device>" root element in the example specifies a device of
type "Default". The m e w o r k looks up the device type in the Type Map and an instance of the DefaultDeviceProxy
class is created as the Deviceproxy
component. This proxy component
will then be passed the device
description to configure itself. The
DefaultDeviceProxy is a Composite
component in the W e w o r k library
that does not implement any device
specific knowledge, rather it creates,
manages, and delegates device
specifics to subcomponents based on
the IML description (see Fig. 2).

The DefaultDeviceProxy class
constructs one Port component for
each c6<P~ro77 element in the IML
description, one ' DeviceProxy
component for each nested
"<Device>" element (if any), and a
StateModeZ component if specified.
Each component is connected as

4-

w
Figure 2. Default Device Proxy Component Structure.

needed to listen for message events from the DefaultDeviceProxy class. The Deviceproxy receives messages from
the EventBus and passes them onto all listening managed components. The StateModel can be configured to listen
for messages going to the device as well as messages received fiom the device. Figure 3. shows the resulting
component structure created for the "PG Rover" description.

r-

Message
I 1 FormattedBytes r

'Objects 7

I
I - RawBytes Message Objects
I

Figure 3. Rover Device Proxy Component Structure.

Local
Console

5
American Institute of Aeronautics and Astronautics

In the example shown in Fig. 3, the Deviceproxy receives rover messages from the EventBus and passes them
onto the Port component. A Port component's primary responsibility is to manage the transition between internal
Message objects to and from a device-specific representation of the message. The Port implementations available in
the framework all accomplish this by creating and managing OutputAdapter, InputAdapter, and Connection
components. A Port can also do some message filtering or validation based on the message descriptions, however
since there is only one port defined in the rover description and it specifies a "Simple" type, all outgoing messages
are simply passed onto the OutputAdapter. The OutputAdapter is responsible for converting a Message object into a
buffer of bytes. The method for doing this depends on the implementation type of the OutputAdapter. Listing 4
shows the OutputAdapter description for the rover expanded to include the transformation rules for converting a
Message into the ASCII bytes expected by the rover.

Listing 4. Output Adapter Example Description.

<OutputAdapter name="messageFormatter" displayName="Message Formatter" type="MessageFormatter">
(Transformation>

<Formap
<!--

We simply write out the message name followed by the
value of each field in the input message as ascii values,
terminated by a CR.

-->
<Record useDataNameAsInitiatol-"true">

<Field applyToRemainingFields=%ue">

</Field>
Germinator value="&#l3;"/>

<Value type="printf' pattem="%02d"/>

</Record>
</Format>

</Transformation>
</OutputAdapter>

The OutputAdapter type specified in the IML for the rover is "MessageFormatter" which resolves from the Type
Map to the concrete class MessageFonnatter from the framework component library. The MessageFonnatter class
uses the transformations given in the IML description to transform each message into bytes. In this case the
transformation will result in sbort, four-character commands such as "!F23" for a "Forward" command or "?COl" to
turn the camera on. The formatted bytes from the OutputAdapter are sent to all listeners.

In the case of the rover the listeners are two Connections. One connection simply writes out the bytes to the
console for debugging purposes and the other writes all bytes received to a TCP socket connection. This decoupling
of output format and connection medium allows the user to easily change either without impacting the other. To
change the connection from TCP to a serial connection the type in the Connection description simply has to be
changed from "TCP Client" to "Serial".

The responsibility of the InputAdapter is to do the reverse of the OutputAdapter and transform the bytes received
by a Connection into a Message object or, in the case where the bytes represent a data stream, into the Dataspace.
The IML description for the InputAdapter may contain parsing rules for doing this transformation. An alternative for
both the OutputAdapter and InputAdapter is to plug in an implementation that performs the transformation in code.

Although the IML description of a device does not represent visual information, a message editor component
does utilize the IML description to present the available messages or commands, and scripts for a device. The visual
view of the PG Rover IML description from Listing 3 is presented in the message editor as in Fig.4.

6
American Institute of Aeronautics and Astronautics

I--
1-

i-. k e
} 4 LeRTurn
r 4 RigMTum
- 4 Toggle Manual Control OWFF
9 Distance?

w e

H I
4 Toggle Runninp Clock ONOFF

I 4 Heading? I

-

Figure 4. Message Editor representing the “PG Rover” IML description.
Although the rover example is fairly simple it does represent a real application of IML and is a common pattern

seen for controhg a device. It only took 10 minutes to create the complete IML description and use it within the
framework to control the PG Rover without any additional coding.

Since the instrument description is read at runtime, IML enables rapid iterative development and prototyping.
For example, suppose the hardware engineer decides that he wants to make available a new rover command. He can
simply define his new command in the IML and load the revised IML file, and the new command will appear in the
GUI. No new code must be written, nor is recompilation necessary.

While there are many advantages to using IML, one of the most sigdicant is the ability to defer some of the
hardware implementation details as long as necessary during the development period. Soha re ofien needs to be
developed in parallel with the hardware it is to control. Since hardware engineers may need to change various details
as their subsystems are integrated, or as new hardware components with different characteristics are manufactured, it
is crucial that the s o h a r e architecture provide a degree of separation between the objects that represent the system
and the hardware nuts-and-bolts.

D. User Interface Description
The IRC w e w o r k supports specifying the layout and content of the Graphical User Interface (GUI) using

XML. While describing a User Interface is not new, many implementations take a minimalist approach by only
mapping a few components that are common to several platfonns or GUI libraries. This limits the flexibility and
scope of user interfaces that can be created. The XML dialect that the IRC M e w o r k uses is an expanded version of
SwiXML$. A GUI generating engine parses the XML representation at runtime and instantiates the necessary classes
to render the GUI. The GUI description can be loaded dynamically from a file packaged with the code, from a
remote server, or Erom a remote device that has published a specialized GUI.

The XML dialect of SwiXML is closely tied to the Java Swing components contained in the Java Foundation
Classes (JFC). For example the XML element “<frame>” corresponds to the JFrume Swing component and the
“<panel>” element to the JPunel Swing component, etc. In addition an XML attribute of an element corresponds to
a method call on the Swing component. For example in Listing 5 the attribute “title” in the element “<frame>”
corresponds to the “setTitle” method in the JFrame class.

http://www.swixml.orgl

7
American Institute of Aeronautics and Astronautics

Listing 5. Simple SwiXML description.

qxml version=" 1 .O" encoding="UTF-l" 7>
<frame size="640,480" title="Hello SWIXML World" DefaultCloseOperation="JFrame.EXIT-ON-CLOSE5

<panel constraints="Borderlayout.CENTER">
<label LabelFo~W" Font="Comic Sans QS-BOLD-12" Foreground="blue" text="Hello World!" />
<textfield id="tf" Columns="20" Text="Swixml" />
<button Text="Click Here" Action="submit" />

4paneb
4frame

Figure 5. Swing JFrame rendering of SwiXML description.
SwiXML addresses the View in the common Model-View-Controlle? (MVC) software pattern. The MVC

pattern divides the user i n k r f " into three parts, the model represents the context, the view is one representation of
that context, and the controller &fines how the view reacts to user interaction. Since SwiXML is limited with
respect to the models and controllem, we have extended the syntax to support instantiating models and controllers
and associating them with one or more views. In Listing 6 a "<ControlClass/>" element instantiates a controller that
is then associated with a panel and popup menu by a "controlclass" attribute. The controller identified in this
example as "Tree-Controller" wil l be registered to user events from the tree view component and popup menu.

Listing 6. GUI description using the ControlClass Element.

<frame id="Bmwser-Frame" uame="frBme" size="600,400" title="Component Browser" layout-"Borderlayout">

<splitpane orientation-" 1 I' Dividahtion="250"
BottomComponent="~-T~le-Panel" TopComponent="Tree-Panel">

<panel id="Tree-Panel" Layout=%ordtxlayout">
<scrollpane>

<tree id=Component-Tree" SelectionRoWz"0"
initclass="gov.nasa.gsfc.irc.gui. browser.ComponentTreeMode1"
controlclas~"Tree-Controller" constraints="BorderLayout.NORTH'*>

<menuitem text="Start" controlclass=l'Tree_Controller" actionCommand="START"/>
<menuitem text="Stop" controlcIass="Tr~-Controller" actionCommand=" STOP 'I/>

<separator/>
. . . e!- Other menu items not shown -->

<popupmenu controlclass="Component-Tree_Controller">

</popupmenu>
</tree,

4scrol lpane
</panel>
. . . e!-- Other items not shown -->

4splitpane
</frame>

8
American Institute of Aeronautics and Astronautics

The rendering of Listing 6 is shown below in Fig. 6 with the popup menu displayed. There is a similar
mechanism for instantiating a model for a view. A GUI description can spec@ multiple models and controllers
linked to GUI objects. These simple extensions enables a self contained MVC description that can be instantiated, or
included in a larger GUI description, or even published to remote clients.

! Component Browser ut

Figure 6. Swing JFrame rendering of the “Component Browser” GUI description.

We have also extemkd the description syntax to support the frameworks library of visualization components. A
visualization can be described in XML and constructed using one or more light-weight renderers that are combined
or overlaid to create a complete custom visualization. A visualization can also reference a Scalable Vector Graphics
(SVG) description to create a dynamic data
driven interface. Figures 7 and 8 are
examples of these types of visualizations
that can be described in XML and
constructed with the IRC fiamework.

The IRC fiamework has several
predefined GUI descriptions for view
components such as the “Component
Browser” previously shown in Fig. 6, and
the “Message Editor” in Fig. 4 that can be
customized or used as is.

E. Distributed Architecture
The previous sections described the

internals of the IRC Framework and how
an IML description is used to communicate
with an instrument. With a distributed
environment we need to take a broader
view of an IRC architecture based on
multiple instances of the IRC fiamework.
A single IRC instance can use IML
descriptions in two different contexts. The
first, as outlined in section C, is a
description of the private interface to an
instrument that a device will be
communicating with. The second context is

:sN

5,000.0 5,000.0

‘ I I I I I I ,
14.650 14.700 14.750 14.800 14.850 14.800 14.850

4 1
11.4714 gBQ . , , . , , . . ._ - -

a description-of a device’s own public
interfaces that other external clients can
use to communicate with it. Figure 7. Example visualizations.

9
American Institute of Aeronautics and Astronautics

. _ . ..- The lKC m e w o r k proudes the ability to
dynamically discover and communicate with
other devices anywhere on a network in a peer-
to-peer manner. To enable a dynamic discovery
and configuration capability for a collection of
devices, each IRC instance (referred to as an IRC
Device) can advertise and publish information
about itself on a virtual network@. A virtual
network allows devices to communicate and
organize independently from the physical
network. For scoping and security the virtual
network can be divided into virtual peer groups.
Devices can join or leave a virtual peer group
and thus join or leave the instrument control
environment of IRC.

An IRC Device can advertise and publish
several public IML interface descriptions. A
device may want to split up its public
descriptions (commanding vs. data) or publish
more than one version (novice vs. expert). An
IRC Device can also publish a GUI description
for a customized command panel or visualization
of the device.

I . Example Distributed IRC Architecture
The High-resolution Airborne Widebed

r e SVG Dynamic Example 0mQ
i M s t l l l u - - - ~

-200.0

-0.0
-100.0 27

-200.0

-0 0
-100.0 168

-200.0

-0 0
-1000 43

-200.0

-0 0
-100.0 20a

-200.0

-0 0
-100.0 78

WksBOx
-200.0

-0 0

I -100.0 124

Camera** (HAWC) instrument will be a facility
instrument for NASA’s Stratospheric
Observatory For Infrared Astronomytt (SOFIA)

Figure 8. Example SVG visualization.

mission, a Boeing 747SP aircraft modified to accommodate a 2.5m reflecting telescope. The HAWC control and
monitor software will be configured in a distributed hlerarchal peer architecture as illustrated in Fig. 9.

Each of the subsystem (AJIR, Thermal, Optics, etc.) will have dedicated IRC devices to control them and
function as subsystem proxies. The proxies will primarily encapsulate and perform subsystem-specific functions and
advertise the subsystem on the network to a “HAWC Subsystem” peer group. The type of specific functions that
each proxy may perform includes but is not limited to closed loop control, data translation or calibration, and
command translation. The “HAWC” IRC Device will join the “HAWC Subsystem” peer group as a trusted peer and
request the published IML interface for all subsystems. The “HAWC” device will also join a “HAWC Instrument”
peer group and publish its IML interface to the group. Astronomers and engineers will be able to start client IRC
Devices anywhere on the network, join the “HAWC Instrument” group, and request the public IML description from
the “HAWC” device. The “HAWC” device may publish more than one version of the interface depending on the
type or authorization of the user.

2. Distributed IhfL Example
Using the distributed architecture of IRC, IML descriptions can be much more independent of the physical

location of the devices. Listing 7 shows a complete description that the HAWC device will use to connect with each
subsystem.

9: IRC transitioned from an in-house developed peer-to-peer framework called WorkPlace to JXTA (see
http://www.ixta.org). JXTA defines a set of open XML protocols for finding and organizing a virtual network of
p,eers.

tt http://www.sofia.usra.edu/
http://astro.uchicago.edu/hawc/hawc.htm

10
American Institute of Aeronautics and Astronautics

Peer Gmup HAWC Subsystem Peer Gmup

Figure 9. HAWC IRC Device Architecture.
The dynamic discovery mechanisms of IRC are used to find the IML associated with each subsystem. With this

approach, the HAWC instrument can be unaware of the physical location of the other peers on the network. It
simply knows the names of the peers. Other variants of this allow for IRC to search for all peers in a particular
group or for al l peers of a particular name, regardless of the group.

For the HAWC instrument the environment changes as do the control needs when the instrument is rolled on the
airplane versus a test lab before flight. For example, the description of the telescope that the s o h a r e will receive on
the airplane will describe how to communicate with the actual telescope, while on the ground in the lab the
description could be for a telescope simulator or some other piece of test equipment.

Listing 7. IML Description of HAWC Device and Subsystems.

<Device name="HAWC*>
<Devicepeer group="HAWC Subsystem" description="Optics"b
<Devicepeer group="HAWC Subsystem" description=" ADR"b
<Devicepeer group=' W W C Subsystem" description="Thermal"/>
<Devicepeer group="HAWC Subsystem" description="Calibrator"b
<DevicePeer group="HAWC Subsystem" description="Detector"b
<Devicepeer group="HAWC Subsystem" description="Telescpe"/>

</Device>

F. Algorithms
IRC provides several general-purpose algorithms, and aims to make it easy to develop instrument-specific

algorithms. Takmg advantage of Java's dynamic class loading, the IRC framework does not have to know about the
algorithm implementation class until runtime; by referencing the location of the Java byte code, the framework is
able to create instances of algorithms as needed. Also, by using the Java Native Interface (JNI), algorithms can be
implemented in any native language such as C, C++, or FORTRAN.

To simplify the implementation of custom algorithms the framework has class implementations and interfaces
that provide the algorithm architecture shown in Fig. 10. Algorithm is a composite object that manages a set of
Input, Output, and Processor Objects. The Input and Output components know how to interact with the Dataspace.
The Input component can filter, down-sample, or queue the data for the algorithm if needed. The Processor

11
American Institute of Aeronautics and Astronautics

component is the algorithm implementation and is typically
the only component from the algorithm architecture that
needs to be developed for a custom algorithm.

G. Scripting
The ability to write scripts to embed in the instrument

control software is an important feature of the IRC
framework. It provides the user with a way to sequence
common tasks. Currently, scripts must be written in Jythonss
or JavaScript; however, the IRC architecture allows for
support of any scripting language that supports the Bean
Scripting Framework8*. Jython is a Java implementation of
Python, an intexpreted, object-oriented programming
language

A script that configures or commands an instrument can
be written easily. Such a script is shown in Listing 8. This
script sends two messages to a device. The
"getMessageDescriptor'Oi) call returns the IML descriptor of
the "setRegister" method for the "Detector" device. The
descriptor uniquely identifies a specific message including
any specification of arguments and constraints. This
descriptor is used by the "publishMessage" call to validate

Figure 10. Algorithm Architecture.

the arbents before actually publishing the message to the EventBus.
A script can also prompt the user for input, and can add, remove, and configure Algorithms. Support for looping

and control flow is included Using more advanced capabilities of Jython and JavaScript, a script can extend the IRC
framework in interesting ways, since they have access to all Java packages and can extend Java classes. These
features have been used to create scripts that implement algorithms that connect themselves to the EventBus, issue
commands based on the analysis of incoming data, and then remove themselves from the framework.

Listing 8. Sample Jython Script.

REG-TM-RST-FIBR = 257
REG-TMJXK = 263

descriptor = getMessageDescriptor("setRegister.SI1.Detector")

Reset fiber interface
publishMessage(descriptor, REG-TM-RST-FIBR, 0)
I# Set clock to 15 KHz
publishMessage(descriptor, REG-TM-CLK, 15)

To make a script available to the system, a fiagment of IML must be created that describes the script, its arguments
(including data types and valid values), and any documentation for the script. The IML fragment shown in Listing 9
can be added to a library of scripts or to the description of a subsystem to make the script appear as a primitive
command to the user.

Listing 9. Sample IML Script Element.

<Script name="resetFiberOpticLinkn
displayName="Reset Fiber Optic Link"
description="Resets the fiber optic link."
file=*detector/resetFiberLink.py"
language="Jython"/>

tt http://www.jython.org!
Bs http://jakarta.apache.orghsE/

12
American Institute of Aeronautics and Astronautics

III. Role in Missions
IRC is well suited for the control of instruments and devices and is typically used as the primary means of

remotely controlling a device; however it can also be used within the context of a larger mission system or
framework. The most common roles for IRC in a mission framework are the following:

As an adapter between the mission framework and devices. In many cases it is not feasible to m o d e an
existing device, sensor, or application to be compatible with a mission framework. IRC and an IML
description can facilitate the integration of a wide variety of devices and applications.
As a customizable user interface to the mission framework or to devices and applications attached to the
system. IRC provides a flexible architecture for describing a user interface using XML as well as a library
of visualization components.
As an application framework for building customized client or service applications connected to the
mission framework. The X M L based component description in the IRC framework allows an application to
be assembled and codigured from a library of plug-in components. IRC has been used in this way for
creating device simulators, autopilots, environmental monitors, and smarter devices.
As a standalone controller for test equipment or subsystems supporting lab tests and validation.

1)

2)

3)

4)

IV. Future
The IRC framework has evolved based on lessons learned applying it to device control to minimize the amount

of custom, device-specific development that must be completed. One area that still requires custom code for
complex devices is representing and operating on device state. IML does have a “<StateModel>” element that
allows the developer to plug in and connect a device state model component, however the framework and IML
provide only limited help in implementing or describing a device’s state. Currently this is done by coding custom
models either as algorithms or components. An important enhancement to the IRC framework will be to enable
behavior state models described by XML to be assembled and synthesized into the framework. This will also
provide the ability to quickly develop models that can be used for simulating device operations with whatever
degree of fidelity is deemed necessary. Simulations also allow many activities to be performed long before
instrument development has been completed. Instrument designers can develop, validate, and modify designs
quickly and efficiently. Scientists can begin science planning and data analysis algorithm development; data
archival, retrieval, and publication scenarios can be worked out; and support staff can begin training for instrument
operations very early in the program. These state or simulation models can also be used operationally for detecting
fault conditions and recovery.

V. Summary
The IRC framework design supports a high degree of codigurability, allowing it to be tuned for specific

domains. Processes can be run on a single computer or on multiple heterogeneous computers, ranging from small,
low cost hardware components to high-end workstations. Processes can be run either locally, at an observatory for
example, or remotely over the Internet (or both). This provides an instrument development team the flexibility to use
the hardware components that best fit the operating environment and instrument requirements. The framework
supports the cross-platform migration of fimctions and necessary reconfiguration if these requirements change. This
flexibility enables a design in which small, embedded software components are placed at the point of origin of the
generated data (smart sensors) and at the point of device control (smart actuators). The configurable IRC framework
enables these software solutions to be easily developed, enhanced, maintained, and reused for different devices,
different instruments, and different domains.

The IRC framework, utilizing descriptions in XML, supports instrument development from early design through
operations and maintenance to minimize software development time, minimize development costs, maximize reuse
of software components, and maximize flexibility of instrument archtectures. The plug-in nature of the framework
maximizes the ability to incorporate emerging technologies. Thus, as new instruments are added to a system, or as
specifications for existing instruments are modified, or as new requirements are added, the effort to adapt the
software to these changes will be incremental rather than major.

IRC has been successfully used to control, monitor, or simulate instruments from simple sensors, lab equipment,
sensor webs, autonomous boats, to large telescopes.

13
American Institute of Aeronautics and Astronautics

References

’ Gamma, E., Helm, R., Johnson, R., and Vliddides, J, Design Patterns: E!ements of Reusable Object-Oriented SoJtware,
Addison-Wesley, Reading, Mass. 1995.

Ames, T. J., Sall, K. B., & Warsaw, C. E.,” NASA’s Instrument Control Markup Language,” Astronomical Data Analysis
Software and Systems VIII, eds. D. M. Mehringer, R. L. Plante, & D. A. Roberts, ASP Conf. Ser., Vol. 172, Astronomical Society
of the Pacific, San Francisco, California, 1999, p103.

Krasner, G. E., and Pope, S. T., “A cookbook for using the model-view controller user interface paradigm in Smalltalk-80,’’
Journal of Object-Oriented Programming, AugustJSeptember 1988, pp. 26-49.

14
American hti tute of Aeronautics and Astronautics

