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FORCE-STRAIN CHARACTERISTICS AND RUPTURE-LOAD CAPABILITY
OF VIKING-TYPE SUSPENSION-LINE MATERIAL
UNDER DYNAMIC LOADING CONDITIONS

By Lamont R. Poole and Earl L. Councill, Jr.
SUMMARY

A series of tests has been conduéted to investigate thg elastic behavior
of Viking-type suspension-line material under dynamic loading conditions.
Results indicate that there is a decrease in both rupture-load capability and
elongation at rupture as the test strain rate is increased. Preliminary
examination of force-strain characteristics indicates that, on the average,
the material exhibits some type of viscous effect which results in a greater
force being produced, for a partichlar value of strain, undgr dynamic loading

conditions than that produced under quasi-static loading conditions.
INTRODUCTION

Traditionally, analyses of parachute deployment and inflation dynamics
have been conducted under the assumption of either a rigid or an undamped,
linearly-elastic parachute suspension system. For some time, it has been
known that the elastic behavior of typical dacron suspension—line materials
under quasi-static (Instron) loading conditions is quite nonlinear. It has
also been suspected that this elastic behavior might_yary appreciably under
dynamic loading conditions due to some type of viscous forces. The results
presented in reference 1 show that suspensién—line viscous damping can haye

a significant effect on the inflation dymamics of parachute systems such as

the supersonic BLDT.



In light of the resuitg'presented in reference 1, a test program has been
conducted to investigate the elastic characteristics of Viking-type suspension-
line material under dynamic loading conditions. It is the purpose of this
paper to present results obtained during‘the test program and to discu;s_con—

clusions that can be drawn from preliminary examination of the results.
TEST SYSTEM DESCRIPTION

The suspension-line material used in the tests was_Type 52; 220 denier,
880—pound.minimum tensile strength dacron cord which was procured from Good-
year Aerospace Corporation's supplier. It was specified that the material be
identical to that supplied to GAC for the Viking parachute; Upon receipt
at the Langley Research Center, the material was cuf into secfions of épprox;—
matelnyS inches in length, and the sections were sterilized in accoraance with
instrﬁctions received from the Viking Project Office. The sections were then
formed into test sampleé having Chinese-finger end loops and the dimensions
shown in figure 1. | |

Quasi-static loading tests weré performed on an Instron tensile—testing
machine. Dynamic loading tests were performed by using a hydraulically-driven
ram having a maximum-speed capability of about 39 in/sec. Samples‘were
attached to pin-type fittings on the ram head and on’a rigid base by using
the Chinese-finger loops. Ram-head disblécement was measured by using a
cable-driven potentiometer, éndbforce waé measured by Qsing a dynamically-
calibrated resistance-type force gauge which‘waé aftached to #heirigid‘base.
In order to assure that data were properly recorded under the dynamic test
conditions, a rec&rding oscillograph was used for simultaneous fecording of

displacement and force readings. For both quasi-static and dynamic tests,

specimens were strained to the point of rupture.
) ‘



TEST RESULTS

Five loading tests were conducted hsiﬁg the‘instfon fensile—tésting machine
at a crosshead speed of 1 in/min. Assuming that the specimen gaugé lehgth is
the distance between centers of the Chinese fingers, or 15 inches, this speed
corresponds to a strain rate of 0.1 percent/sec. Force-strain curves for the
five tests were essentially identical, and one such curve is shown in figure 2
as the representative quasi-static curve. .

Figures 3 through 12 present force-strain curves for teéts conducted ﬁsing
the hydraulic ram at strain rates varying from 4 percént/sec to 216 percent/sec.
Fluctuation in calculated strain rates from test to test couid be due to fluctua-
tion in hydraulic flow rate or error in reading oscillbgraph chafts. For all
tests, sample rupture was seen to occur in the middle single;thickness region
of the samples near the juncture of the end of the Chinese-finger loop.

| By comparing figures 3 through 12 with the quasi-static curve in figure 2,
several general observations can be noted:

1. The force-strain curves obtained under dynamic loading conditions on

the average tend to lie above the quasi-static curve; i.e., for a

particular value of strain, more force is produced under dynamic loading

conditions than is produced under quasi-static’conditions.

2. Material strain at time of rupture tends‘to decrease  as strain réte

/is increased. For example, the average value of strain at rupture for

the quasi-static tests is about 0.365; the average valﬁé for“the tests

near 210 percent/sec is about 0.29.

3. Rupture:load capability tends to decrease as strain rate is increased,

as is summafized in figure 13 for the.qurveé presented in figures 2

through 12 and for other tests for which force-strain curves are not



presented. The average rupture-load capability for the quasi-static tests is
near 950 pounds; the average value decreases to about 810 pounds for tests

near 200 percent/sec.

CONCLUSIONS

A great deal of uncertainty exisfs in'defin@ng alpriori the tensile
properties of viscoelastic materials, such as nylon of dacron, under dynamic
loading conditions. Additional uncertainty eﬁters the picture when woven
configurations such as suspension-line material are coﬁsidered. To eliminate
these uncertainties, with respect to the Viking parachute configuration, a
test program has been conducted to obtain data on the tensile properties of

Viking-type suspension-line material over a wide range of strain rates. Based

123

on preliminary examination of these data, the following conclusions can be
drawn:
1. Material rupture-load capability'dééreases as strain-rate is increased.
At strain rates above 75 percent/sec, no rupture loads were observed which
would meet the minimum tensile strength specification of 880 pounds.
2. The material, on the average, exhibits some type of viscous effect
which, for a particular value of strain, produces: a greater load under
dynamic loading conditions than that produced under quasi-static loading

conditions.
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Figure 1.- SKetch of test sample
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