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Flight Development for Cryogenic Fluid Management 
in Support of Exploration Missions 

David J. Chato 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
This paper describes the results of the “Experimentation for the Maturation of Deep Space Cryogenic Refueling 

Technology” study. The purposes of this study were to identify cryogenic fluids management technologies requiring 
low gravity flight experiments to bring to technology readiness level (TRL) 5–6; to study many possible flight 
experiment options; and to develop near-term low-cost flight experiment concepts to mature core technologies of 
refueling. A total of twenty-five white papers were prepared in the course of this study. Each white paper is briefly 
summarized and relevant references cited. A total of 90 references are cited. 

I. Introduction 
Technologists have relied on flight tests to develop cryogenic fluid management technologies since the 

beginning of space travel. Drop tower, sounding rocket flights and subscale experiments carried on the Mercury 
missions provided vital information for the design of the Saturn IV and Centaur cryogenic upper stages. Information 
from these experiments and the subsequent full-scale demonstration flights successfully addressed the issues of 
propellant slosh, settling, and short-term storage/pressure control. 

As a part of its technology suite the NASA Exploration Systems Research and Technology (ESR&T) office 
commissioned the study “Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology” 
abbreviated as MDSCR. Cryogenic refueling supports the ESR&T mission by addressing the strategic technical 
challenges listed in table 1. 
 

TABLE 1.—STRATEGIC TECHNICAL CHALLENGES (STC) ADDRESSED 

STC no. STC description Project support or impact 

1 Reusability Refueling of propellants essential to reuse of propulsion stages 

2 Affordable logistics pre-positioning Refueling technologies required to make use of In-Situ Resource 
produced cryogenic propellants 

3 Energy rich systems and missions High performance of cryogenic propellants essential to energy rich 
systems and missions. Refueling technologies increase usability of 
cryogenic propellants 

 
The goals of MDSCR Project were: to identify cryogenic fluids management technologies requiring low gravity 

flight experiments to bring to technology readiness level (TRL) 5–6; to study many possible flight experiment 
options including sounding rockets, International Space Station, Shuttle-based experiments, low-cost free flying 
spacecraft, and re-flight of existing Shuttle/ISS experiments; and to develop near-term low-cost flight experiment 
concepts to mature core technologies of refueling. 

The MDSCR project team was led by the Glenn Research Center at Lewis Field (GRC) and involved key 
members of other NASA centers as well as industry and academic partners. NASA centers playing a key role in this 
project included Ames Research Center (ARC), Goddard Space  Flight Center (GSFC), Johnson Space Flight Center 
(JSC), Kennedy Space Flight Center (KSC), Langley Research Center (LaRC), and Marshall Space Flight Center 
(MSFC). Industry partnerships were formed with the Boeing Company and Lockheed Martin. The Case Western 
Reserve Universities National Center for Space Exploration also assisted. MDSCR supported the In-STEP Element 
Program within the Technology Maturation Program (TMP).  
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An initial assessment of technologies (ref. 1) produced the list of technologies shown in table 2 Note however 
that the continuing investigation suggested several additional technologies to consider. These will be discussed later. 

 
TABLE 2.—FLIGHT TESTING REQUIREMENTS OF CFM TECHNOLOGIES 

CFM 
TECHNOLOGY 
ELEMENT 

CURRENT 
TRL 

PAST 1–G 
ACCOMPLISHMENTS 

LOW-G ISSUES FLIGHT 
TESTING 

PASSIVE 
STORAGE- 

5 *3 percent Loss/month 
Demonstrated with Large 
Scale LH2 Test 

Low-g thermal stratification 
effects unknown 

Highly desirable 
for stratification 

ACTIVE STORAGE 
(ZERO BOIL-OFF) 

4 LO2/CH4 
 
3LH2 

*Subscale demo with 
LN2 and 10W at 97 K 
cryocooler 
*Large scale demo with 
commercial cryocooler 

Low-g thermal stratification 
effects unknown 

Highly desirable 
for stratification 

PRESSURE 
CONTROL 

4 *Large scale demo of 
thermodynamic vent 
system (TVS) with spray 
bar 
*Subscale test of TVS 
with axial jet mixer 

Low-g heat transfer and fluid 
dynamics effects mixing, de-
stratification and cycle rate 

Highly desirable 

MASS GAUGING 3 *Component testing with 
simulant fluids, LN2 and 
limited LH2 

Some concepts strongly effected 
by low-g heat transfer and fluid 
behavior 

Highly desirable 

LIQUID 
ACQUISITION 

3 *Bubble point testing 
with LN2 
*Historical data (1960’s) 

Low-g heat transfer significantly 
effect LAD performance 

Required 

FLUID TRANSFER 3 *Subscale demo of 
chill/no vent fill testing 

Transfer operation strongly 
effected by low-g 

Required 

 
It was felt that early flight testing of these technologies would benefit the NASA exploration program. Early 

flight testing of liquid acquisition, mass gauging and pressure control technologies would enable the use in low-
gravity (low-g) of cryogenic propellant in the 2012 Crew Exploration Vehicle (CEV). Early flight testing of fluid 
transfer technologies may enhance future missions by providing on-orbit assembly options for stages that cannot be 
launched in a single mission.  

The MDSCR project was conducted as a series of research tasks. The first task was to review the prior literature 
for previous flight experiments, carriers, and launch systems. These were then documented in two page technical 
white papers. The second task was to conduct a technical assessment of current research by meeting with team 
members. Four technical assessment meetings were conducted covering the majority of research teams. 
Unfortunately restrictions placed on the release of architecture studies prevented the inclusion of the results of the 
Langley and Johnson teams in this paper. The third task was to transform the findings of the technical assessments 
into white papers. These were added to the white papers accumulated in the first task. The fourth task was to 
convene the team to review the white papers produced in the prior task, and rank them on the basis of technical 
need, cost, return on investment and flight platform. Although the team has completed task four the evaluation 
results are still under review and will be reported at a later date. The fifth task was to prepare monthly reports to HQ 
as well as the final report. This task will be concluded by preparing the final report which should be forthcoming as 
a NASA TP in the near future. 

II. White Papers 
The one of the principal outputs of the MDSCR study was a series of technical “white papers.” The objectives 

of the white papers were to: 
 
• Provide quick reference summary of cryogenic fluids management experiment concepts 
• Enable rapid review and comparison between experiment concepts 
• Provide publishable documentation of the options explored by the research effort  
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The following additional instructions were provided to the preparers; 
 

• To be only concerned with technologies that are unique to “cryogens” or ‘space refueling” 
• To highlight areas of flight test 
• To provide a comprehensive bibliography 
• To limit the paper to two pages of 10 point text (some exceptions were granted for this guidance) 
 
The objectives were different than those of an ordinary white paper, which typically advocates a position rather 

than provides a technical review. What was required was something similar to a “case study” but much briefer to 
avoid being overwhelmed with detail.  

A total of twenty-five white papers were prepared during the MDSCR study. To help organize the “white 
papers” they were separated into five groupings. The first grouping was “Carriers and Launchers” which talked 
about ways to provide access to low gravity without discussing specific experiments. The second grouping was 
“Experiments Historical” which discussed flight experiments which have already been completed. The third 
grouping was “Instrumentation” for instruments that would be helpful to experiment design, but were not complete 
experiments in themselves. The fourth grouping was “Experiments Proposed” for experiment concepts in design and 
development. The final grouping was “Maturation Strategies” These were broad statements of approach and 
philosophy to the maturation of cryogenic technologies without proposing specific experiments.  

Space does not permit presentation of all the full white papers in this document. Instead the author has 
presented brief descriptions with citations to references on which the white papers are based. For the “Experiments 
Proposed” and “Maturation Strategies” which represent active concepts not yet in the technical literature, the 
description has been expanded to a paragraph and a key figure or illustration included. White paper descriptions by 
grouping follow bellow. 

A. Carriers and Launchers 

Brief descriptions only. Most of these carriers have a payload users manual references to provide detailed 
information. 

 
1. The Hitchhiker Shuttle Small Payloads Carrier (GSFC) 

This paper described the capabilities of the Hitchhiker bridge mounted in the shuttle cargo bay. This was the 
carrier used for both the SHOOT and VTRE experiments described in later white papers. Key references include 
(refs. 2 and 3) 
2. Pegasus Air Launch System (GSFC) 

This paper described the methodology used to fly cryogenic payloads such as Wide Field Infrared Explorer 
(WIRE) on the Pegasus Launch vehicle (refs. 4 and 5) 
3. NASA Sounding Rocket Program (GSFC) 

This paper summarized the capabilities and constraints of NASA’s current stable of sounding rockets 
(refs. 6 and 7) 
4. Cryogenic Ground Serving/Launch Operations (KSC) 

This paper described current capabilities and methodologies for handling cryogens on current launch. Also 
included was a brief discussion of potential upgrades and handling of highly subcooled “densified” cryogens 
5. Falcon Launch Vehicle Family (KSC)  

This paper described a DARPA/Space X effort to provide very low cost launch vehicles (ref. 8) 

B. Experiments Historical 

Brief descriptions only. The reader is referred to the referenced published literature for details 
 

1. Aerobee Sounding Rocket Cryogenic Fluid Management Tests (GRC) 
A sounding rocket effort in the early sixties done with liquid hydrogen to understand the behavior of cryogens 

in low gravity (refs. 9 through 18) 
2. Saturn IVB Fluid Management Qualification (GRC) 

Flight qualification of the techniques to handle cryogens for the Saturn rockets used to launch the Apollo 
missions to the moon (refs. 19 through 25) 
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3. Flight Qualification of Centaur CFM (GRC) 
Flight tests used to develop fluid management strategies for the Centaur upper stage (ref. 26) 

4. Titan Centaur CFM Flight Tests (GRC) 
Flight tests piggybacked on the Titan/Centaur mission to further develop cryogenic fluid management for the 

Centaur upper stage (refs. 27 through 29) 
5. Vented Tank Resupply Experiment (GRC) 

An experiment mounted in three Get Away Special canisters (GAS cans) attached to a cross bay Hitchhiker 
bridge to study the ability of vane propellant devices to control liquid during propellant transfer, tank venting, and 
boiling (ref. 30) 
6. Tank Pressure Control Experiment (GRC) 

A series of single GAS can experiments mounted on the shuttle cargo bay sidewall to study low gravity tank 
mixing, boiling and pressure control (refs. 31 through 35) 
7. Storable Fluid Management Demonstration/Fluid Acquisition and Resupply Experiment SMFD/FARE 
Flight Experiments (GRC) 

A series of shuttle middeck locker experiments to study vane and screen channel liquid acquisition devices. 
Room temperature water was used as test fluid. This limited the experiments to fluid dynamic effects only (refs. 36 
through 39) 
8. Capillary Flow Experiment (GRC) 

A very small sub-scale experiment to study fundamentals of vane devices on space station. Launch on cargo 
mission provided quick turnaround as well as station access during the Columbia stand down. (refs. 40 through 41) 
9. Cryogenic Liquid Acquisition Storage and Supply Experiment (JSC) 

A cryogenic experiment side mounted on the shuttle cargo bay. This experiment was planned to support the 
replacement of the shuttle storable system with a non-toxic oxygen/ethanol propulsion system. Carried to the 
preliminary design phase only 
10. Microgravity Science Support on the NASA Sounding Rocket Program 

A history of recent NASA microgravity sounding rocket experiments 
11. Superfluid Helium On-Orbit Transfer (Shoot) Flight Demonstration (GSFC ) 

An experiment to study the fluid management of superfluid helium. Flown on the shuttle Hitchhiker cross-bay 
bridge (refs. 42 through 54) 
12. Cryogenic Propellant Depots (GRC) 

A review of prior depot design efforts. Extensive references included (refs. 55 through 79) 

C. Instrumentation 

Brief description. Again please refer to the references for details 
 

1. Cryogenic Flowmeters (JSC) 
Ground tests of a series of potential cryogenic flowmeters. Done to support On-Orbit Resupply designs (ref. 80) 

2. SHOOT Cryogenic Instrumentation Applicable to Cryogenic Depots (GSFC) 
Instrumentation developed as part of the SHOOT program (refs. 43 and 81 through 90) 

D. Experiments Proposed 

These experiments are still in active development. As such detailed documentation is as yet unpublished. A 
paragraph description is provided for each to give the reader a more thorough description. 

 

1. ZBOT Experiment (NCESR/GRC) 
The overall objective of the ZBOT is to investigate the effectiveness of the Zero Boil-Off (ZBO) strategy as an 

innovative means for eliminating self-pressurization and mass loss in space cryogenic storage tanks based on an 
optimized and synergetic application of active heat removal and forced-mixing. The project involves performing a 
small scale ISS experiment to study tank pressurization and pressure control in microgravity. A layout of the ZBOT 
ISS hardware design using the ISS glovebox is shown in figure 1. The experimental work was to be supported by an 
extensive CFD modeling effort. The approach was to construct a detailed CFD model, validate it with small and 
large scale ground test data. Then the small scale on-orbit data would be used to assess the changes between small 
ground test and small scale flight test, the model re-validated for the small scale flight data and then used to predict 
large scale flight performance. The ISS experiment design has been place on hold at the preliminary design stage, 
but the modeling effort is still on-going. 
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Figure 1.—ZBOT ISS hardware design details cutaway of test chamber. 

 

2. Centaur CTB (Lockheed Martin) 
The Lockheed Martin team provided a conceptual design for a small cryogenic experiment tank attached to the 

aft end of a Centaur stage. Figure 2 shows an artists concept of this tank. Note also below this tank a valve panel for 
the experiment as well. The proposed design attaches to existing hard points on the Centaur aft end and is isolated 
from the stage propulsion by pyrotechnic valves until after the primary Centaur mission is complete. As such the 
experiment can be integrated as a secondary payload on any Centaur launch with excess payload capacity with 
minimal impact to the primary payload. With such approaches the Centaur upper-stage vehicle can provide a low 
cost test platform for performing numerous flight demonstrations of the full breadth of required CFM technologies 
in a schedule supporting CEV development. 

Vacuum 
Jacket  

Window
(1 of 3) 

Test
Tank

Test Tank 
(∅ 4” x 8”) 

∅ 3/8” Nozzle 

Liquid 
Acquisition 
Device 
(LAD) 

Cold Finger
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Figure 2.—The Centaur Test Bed (CTB) concept showing 

experimental tank mounted on Centaur Aft end. 

 

 
Figure 3.—Centaur has demonstrated effective 

propellant control at 10–5 G’s. 

E. Maturation Strategies 

As stated previously these are broad statements of approach and philosophy to the maturation of cryogenic 
technologies without proposing specific experiments. Most are evolving as time progresses and missions change, but 
they do provide ideas and concepts for future ways forward. Space permits only a summary paragraph for each of 
the concepts in this paper. 
 
1. Settled Transfer (Lockheed Martin) 

Lockheed-Martin submitted this vision foe evolving from current upper stage cryogenic fluid management 
practices to a full on-orbit capability. For the exploration vision to be able to realize the huge benefit of cryogenic 
propellant transfer, one must ensure the reliability and robustness of the transfer process. To implement cryogenic 
transfer starting with the first lunar exploration mission requires the use of existing or nearly existing technology to 
maintain a reasonable development risk. Utilizing low acceleration during the cryogenic transfer operation 
significantly simplifies the entire operation, enabling the maximum use of existing, mature upper stage cryogenic-
fluid-management (CFM) techniques. With settling, large-scale propellant transfer becomes an engineering effort, 
not a technology development endeavor. The key technologies: propellant acquisition, hardware chilldown, pressure 
control, and mass gauging are all currently in use on Centaur and the Delta IV upper stage. The key remaining 
technology, rendezvous and docking, is required regardless of the use of propellant transfer. Figure 3 shows the 
results of settling test on the Centaur and shows control can be achieved even with only 10–5 g of settling. 
2. CFD Tools (Boeing) 

Boeing presented their vision for the correct role of both CFD modeling and flight experimentation (see ZBOT 
above for a similar plan of attack). Computational modeling tools for the design of cryogenic and low-gravity fluid 
space systems offers both development cost savings and improved designs. However, the tools and approaches 

CTB Valve Panel 
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employed must be quantitatively verified in relevant environments. It is recommended to develop and 
experimentally validate computational capabilities in several thermodynamic and fluid-dynamic areas of spacecraft 
propulsion design to reap the performance and financial benefits of these advanced modeling technologies. 
3. On Orbit CFM (Boeing) 

Boeing reviewed the baseline technology plan (see table 2) and provided their view of research they thought 
were important. Table 3 shows the Boeing recommendation of technologies to pursue versus the MDSCR baseline. 
For the most part Boeing is in agreement with the baseline. However they added elements for the development of 
incorporating Micro Meteoroid and Orbital Debris protection into the insulation system and reducing the thermal 
conductivity of multilayer insulation penetrations. 

 
TABLE 3.—REVISED TECHNOLOGIES FOR MDSCR 

Technologies NASA GRC  1 Boing/NASA MSFC  74 Post Flight Test TRL 
MLI 5 5 (insulation thermal performance) 

4 (insulation degradation in launch) 
5 (atomic oxygen and contamination) 

7 

VCS 5 5 (performance) 
5 (thermal performance) 

7 

MMOD N/A 3 (material and thickness) 
3 (performance) 

7 

Instrumentation N/A N/A 7 
Low-k penetrations N/A 5 7 
TVS 4 5 (thermal performance) 

3 (micro-g heat transfer from fluid) 
7 

Mass gauging 3 4 (performance) 
3 (micro-g performance) 

7 

Cryocoolers 4 (LO2/CH4) 
3 (LH2) 

4 (thermodynamic efficiency and life) 
3 (micro-g performance) 

7 

Umbilicals 3 
(fluid transfer) 

3 (fluid leakage, pressure drop) 
3 (force and alignment requirements) 
3 (thermal performance) 

7 

PMD 3 3 (residual fraction; flow vs. percent liquid) 
4 (pressure drop; long-term use) 

7 

4. Shuttle DTO (JSC) 
JSC submitted this paper describing the approach used to design and qualify the Space Shuttle propulsion 

system and how this could be applicable to a cryogenic system. There are certain aspects of a cryogenic propellant 
system design that can only be fully tested in zero-g. However, flying an in-space experiment for zero-g testing of 
propellant acquisition, gauging, and transfer is an expensive proposition. The experiment becomes in itself a 
spacecraft with propulsion, avionics, launch vehicle interfaces, analysis, and ground test etc. Another approach is to 
basically to do analysis, tests in 1-g, and limited simulated zero-G environment, and then to build and fly the full 
scale spacecraft. The mission is flown in manner as to not jeopardize vehicle or crew, but such that data on 
performance is gathered to accomplish specific Development Test Objectives. This DTO data on performance is 
then used to expand the flight envelope. The zero-g thermal environment would be the primary focus of in-space 
DTOs. The initial flights would be flown in a manner to minimize effects by either mixing the system using pumps 
or by virtue of the maneuvers. As the DTOs expanded the confidence in zero-g thermal operations unneeded 
hardware and maneuvers would be gradually eliminated. Acquisition, gauging, and transfer can be certified for 
flight on the ground, and operational data gathered with DTOs. 

III. Summary 
Although the MDSCR study is drawing to a close and ended a prematurely due to changing NASA priorities, It 

will leave a legacy of ideas for future researchers. A number of the white papers document historical experiments 
and approaches. They will prove valuable to future researchers and will be fully documented in the MDSCR final 
report. The commonality of approaches to CFD and technology maturation should give confidence when laying out 
future research efforts. Several white papers highlight new and novel concepts especially in the experiments 
proposed and maturation strategies groupings. These will serve as a head start for preparing experiments in the 
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future. Already ideas from this effort are being adapted for use in the liquid oxygen/liquid methane advanced 
development for CEV. As NASA focus’ moves on to Lunar and Mars exploration the results of MDSCR will 
provide a valuable reference for the design of the flight experiments required for those challenging missions. 
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